JPH052629B2 - - Google Patents
Info
- Publication number
- JPH052629B2 JPH052629B2 JP63139033A JP13903388A JPH052629B2 JP H052629 B2 JPH052629 B2 JP H052629B2 JP 63139033 A JP63139033 A JP 63139033A JP 13903388 A JP13903388 A JP 13903388A JP H052629 B2 JPH052629 B2 JP H052629B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- temperature
- bag tube
- glass
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 35
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 34
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000005304 joining Methods 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 2
- 238000010309 melting process Methods 0.000 claims description 2
- 230000009477 glass transition Effects 0.000 claims 1
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 11
- 239000011734 sodium Substances 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- HYHCSLBZRBJJCH-UHFFFAOYSA-N sodium polysulfide Chemical compound [Na+].S HYHCSLBZRBJJCH-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Products (AREA)
- Secondary Cells (AREA)
Description
(産業上の利用分野)
本発明はナトリウム−硫黄電池のβ−アルミナ
袋管とα−アルミナリングとの接合方法に係わ
り、さらに詳しくはβ−アルミナ袋管とα−アル
ミナリングとの接合強度、耐熱衝撃性及び高温状
態での劣化特性を向上することができるβ−アル
ミナ袋管とα−アルミナリングとの接合方法に関
するものである。
(従来の技術)
最近、電気自動車用、夜間電力貯蔵用の二次電
池として性能面及び経済面の両面において優れ、
300〜350℃で作動する高温型のナトリウム−硫黄
電池の研究開発が進められている。
このナトリウム−硫黄電池として、従来、第4
図に示すように陽極活物質である溶融硫黄Sを含
浸したカーボンマツト等の陽極用導電材Mを収納
する円筒状の陽極容器1と、該陽極容器1の上端
部に対し、α−アルミナリング2を介して連結さ
れ、かつ溶融金属ナトリウムNaを貯蔵する陰極
容器3と、前記α−アルミナリング2の内周部に
固着され、かつ陰極活物質であるナトリウムイオ
ンNa+を選択的に透過させる機能を有した下方へ
延びる円筒状の多結晶β−アルミナ袋管4とから
なつている。
又、陰極容器3の上部蓋の中央部には、該陰極
容器3を貫通してβ−アルミナ袋管4底部まで延
びた細長い陰極管5が貫通支持されている。
そして、放電時には次のような反応によつてナ
トリウムイオンがβ−アルミナ袋管4を透過して
陽極容器1の硫黄Sと反応し、多硫化ナトリウム
を生成する。
2Na+XS→Na2Sx
又、充電時には放電時とは逆の反応が起こり、
ナトリウムNaび硫黄Sが生成される。
上記のように構成されたナトリウム−硫黄電池
のβ−アルミナ袋管4は、α−アルミナリングと
無機質のガラスにより接合固定され、その接合強
度及び気密性を向上するようにしていた。
(発明が解決しようとする課題)
ところが、上記従来のガラス接着方法において
は、最高温度に加熱してガラスを溶融してから冷
却しながら凝固する過程において、軟化温度とほ
ぼ同温度の600℃で15分間程度保持し、以降300
℃/hrで冷却しているため、第2図に示す熱膨張
曲線より示される軟化温度600℃から室温までの
ガラスとα−アルミナやβ−アルミナとの間の熱
膨張差により残留応力が発生すると考えられる。
従つて、冷却過程において、ガラス内部に残留す
る応力が大きくなり、β−アルミナ袋管とα−ア
ルミナリングの接合強度を低下し、ナトリウム−
硫黄電池の作動に伴う昇降温時に、β−アルミナ
袋管のガラス接合端部に作用する片持ち曲げ応用
によつて、β−アルミナ袋管が破損することが多
かつた。
本発明の目的はβ−アルミナ袋管とα−アルミ
ナリングとの接合強度を向上することができると
ともに、耐熱衝撃性及び高温使用状態での劣化特
性やヘリウムリーク特性を向上することができる
とともに、ナトリウム−硫黄電池の作動に伴う昇
降温時のβ−アルミナ袋管のガラス接合端の破損
を防止することができるナトリウム−硫黄電池に
おけるβ−アルミナ袋管とα−アルミナリングと
の接合方法を提供することにある。
(課題を解決するための手段)
請求項1記載のナトリウム−硫黄電池のβ−ア
ルミナ袋管とα−アルミナリングの接合方法は、
上記目的を達成するため、β−アルミナ袋管とα
−アルミナリングとの接合面に好ましくはペース
ト状のガラス組成物を介在させた状態で、前記接
合面を加熱し、常温から最高温度までの加熱溶融
過程において所定温度に一定時間保持し、最高温
度から冷却過程において前記ガラス組成物の転移
温度とほぼ同温度に10〜20分間保持し、その後冷
却するという方法を採用している。
(作用)
請求項1記載のナトリウム−硫黄電池のβ−ア
ルミナ袋管とα−アルミナリングとの接着方法
は、接着用ガラスの加熱溶融状態から冷却凝固過
程において、ガラス組成物の熱膨張率が転移温度
ではα−アルミナに近く、β−アルミナとの差も
大きくないので、転移温度付近での所定時間の除
歪によりガラス内部の残留応力が減少し、接合強
度が向上するとともに、耐熱衝撃性、高温状態で
の劣化特性及び電池としての昇降温時の片持ち曲
げ応力に対する耐性が向上することが確認され
た。
(実施例)
次に、本発明のナトリウム−硫黄電池のβ−ア
ルミナ袋管4とα−アルミナリング2の接合方法
の一実施例について説明する。
最初に、例えば58〜67重量部のSiO2と、8〜
17重量部のAl2O3と、8〜17重量部のB2O3と、8
〜15重量部のNa2Oとからなる粉末状のガラス組
成物を例えば5g秤量する。
次に、接着助剤を含む有機溶剤5gに前記粉末
状のガラス組成物を加え、アルミナ製乳鉢内で混
合し、ガラスペーストを作製する。
次に、前記ペースト状のガラス組成物をβ−ア
ルミナ袋管4及びα−アルミナリング2の接合面
に刷毛等で塗布する。そして、室温で30分以上乾
燥し、窯詰め作業に耐え得る接着強度にする。
さらに、大気雰囲気中でガラスシール電気炉に
よりβ−アルミナ袋管4とα−アルミナリング2
の接合部を局所加熱する。この局所加熱は温度を
急速に昇降させるためである。又、ガラス溶融〜
冷却時の結晶析出による接合強度が低下するのを
防止するためでもある。
第3図は前記電気炉の一実施例の断面を示すも
のである。この電気炉は炉床台11上に立設され
るβ−アルミナ袋管4を挿入する加熱空間を形成
した断熱体12の内周面近傍にヒーター13を埋
設し、該断熱体12の上面には炉蓋14を載置し
ている。又、前記β−アルミナ袋管4は炉床台1
1上に係止されたα−アルミナリング2に嵌合立
設されている。
上記焼成工程における時間−温度のグラフを第
1図に示す。このグラフにおいて、常温から1000
℃の最高温度まで加熱して乾燥状態のガラス組成
物を溶融する過程で、300℃で60分間と500℃で10
分間それぞれ一定温度に保持するのは、接着助剤
の有機物を完全に燃焼させるためである。又、
1000℃の最高温度を15分間保持するのはガラス組
成物を完全に溶融させるためである。さらに、冷
却過程の500℃の保持はガラス組成物を除歪(ア
ニール)処理するためである。さらに詳しくは第
2図に示すようにβ−アルミナとα−アルミナの
熱膨張率は加熱温度が上昇するに従いほぼ正比例
して増加するが、ガラス組成物の熱膨張率は、
500℃においてα−アルミナの熱膨張率を上回り、
600℃で軟化し、それ以上となると、熱膨張率は
急減するという特性を有しているため、本願発明
者等は実験により前記転移温度の500℃で10〜20
分間保持して除歪したところ、後述するようにβ
−アルミナ袋管とα−アルミナリングの接合強度
が向上したのである。
このようにして、β−アルミナ袋管4とα−ア
ルミナリング2はガラス組成物により接合され
る。
なお、表1は接合ガラスの冷却過程における除
歪条件と接合強度との関係を調べたものであり、
従来法のようにガラスの軟化温度付近での除歪よ
りも本発明のようにガラスの転移温度付近での除
歪条件の方が、機械的接合強度が高いことが判
る。
(Industrial Application Field) The present invention relates to a method for bonding a β-alumina bag tube and an α-alumina ring in a sodium-sulfur battery, and more particularly, to a method for bonding a β-alumina bag tube and an α-alumina ring, The present invention relates to a method for joining a β-alumina bag tube and an α-alumina ring, which can improve thermal shock resistance and deterioration characteristics under high temperature conditions. (Prior art) Recently, as secondary batteries for electric vehicles and nighttime power storage, excellent in both performance and economical aspects,
Research and development is underway on high-temperature sodium-sulfur batteries that operate at 300-350°C. Conventionally, this sodium-sulfur battery
As shown in the figure, there is a cylindrical anode container 1 that houses a conductive material M for the anode, such as carbon matte impregnated with molten sulfur S, which is an anode active material, and an α-alumina ring attached to the upper end of the anode container 1. a cathode container 3 that stores molten metal sodium Na; and a cathode container 3 that is fixed to the inner circumference of the α-alumina ring 2 and that selectively transmits sodium ions Na + as a cathode active material. It consists of a cylindrical polycrystalline β-alumina bag tube 4 which has a function and extends downward. Further, an elongated cathode tube 5 is supported through the center of the upper lid of the cathode container 3, and extends through the cathode container 3 to the bottom of the β-alumina bag tube 4. During discharge, sodium ions pass through the β-alumina bag tube 4 and react with sulfur S in the anode container 1 to produce sodium polysulfide in the following reaction. 2Na+XS→Na 2 Sx Also, during charging, the opposite reaction to that during discharging occurs,
Sodium Na and sulfur S are produced. The β-alumina bag tube 4 of the sodium-sulfur battery configured as described above is bonded and fixed to the α-alumina ring and inorganic glass to improve the bonding strength and airtightness. (Problem to be Solved by the Invention) However, in the conventional glass bonding method described above, in the process of heating the glass to the highest temperature to melt it and then solidifying it while cooling, the temperature of 600°C, which is approximately the same as the softening temperature, is Hold for about 15 minutes, then 300
Because it is cooled at a rate of ℃/hr, residual stress is generated due to the difference in thermal expansion between glass and α-alumina and β-alumina from the softening temperature of 600℃ to room temperature, as shown by the thermal expansion curve shown in Figure 2. It is thought that then.
Therefore, during the cooling process, the stress remaining inside the glass increases, reducing the bonding strength between the β-alumina bag tube and the α-alumina ring, and causing sodium-
During temperature increases and decreases associated with the operation of sulfur batteries, the β-alumina bag tubes were often damaged due to cantilever bending applied to the glass joint ends of the β-alumina bag tubes. The purpose of the present invention is to improve the bonding strength between a β-alumina bag tube and an α-alumina ring, as well as improve thermal shock resistance, deterioration characteristics under high-temperature usage conditions, and helium leak characteristics. Provided is a method for joining a β-alumina bag tube and an α-alumina ring in a sodium-sulfur battery that can prevent damage to the glass joint end of the β-alumina bag tube during temperature increases and decreases associated with the operation of a sodium-sulfur battery. It's about doing. (Means for Solving the Problems) A method for joining a β-alumina bag tube and an α-alumina ring of a sodium-sulfur battery according to claim 1 includes:
In order to achieve the above purpose, β-alumina bag tube and α
- Heat the bonded surface with preferably a paste-like glass composition interposed on the bonded surface with the alumina ring, and maintain it at a predetermined temperature for a certain period of time during the heating and melting process from room temperature to the maximum temperature, and In the cooling process, the glass composition is maintained at approximately the same temperature as the transition temperature for 10 to 20 minutes, and then cooled. (Function) The method of bonding the β-alumina bag tube and the α-alumina ring of the sodium-sulfur battery according to claim 1 is such that the coefficient of thermal expansion of the glass composition changes from the heated molten state to the cooling solidification process of the bonding glass. The transition temperature is close to α-alumina and the difference from β-alumina is not large, so removing strain for a specified period of time near the transition temperature reduces residual stress inside the glass, improving bonding strength and improving thermal shock resistance. It was confirmed that the deterioration characteristics at high temperatures and the resistance to cantilever bending stress during temperature rise and fall as a battery were improved. (Example) Next, an example of a method for joining the β-alumina bag tube 4 and the α-alumina ring 2 of the sodium-sulfur battery of the present invention will be described. First, e.g. 58-67 parts by weight of SiO 2 and 8-67 parts by weight of SiO 2 and
17 parts by weight of Al2O3 , 8 to 17 parts by weight of B2O3 , 8
For example, 5 g of a powdered glass composition comprising ~15 parts by weight of Na 2 O is weighed. Next, the powdered glass composition is added to 5 g of an organic solvent containing an adhesion aid and mixed in an alumina mortar to prepare a glass paste. Next, the pasty glass composition is applied to the joint surfaces of the β-alumina bag tube 4 and the α-alumina ring 2 with a brush or the like. The pieces are then dried at room temperature for at least 30 minutes to create an adhesive that is strong enough to withstand kiln filling. Furthermore, β-alumina bag tube 4 and α-alumina ring 2 were heated in a glass-sealed electric furnace in the air.
local heating of the joint. This local heating causes the temperature to rise and fall rapidly. Also, glass melting~
This is also to prevent joint strength from decreasing due to crystal precipitation during cooling. FIG. 3 shows a cross section of one embodiment of the electric furnace. In this electric furnace, a heater 13 is buried near the inner peripheral surface of a heat insulator 12 that forms a heating space into which a β-alumina bag tube 4 is inserted, which is set upright on a hearth stand 11. The furnace lid 14 is placed on the furnace lid 14. Further, the β-alumina bag tube 4 is connected to the hearth stand 1.
The α-alumina ring 2 is fitted onto the α-alumina ring 2 and erected thereon. FIG. 1 shows a time-temperature graph in the above firing step. In this graph, from room temperature to 1000
In the process of melting the dry glass composition by heating to a maximum temperature of 300 °C for 60 minutes and 500 °C for 10 minutes,
The reason why the temperature is maintained at a constant temperature for each minute is to completely burn out the organic matter of the adhesion promoter. or,
The reason why the maximum temperature of 1000°C is maintained for 15 minutes is to completely melt the glass composition. Furthermore, the temperature is maintained at 500° C. during the cooling process to remove strain (anneal) the glass composition. More specifically, as shown in Figure 2, the thermal expansion coefficients of β-alumina and α-alumina increase in almost direct proportion as the heating temperature rises, but the thermal expansion coefficient of the glass composition is
Thermal expansion coefficient exceeds that of α-alumina at 500℃,
Since it has the property that it softens at 600℃ and the coefficient of thermal expansion rapidly decreases above that temperature, the inventors of the present application have experimentally found that the coefficient of thermal expansion softens at 500℃, which is the transition temperature, by 10~20℃.
After holding it for a minute and removing the strain, β
- The bonding strength between the alumina bag tube and the α-alumina ring has been improved. In this way, the β-alumina bag tube 4 and the α-alumina ring 2 are joined by the glass composition. Table 1 examines the relationship between strain removal conditions and bonding strength during the cooling process of bonded glass.
It can be seen that the mechanical bonding strength is higher when the strain is removed near the transition temperature of the glass as in the present invention than when the strain is removed near the softening temperature of the glass as in the conventional method.
【表】
又、表2はガラスが転位する温度から、軟化溶
融するまでの温度域の昇降温速度とガラス接合強
度及びガラス中の結晶の有無の関係を確認したも
のである。[Table] Furthermore, Table 2 confirms the relationship between the temperature increase/decrease rate in the temperature range from the temperature at which the glass undergoes dislocation to the point at which it softens and melts, the glass bonding strength, and the presence or absence of crystals in the glass.
【表】
この表2のデータから明らかなように、上記温
度域の昇降温速度が600℃/hr以上であると接合
強度が強くなり、かつガラス中の結晶も無くなる
ことがわかる。しかし、あまり昇降温速度を速く
してもそれほど接合強度は向上せず、1000℃/hr
が望ましいといえる。
(発明の効果)
以上詳述したように、請求項1記載のナトリウ
ム−硫黄電池のβ−アルミナ袋管とα−アルミナ
リングの接合方法は、加熱溶融状態から冷却凝固
過程において、ガラス組成物の転移温度とほぼ同
温度に一定時間保持するので、ガラス中に発生す
る残留応力を減少し、機械的強度を向上すること
ができ、さらに、耐熱衝撃性、ヘリウムリーク特
性及び高温での耐久性を向上することができる効
果がある。[Table] As is clear from the data in Table 2, it can be seen that when the temperature increase/decrease rate in the above temperature range is 600° C./hr or more, the bonding strength becomes strong and crystals in the glass disappear. However, even if the heating/cooling rate is increased too much, the bonding strength does not improve much;
is desirable. (Effects of the Invention) As described in detail above, the method for joining the β-alumina bag tube and the α-alumina ring of the sodium-sulfur battery according to claim 1 is such that the glass composition is Since the temperature is maintained at approximately the same temperature as the transition temperature for a certain period of time, it is possible to reduce the residual stress generated in the glass and improve mechanical strength.It also improves thermal shock resistance, helium leak characteristics, and durability at high temperatures. There are effects that can be improved.
第1図は本発明のβ−アルミナ袋管とα−アル
ミナリングとのガラス接合方法の焼成温度線を示
すグラフ、第2図は各材料の温度と熱膨張率との
関係を示すグラフ、第3図は焼成用の電気炉を示
す中央部縦断面図、第4図はナトリウム−硫黄電
池の一例を示す中央部縦断面図である。
1……陽極容器、2……α−アルミナリング、
3……陰極容器、4……β−アルミナ袋管、5…
…陰極管、6……接着用ガラス。
Fig. 1 is a graph showing the firing temperature line of the glass bonding method of the β-alumina bag tube and α-alumina ring of the present invention, Fig. 2 is a graph showing the relationship between the temperature and coefficient of thermal expansion of each material, and Fig. FIG. 3 is a central longitudinal sectional view showing an electric furnace for firing, and FIG. 4 is a central longitudinal sectional view showing an example of a sodium-sulfur battery. 1...Anode container, 2...α-alumina ring,
3...Cathode container, 4...β-alumina bag tube, 5...
...Cathode tube, 6...Gluing glass.
Claims (1)
接合面にガラス組成物を介在させた状態で、前記
接合面を加熱し、常温から最高温度までの加熱溶
融過程において所定温度に一定時間保持し、最高
温度から冷却過程において前記ガラス組成物の転
移温度とほぼ同温度に10〜20分間保持し、その後
冷却することを特徴とするβ−アルミナ袋管とα
−アルミナリングとの接合方法。 2 請求項1記載のβ−アルミナ袋管とα−アル
ミナリングとの接合方法において、ガラスが転移
する温度から軟化溶融するまでの温度域の昇降温
速度を600℃/hr以上とするβ−アルミナ袋管と
α−アルミナリングとの接合方法。[Scope of Claims] 1. With a glass composition interposed between the joint surface of the β-alumina bag tube and the α-alumina ring, the joint surface is heated, and a predetermined temperature is applied in the heating melting process from room temperature to the maximum temperature. A β-alumina bag tube and α characterized in that the temperature is maintained for a certain period of time, the temperature is maintained at approximately the same temperature as the transition temperature of the glass composition for 10 to 20 minutes during the cooling process from the maximum temperature, and then the α-alumina bag tube is cooled.
-Method of joining with alumina ring. 2. In the method for joining a β-alumina bag tube and an α-alumina ring according to claim 1, the β-alumina has a temperature increase/decrease rate of 600°C/hr or more in the temperature range from the temperature at which the glass transitions to the point at which it softens and melts. How to join a bag tube and an α-alumina ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139033A JPH0214885A (en) | 1988-06-06 | 1988-06-06 | Jointing of beta-alumina bag tube and alpha-alumina ring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63139033A JPH0214885A (en) | 1988-06-06 | 1988-06-06 | Jointing of beta-alumina bag tube and alpha-alumina ring |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0214885A JPH0214885A (en) | 1990-01-18 |
JPH052629B2 true JPH052629B2 (en) | 1993-01-12 |
Family
ID=15235896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63139033A Granted JPH0214885A (en) | 1988-06-06 | 1988-06-06 | Jointing of beta-alumina bag tube and alpha-alumina ring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0214885A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2527844B2 (en) * | 1990-11-22 | 1996-08-28 | 日本碍子株式会社 | Glass bonded body and manufacturing method thereof |
JP2545153B2 (en) * | 1990-05-18 | 1996-10-16 | 日本碍子株式会社 | Glass bonded body and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4942711A (en) * | 1972-09-01 | 1974-04-22 | ||
JPS55140732A (en) * | 1979-04-19 | 1980-11-04 | Chloride Silent Power Ltd | Sealing glass |
-
1988
- 1988-06-06 JP JP63139033A patent/JPH0214885A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4942711A (en) * | 1972-09-01 | 1974-04-22 | ||
JPS55140732A (en) * | 1979-04-19 | 1980-11-04 | Chloride Silent Power Ltd | Sealing glass |
Also Published As
Publication number | Publication date |
---|---|
JPH0214885A (en) | 1990-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103402941B (en) | Glass, especially glass solder or melten glass | |
JP2558035B2 (en) | Separator for sodium / sulfur battery and method for sealing the separator | |
JP2001243994A (en) | Recycle method of sodium sulfur battery | |
CA1300677C (en) | Method of forming glass bonded joint of beta-alumina and other ceramic and joint formed thereby | |
JPH052629B2 (en) | ||
JP2527844B2 (en) | Glass bonded body and manufacturing method thereof | |
JP2545153B2 (en) | Glass bonded body and manufacturing method thereof | |
JPH09326261A (en) | Glass material for high temperature secondary battery and glass junction body | |
JPS5829563Y2 (en) | Sodium - Sulfur Denthi | |
JP3704241B2 (en) | Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery | |
JPS62295368A (en) | Sodium-sulphur cell and its manufacture | |
KR101758797B1 (en) | Apparatus and method for reusing solid electrolyte tube of sodium rechargeable battery | |
JPH0355768A (en) | Joint glass to form sodium-sulfur battery and joint of cylindrical solid electrolyte with bottom to insulation ring using same | |
JP3292994B2 (en) | Sodium-sulfur battery | |
JP2613264B2 (en) | Bag tube for Na / S secondary battery, method for producing the same, and Na / S secondary battery using the same | |
JP2001176543A (en) | Method of manufacturing sodium-sulfur battery | |
JPS6116601Y2 (en) | ||
JPS59103272A (en) | Sealing cap for battery | |
JPH11246235A (en) | Glass bonding material and sodium-sulfur cell | |
JPH02257576A (en) | Sodium-sulfur cell | |
JPH04175271A (en) | Glass joining body and production thereof | |
JPS60127667A (en) | Manufacturing of fused salt electrolyte battery | |
JPH02132775A (en) | Assembling method for sodium-sulphur battery | |
JPH10106623A (en) | Sodium secondary battery | |
JPH0298068A (en) | Sodium-sulfur battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090112 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090112 Year of fee payment: 16 |