JPH02146499A - Ice heat accumulating device - Google Patents
Ice heat accumulating deviceInfo
- Publication number
- JPH02146499A JPH02146499A JP63299267A JP29926788A JPH02146499A JP H02146499 A JPH02146499 A JP H02146499A JP 63299267 A JP63299267 A JP 63299267A JP 29926788 A JP29926788 A JP 29926788A JP H02146499 A JPH02146499 A JP H02146499A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- liquid
- return pipe
- heat storage
- heat accumulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 149
- 239000007788 liquid Substances 0.000 claims abstract description 96
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000005338 heat storage Methods 0.000 claims description 65
- 239000011232 storage material Substances 0.000 claims description 41
- 239000007791 liquid phase Substances 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 44
- 230000005494 condensation Effects 0.000 abstract description 7
- 238000009833 condensation Methods 0.000 abstract description 7
- 238000007710 freezing Methods 0.000 abstract description 7
- 230000008014 freezing Effects 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract 5
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、密閉容器内に封入された冷媒の気液相変化に
伴う自然循環サイクルによって蓄熱材を固液相変化させ
て該蓄熱材を蓄熱媒体として貯留させる氷蓄熱装置に関
するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention is a heat storage material that changes the solid-liquid phase of a heat storage material through a natural circulation cycle accompanying the gas-liquid phase change of a refrigerant sealed in an airtight container. This invention relates to an ice heat storage device that stores ice as a heat storage medium.
(従来の技術)
近年、工業プラントやビル等における比較的大規模な空
調システムには蓄熱空調システムが利用され、冷房負荷
のピーク時における電力需要の軽減並びにオフビーク時
における電力需要の拡大を図るようにしている。(Prior art) In recent years, thermal storage air conditioning systems have been used in relatively large-scale air conditioning systems in industrial plants, buildings, etc., to reduce power demand during peak cooling load times and increase power demand during off-peak times. I have to.
この蓄熱空調システムの蓄熱方式には、顕熱を利用した
水蓄熱方式と、潜熱を利用した氷蓄熱方式とがあるが、
前者の水蓄熱方式では蓄熱槽を大きくしなければ、有効
な効果を発揮させることができないという欠点かあり、
また、その安全性および経済性の面から、水蓄熱方式の
需要が高まりつつある。The heat storage methods of this heat storage air conditioning system include a water heat storage method that uses sensible heat and an ice heat storage method that uses latent heat.
The former water heat storage method has the disadvantage that it cannot be effective unless the heat storage tank is enlarged.
Additionally, demand for water heat storage systems is increasing due to their safety and economic efficiency.
この氷蓄熱方式を採用した装置の一例として、特開昭6
3−46392号公報に示されるような氷蓄熱装置があ
る。該公報に示されているものは、第2図に示すように
凝縮管(a)を上部に有する密閉容器(b)中に蓄熱材
としての水(W1)と抜水(W1)より比重の大きい冷
媒(F)を封入したものであって、その製氷時には凝縮
管(a)に水(W1)の凍結温度以下の流体を流すこと
により、密閉容器(b)上層部の冷媒ガス(F2)を凝
縮させることによって、容器内圧力が低下し、冷媒液(
F1)が減圧沸騰を起こすことにより、水(W1)が凝
固潜熱を奪われて氷化し、抜水(I)を蓄熱媒体として
貯留させるものである。As an example of a device that adopted this ice heat storage method,
There is an ice heat storage device as shown in Japanese Patent No. 3-46392. What is shown in this publication is as shown in Fig. 2, in which water (W1) as a heat storage material and drained water (W1) have a specific gravity in a sealed container (b) having a condensing pipe (a) at the top. The refrigerant gas (F2) in the upper layer of the closed container (b) is By condensing the refrigerant liquid (
When F1) causes boiling under reduced pressure, water (W1) is deprived of latent heat of solidification and turns into ice, and drained water (I) is stored as a heat storage medium.
また、凝縮されて相変化した冷媒凝縮′t#C(F3)
は戻し管(c)と一体的に形成された受液器(d)で回
収されて、冷媒液層へ戻されるものである。In addition, the refrigerant condensed and changed in phase 't#C (F3)
is collected by a liquid receiver (d) formed integrally with the return pipe (c) and returned to the refrigerant liquid layer.
このように該装置は自然循環サイクルを利用したもので
ある。The device thus utilizes a natural circulation cycle.
(発明が解決しようとする課題)
しかし、上述したような方式のものにあっては、冷媒ガ
ス(F2)空間に存在していt:水蒸気(W2)が製氷
運転時に凝縮管(a)上に結露しているため、以下に述
べるような課題を有しているものである。即ち、lサイ
クルの運転が終了し、凝縮管(a)への低温流体の供給
を停止すると、系の温度上昇に伴い凝縮管(a)上の結
露が水滴となる。この水滴が増加すると、自重で凝縮管
(a)から落下し、受液器(d)に回収されて戻し管(
c)の中に入り、冷媒液(F1)との比重差によって該
水滴は戻し管(c)内の冷媒液(F1)の上層部に溜る
。この戻し管(c)中に水が溜った状態で再び製氷運転
を行うと、凝縮管(a)で凝縮された冷媒凝縮液(F3
)の?Fjh度は氷点下であるために、冷却されて相変
化を起こし、氷になって液戻し管(c)を閉塞する。そ
のために、凝縮された冷媒凝縮液(F3)がスムーズに
冷媒液層に戻れず、また、受液器(d)から溢れるなど
して製氷が困難な状態になるものであった。(Problem to be solved by the invention) However, in the method described above, water vapor (W2) exists in the refrigerant gas (F2) space and flows onto the condensing pipe (a) during ice making operation. Because of the condensation, there are problems as described below. That is, when the 1-cycle operation is completed and the supply of low-temperature fluid to the condensing tube (a) is stopped, the condensation on the condensing tube (a) becomes water droplets as the temperature of the system increases. As these water droplets increase, they fall from the condensing pipe (a) due to their own weight, are collected in the liquid receiver (d), and are returned to the return pipe (
c), and due to the difference in specific gravity with the refrigerant liquid (F1), the water droplets accumulate in the upper layer of the refrigerant liquid (F1) in the return pipe (c). When ice making operation is performed again with water accumulated in the return pipe (c), the refrigerant condensate (F3) condensed in the condensation pipe (a)
)of? Since the Fjh degree is below the freezing point, the liquid is cooled and undergoes a phase change, turning into ice and blocking the liquid return pipe (c). Therefore, the condensed refrigerant condensate (F3) cannot smoothly return to the refrigerant liquid layer, and it overflows from the receiver (d), making it difficult to make ice.
そこで、本発明は、受液器と戻し管とを分離させ、戻し
管中に混入した水を該液戻し管の上端から容易に除去可
能とさせる氷蓄熱装置を得ることを目的とするものであ
る。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an ice heat storage device in which a liquid receiver and a return pipe are separated, and water mixed in the return pipe can be easily removed from the upper end of the liquid return pipe. be.
(課題を解決するための手段)
上記の目的を解決するために、本発明は以下に述べるよ
うな手段を講じたものである。(Means for Solving the Problems) In order to solve the above objects, the present invention takes the following measures.
請求項〔1)に係る発明は、固irE柑変化する蓄熱材
(W)と、該蓄熱材(W)より比重が大きく且つ蓄熱材
(W)に溶解することなく蓄熱材(W)と熱を授受する
冷媒CF)とが封入された気密性の密閉容器(2)と、
該密閉容器(2)内における上部の冷媒ガス(F2)空
間に設けられて、上記冷媒ガス(F2)を冷却して凝縮
させる凝縮手段(3)と、凝縮された冷媒凝縮液(F3
)を回収するように上記凝縮手段(3)の下方に設けら
れると共に、該冷媒凝縮i[t(F3)の流出口(4a
)が開設された受液器(4)と、該受液器(4)の流出
口(4a)に一端が所定間隙を存して連通し、他端が密
閉容器(2)内の下部冷媒液層中に開口した冷媒凝縮液
(F3)の戻し管(5)と、密閉容器(2)内における
冷媒液層の冷媒液(F1)を戻し管(5)の冷媒液層側
端部(5b)より受液北側端部(5a)に向かって放出
する冷媒循環手段(6)とからなる氷蓄熱装置である。The invention according to claim [1] provides a heat storage material (W) that undergoes solid irE transformation, and a heat storage material (W) that has a higher specific gravity than the heat storage material (W) and that does not dissolve in the heat storage material (W). an airtight container (2) in which a refrigerant CF) is sealed;
A condensing means (3) provided in the upper refrigerant gas (F2) space in the airtight container (2) to cool and condense the refrigerant gas (F2), and a condensed refrigerant condensate (F3).
) is provided below the condensing means (3) to recover the refrigerant condensed i[t(F3).
) is opened, and one end communicates with the outlet (4a) of the liquid receiver (4) with a predetermined gap, and the other end communicates with the lower refrigerant in the closed container (2). A return pipe (5) for the refrigerant condensate (F3) opened into the liquid layer, and a return pipe (5) for the refrigerant liquid (F1) in the refrigerant liquid layer in the closed container (2), at the end of the refrigerant liquid layer side ( 5b) and a refrigerant circulation means (6) discharging toward the northern end (5a) of receiving liquid.
請求項(2)に係る発明は、上記請求項(1)記載の氷
蓄熱装置において、冷媒循環手段(6)は、戻し管(5
)と冷媒液層を連通させる冷媒循環管(6a)と、冷媒
液層中の冷媒液(F1)を上記冷媒循環管(6a)を経
て戻し管(5)に向かって送給する冷媒循環ポンプ(P
)と、上記戻し管(5)の冷媒液層側端部(5b)に具
備されて、該戻し管(5)を開閉自在とする第1電磁弁
(V1)と、上記冷媒循環管(6a)に介設され該冷媒
循環管(6a)を開閉自在とする第2電磁弁(F2)と
でなることを特徴とする氷蓄熱装置である。The invention according to claim (2) is the ice heat storage device according to claim (1), wherein the refrigerant circulation means (6) includes a return pipe (5).
) and a refrigerant circulation pipe (6a) that communicates the refrigerant liquid layer with each other, and a refrigerant circulation pump that feeds the refrigerant liquid (F1) in the refrigerant liquid layer toward the return pipe (5) through the refrigerant circulation pipe (6a). (P
), a first electromagnetic valve (V1) provided at the end (5b) of the return pipe (5) on the refrigerant liquid layer side to open and close the return pipe (5), and the refrigerant circulation pipe (6a). This is an ice heat storage device characterized by comprising a second solenoid valve (F2) which is interposed in the refrigerant circulation pipe (6a) and can freely open and close the refrigerant circulation pipe (6a).
(作用)
上記各請求項に係る発明の構成による作用は、以下に述
べるとおりである。(Actions) The effects of the configurations of the inventions according to each of the above claims are as described below.
請求項(1)に係る発明においては、凝縮手段(3)に
よって密閉容器(2)中の冷媒ガス(F2)を冷却し、
該冷媒ガス(F2)を凝縮させる。該凝縮によって密閉
容器(2)内は低圧となり、冷媒液(F1)の飽和温度
が蓄熱材(W)の凝固点以下になると、冷媒液(F1)
が減圧沸騰して蓄熱材(W)が冷却される。該冷却によ
って、蓄熱材(W)は凍結して蓄熱媒体として貯留され
る。In the invention according to claim (1), the refrigerant gas (F2) in the closed container (2) is cooled by the condensing means (3),
The refrigerant gas (F2) is condensed. Due to the condensation, the pressure inside the closed container (2) becomes low, and when the saturation temperature of the refrigerant liquid (F1) becomes below the freezing point of the heat storage material (W), the refrigerant liquid (F1)
is boiled under reduced pressure and the heat storage material (W) is cooled. By this cooling, the heat storage material (W) is frozen and stored as a heat storage medium.
方、凝縮された冷媒凝縮液(F3)は受液器(4)で日
収された後、流出口(4a)を経て戻し管(5)によっ
て密閉容器(2)内の冷媒液層中に戻される。また、製
氷動作の終了後は冷媒循環手段(6)によって冷媒液層
中の冷媒/fI2(F1)が戻し管(5)の冷媒液層側
端部(5b)から受液皿側端部(5a)へ向けて放出さ
れて、上記戻し管(5)中に混入された蓄熱材(W)を
蓄熱材層へ戻す。これにより、戻し管(5)中における
蓄熱材(W)の凍結が防止され、連続的な製氷が可能と
なる。On the other hand, the condensed refrigerant condensate (F3) is collected daily in the liquid receiver (4), and then is returned to the refrigerant liquid layer in the closed container (2) through the outlet (4a) and the return pipe (5). be returned. After the ice-making operation is completed, the refrigerant/fI2 (F1) in the refrigerant liquid layer is circulated from the refrigerant liquid layer side end (5b) of the return pipe (5) to the liquid receiving pan side end ( 5a) and the heat storage material (W) mixed into the return pipe (5) is returned to the heat storage material layer. This prevents the heat storage material (W) in the return pipe (5) from freezing, allowing continuous ice making.
一方、請求項(2)に係る発明においては、冷媒液(F
1)の放出時には戻し管(5)の冷媒液層側端部(5b
)の電磁弁(V1)を閉鎖し、冷媒循環管(6a)に介
設されている電磁弁(F2)を開放すると共に、冷媒循
環ポンプ(P)を駆動して冷媒液層中の冷媒液(F1)
を戻し管(5)の冷媒液層側端部(5b)から受液皿側
端部(5a)に向かって放出させる。これにより、冷媒
循環ポンプ(P)から供給された冷媒液(F1)は全て
戻し管(5)に放出されることになり、該戻し管(5)
中に混入された蓄熱材(W)の確実な除去か行える。On the other hand, in the invention according to claim (2), the refrigerant liquid (F
1), the end of the return pipe (5) on the refrigerant liquid layer side (5b
) closes the solenoid valve (V1), opens the solenoid valve (F2) installed in the refrigerant circulation pipe (6a), and drives the refrigerant circulation pump (P) to drain the refrigerant liquid in the refrigerant liquid layer. (F1)
is discharged from the refrigerant liquid layer side end (5b) of the return pipe (5) toward the liquid receiving pan side end (5a). As a result, all the refrigerant liquid (F1) supplied from the refrigerant circulation pump (P) is discharged to the return pipe (5), and the return pipe (5)
The heat storage material (W) mixed inside can be reliably removed.
(実施例)
次に、本発明の一実施例について図面に基づいて説明す
る。(Example) Next, an example of the present invention will be described based on the drawings.
第1図に示すように、本氷蓄熱装置(1)は密閉容器(
2)、凝縮手段(3)、受液器(4)、戻し管(5)お
よび冷媒循環手段(6)を主要部として成るものである
。As shown in Figure 1, this ice heat storage device (1) is a closed container (
2), the main parts are a condensing means (3), a liquid receiver (4), a return pipe (5) and a refrigerant circulation means (6).
以下、各部について説明する。Each part will be explained below.
密閉容器(2)は外気が遮断されて、気密性を有する箱
体であって、その内部には蓄熱材(W)と冷媒(F)と
が封入されている。The airtight container (2) is an airtight box that is blocked from outside air, and a heat storage material (W) and a refrigerant (F) are sealed inside the container.
凝縮手段(3)は上記密閉容器(2)内の冷媒ガス(F
2)を凝縮させるものであって、密閉容器(2)の上部
に設けられ、該密閉容器(2)の上面(2a)を貫通し
て容器内の冷媒ガス(F2)層に配設された凝縮管(3
a)および該凝縮管(3a)に低温流体を供給する冷凍
機(3b)から成る。また、上記密閉容器(2)の下部
には図示しないが、放冷時に冷媒液(F1)を蒸発させ
る蒸発器が設けられており、該蒸発器に流れる高温液で
冷媒液(F1)が蒸発して冷熱が取出される一方、冷媒
ガス(F2)は蓄熱されている氷(1)によって凝縮す
るようになっている。The condensing means (3) condenses the refrigerant gas (F) in the closed container (2).
2), which is provided at the top of the closed container (2), penetrates the top surface (2a) of the closed container (2), and is disposed in the refrigerant gas (F2) layer within the container. Condensing tube (3
a) and a refrigerator (3b) that supplies cryogenic fluid to the condensing pipe (3a). Further, although not shown in the lower part of the sealed container (2), an evaporator for evaporating the refrigerant liquid (F1) during cooling is provided, and the refrigerant liquid (F1) is evaporated by the high temperature liquid flowing into the evaporator. While the cold heat is taken out, the refrigerant gas (F2) is condensed by the ice (1) in which heat is stored.
受液器(4)は上記凝縮手段(3)によって凝縮されて
液体となった冷媒凝縮液(F3)がその自重によって落
下したものを回収する漏斗状の部材であって、上記凝縮
管(3a)の下方でしかも冷媒ガス(F2)層中に設け
られている。また、該受液器(4)の下端は回収された
冷媒凝縮液(F3)を戻し管(5)へ案内するための小
径の流出口(4a)となっている。The liquid receiver (4) is a funnel-shaped member that collects the refrigerant condensate (F3) that has been condensed into liquid by the condensing means (3) and has fallen due to its own weight, and is connected to the condensing pipe (3a). ) and in the refrigerant gas (F2) layer. Further, the lower end of the receiver (4) is a small-diameter outlet (4a) for guiding the collected refrigerant condensate (F3) to the return pipe (5).
戻し管(5)は円筒状のパイプ部材であって、その上端
である受液皿側端部(5a)は上方に向かって大径とな
るように構成されて上記受液m1(4)の流出口(4a
)の下方で冷媒ガス(F2)層に位置されていると共に
、上記流出口(4a)と小間隙を存して設置されており
、該流出口(4a)から流出された冷媒凝縮液(F3)
が供給されるように構成されている。一方、戻し管(5
)の下端である冷媒液層側端部(5b)は密閉容器(2
)内の下部の冷媒液(F1)層中に開口され、その開口
部には該開口を開閉自在とするべく冷媒循環手段(6)
の第1電磁弁(F1)が具備されている。The return pipe (5) is a cylindrical pipe member, and its upper end (5a) on the side of the liquid receiving tray is configured to have a larger diameter toward the upper side, so that it can accommodate the liquid receiving m1 (4). Outlet (4a
) is located in the refrigerant gas (F2) layer below the outlet (4a), and is installed with a small gap between the outlet (4a) and the refrigerant condensate (F3) flowing out from the outlet (4a). )
is configured to be supplied. On the other hand, the return pipe (5
), which is the lower end of the refrigerant liquid layer side (5b), is the lower end of the closed container (2
) is opened in the lower refrigerant liquid (F1) layer, and the opening is provided with a refrigerant circulation means (6) so that the opening can be opened and closed freely.
A first solenoid valve (F1) is provided.
冷媒循環手段(6)は冷媒循環管(6a)、冷媒循環ポ
ンプ(P)および第1.第2電磁弁(V1)、(F2)
でなり、冷媒循環管(6a)は−部が密閉容器(2)の
外部に配管され且つ一端が上記戻し管(5)の冷媒液層
側端部(5b)近傍に接続されており、一方、他端は冷
媒液(F1)中に導入されている。そして、該冷媒循環
管(6a)には冷媒液(F1)を戻し管(5)に供給す
るための循環ポンプ(P)および該冷媒循環管(6a)
を開閉自在とする第271sra弁(F2)が介在され
ている。The refrigerant circulation means (6) includes a refrigerant circulation pipe (6a), a refrigerant circulation pump (P), and a first. Second solenoid valve (V1), (F2)
The refrigerant circulation pipe (6a) has a negative part connected to the outside of the closed container (2), and one end connected to the refrigerant liquid layer side end (5b) of the return pipe (5), and one end connected to the refrigerant liquid layer side end (5b) of the return pipe (5). , the other end is introduced into the refrigerant liquid (F1). The refrigerant circulation pipe (6a) includes a circulation pump (P) for supplying the refrigerant liquid (F1) to the return pipe (5) and the refrigerant circulation pipe (6a).
A 271st sra valve (F2) that can be opened and closed freely is interposed.
次に、密閉容器(2)内に貯留されている蓄熱材(W)
および冷媒(F)について説明する。蓄熱材(W)は水
若しくは水とエチレングリコール等の不凍液との混合液
体であって、その凍結温度は摂氏O℃程度に設定されて
いる。そして密閉容器(2)中には液相と製氷時に生成
される固相と伜かな気相とが貯留されている。冷媒(F
)はフロン(R−114)等が採用され、その液相の比
重は蓄熱材(W)のそれよりも大きいものであり、密閉
容器(2)中には液相と気相とが貯留されている。Next, the heat storage material (W) stored in the airtight container (2)
and refrigerant (F) will be explained. The heat storage material (W) is water or a liquid mixture of water and an antifreeze solution such as ethylene glycol, and its freezing temperature is set to about 0 degrees Celsius. A liquid phase, a solid phase generated during ice making, and a slightly gaseous phase are stored in the closed container (2). Refrigerant (F
) is made of Freon (R-114), etc., and the specific gravity of its liquid phase is greater than that of the heat storage material (W), and the liquid phase and gas phase are stored in the closed container (2). ing.
次に、上記構成による本装置の動作について説明する。Next, the operation of this device with the above configuration will be explained.
本装置における動作は製氷動作および蓄熱材除去動作か
らなるものである。The operation of this device consists of an ice making operation and a heat storage material removal operation.
先ず、製氷動作において、凝縮手段(3)の冷凍機(3
b)で生成された低温流体を凝縮管(3a)に供給する
ことによって密閉容器(2)中の冷媒ガス(F2)を冷
却し、該冷媒ガス(F2)を該凝縮管(3a)上で凝縮
させる。該凝縮によって密閉容器(2)内は低圧となる
と共に、冷媒液(F1)の飽和温度が蓄熱材の凝固点以
下になると、冷媒液(F1)が蓄熱材との境界面より減
圧沸騰を起こし、密閉容器(2)内の上部へ向けて冷媒
ガス(F2)が浮上する一方、蓄熱材(W)は凝固潜熱
が奪われて冷却される。該冷却によって、蓄熱材(W)
は凍結し、多孔質の氷(1)が生成されて蓄熱材(W)
の上層部に蓄熱媒体として貯留される。一方、上記凝縮
管(3a)上で凝縮された冷媒凝縮液(F3)は自重に
より落下し、受液器(4)で回収された後、流出口(4
a)を経て戻し管(5)によって密閉容器(2)内の冷
媒液層中に戻される。この時の冷媒循環手段(6)の各
電磁弁は第1電磁弁(V1)が開放され、第2電磁弁(
F2)が閉鎖されている。そして、上述した製氷動作が
終了した後に、蓄熱材除去動作に移る。この蓄熱材除去
動作は上記冷媒ガス(F2)空間中に僅かに含まれてい
る蓄熱材(W)の気相(水蒸気)が上記製氷動作中に凝
縮管(3a)上に結露されたものが系の温度上昇に伴い
、水滴となって戻し管(5)中に混入されたものを除去
させるための動作である。該動作は第1電磁弁(v1)
を閉鎖し、第2電磁弁(F2)を開放すると共に、冷媒
循環ポンプ(P)を駆動させて冷媒循環管(6a)によ
り冷媒液層中の冷媒液(F1)を戻し管(5)の冷媒液
層側端部(5b)から受液皿側端部(5a)へ向けて放
■して、上記戻し管(5)中に混入された蓄熱材(W)
を該戻し管(5)の受液皿側端部(5a)からオーバフ
ローさせて(矢印A)蓄熱材層へ戻すものである。First, in the ice making operation, the refrigerator (3) of the condensing means (3)
The refrigerant gas (F2) in the closed container (2) is cooled by supplying the low temperature fluid produced in step b) to the condensing pipe (3a), and the refrigerant gas (F2) is fed onto the condensing pipe (3a). Condense. Due to the condensation, the pressure inside the closed container (2) becomes low, and when the saturation temperature of the refrigerant liquid (F1) becomes below the freezing point of the heat storage material, the refrigerant liquid (F1) causes reduced pressure boiling from the interface with the heat storage material. While the refrigerant gas (F2) floats toward the upper part of the closed container (2), the heat storage material (W) is cooled by being deprived of its latent heat of solidification. By this cooling, the heat storage material (W)
freezes, forming porous ice (1) and forming heat storage material (W).
It is stored as a heat storage medium in the upper layer of the On the other hand, the refrigerant condensate (F3) condensed on the condensing pipe (3a) falls due to its own weight, is collected in the receiver (4), and is then collected at the outlet (4).
a) and is returned to the refrigerant liquid layer in the closed container (2) by the return pipe (5). At this time, the first solenoid valve (V1) of each solenoid valve of the refrigerant circulation means (6) is opened, and the second solenoid valve (V1) is opened.
F2) is closed. Then, after the above-described ice making operation is completed, the process moves to the heat storage material removal operation. This heat storage material removal operation is performed because the vapor phase (water vapor) of the heat storage material (W) slightly contained in the refrigerant gas (F2) space is condensed on the condensation pipe (3a) during the ice making operation. This operation is for removing water droplets that have become mixed into the return pipe (5) as the temperature of the system increases. This operation is performed by the first solenoid valve (v1)
is closed, the second solenoid valve (F2) is opened, and the refrigerant circulation pump (P) is driven to return the refrigerant liquid (F1) in the refrigerant liquid layer to the return pipe (5) through the refrigerant circulation pipe (6a). The heat storage material (W) is released from the refrigerant liquid layer side end (5b) toward the liquid receiving pan side end (5a) and mixed into the return pipe (5).
is caused to overflow from the liquid receiving pan side end (5a) of the return pipe (5) (arrow A) and returned to the heat storage material layer.
これにより、蓄熱材(W)の戻し管(5)中における凍
結が防止され、戻し管(5)は閉塞することがなく、連
続的に安定した製氷運転が可能となる。This prevents the heat storage material (W) from freezing in the return pipe (5), prevents the return pipe (5) from clogging, and enables continuous and stable ice-making operation.
また、この装置で生成される氷(1)は表面積の大きな
多孔質状であるために、放熱性に富み、特に、このよう
な蓄熱媒体として用いた場合には、冷房負荷の変動に追
従可能なものとなっている。In addition, since the ice (1) produced by this device is porous with a large surface area, it has excellent heat dissipation properties, and can follow fluctuations in cooling load, especially when used as a heat storage medium. It has become a thing.
更に、上記冷媒循環手段(6)は電磁弁の開閉操作によ
り冷媒循環ポンプCP)から供給される冷媒液(F1)
を効率良く戻し管(5)に放出させるため、該戻し管(
5)に混入している蓄熱材(W)の除去が確実となって
いる。Furthermore, the refrigerant circulation means (6) receives refrigerant liquid (F1) supplied from the refrigerant circulation pump (CP) by opening and closing an electromagnetic valve.
In order to efficiently release the water into the return pipe (5), the return pipe (5)
5) Removal of the heat storage material (W) mixed in is ensured.
(発明の効果)
以上の如く、本発明によれば、以下に述べるような効果
が発揮されるものである。(Effects of the Invention) As described above, according to the present invention, the following effects are achieved.
請求項(1)に係る発明においては、製氷動作の終了後
は冷媒循環手段によって冷媒液層中の冷媒液が戻し管の
冷媒液層側端部から受液皿側端部へ向けて放出されて、
上記戻し管中に混入された蓄熱材を該戻し管からオーバ
フローさせて蓄熱材層へ戻すことにより、従来、戻し管
中において凍結することの多かった蓄熱材が戻し管中か
ら除去されるために、戻し管は閉塞することがなく、連
続的に安定した製氷運転が可能となる。In the invention according to claim (1), after the ice-making operation is completed, the refrigerant liquid in the refrigerant liquid layer is discharged from the refrigerant liquid layer side end of the return pipe toward the liquid receiving tray side end by the refrigerant circulation means. hand,
By causing the heat storage material mixed in the return pipe to overflow from the return pipe and return to the heat storage material layer, the heat storage material that has conventionally often been frozen in the return pipe is removed from the return pipe. The return pipe does not become clogged, allowing continuous and stable ice-making operation.
一方、請求項(2)に係る発明においては、冷媒液の放
出時には戻し管の冷媒液層側端部の電磁弁を閉鎖し、冷
媒循環管に介設されている電磁弁を開放すると共に、冷
媒循環ポンプを駆動して冷媒液層中の冷媒液を戻し管の
冷媒液層側端部から受液皿側端部に向かって放出させる
ことにより、冷媒循環ポンプから放出された冷媒液は全
て戻し管中に供給されるために、該戻し管中に混入され
た蓄熱材の除去が確実に行える。On the other hand, in the invention according to claim (2), when the refrigerant liquid is discharged, the solenoid valve at the end of the return pipe on the refrigerant liquid layer side is closed, and the solenoid valve provided in the refrigerant circulation pipe is opened. By driving the refrigerant circulation pump and discharging the refrigerant liquid in the refrigerant liquid layer from the end of the return pipe on the refrigerant liquid layer side toward the end of the liquid receiving pan, all the refrigerant liquid discharged from the refrigerant circulation pump is removed. Since the heat storage material is supplied into the return pipe, the heat storage material mixed into the return pipe can be reliably removed.
第1図は本発明の実施例における氷蓄熱装置を示す図で
ある。第2図は従来の氷蓄熱装置を示す図である。
(2)・・・密閉容器、(3)・・・凝縮手段、(4)
・・・受液皿、(4a)・・・流出口、(5)・・・戻
し管、(5a)・・−受液皿側端部、(5b)・・・冷
媒液層側゛端部、(v1)・・・第1電磁弁、(F2)
・・・第2電磁弁、(P)・・・冷媒循環ポンプ、(W
)・・・蓄熱材、(F)・・・冷媒、(F1)・・・冷
媒液、(F2)・・・冷媒ガス、(F3)・・・冷媒凝
縮液。FIG. 1 is a diagram showing an ice heat storage device in an embodiment of the present invention. FIG. 2 is a diagram showing a conventional ice heat storage device. (2)...Airtight container, (3)...Condensing means, (4)
...Liquid receiving plate, (4a)...Outlet, (5)...Return pipe, (5a)...Liquid receiving plate side end, (5b)...Refrigerant liquid layer side end part, (v1)...first solenoid valve, (F2)
...Second solenoid valve, (P)...Refrigerant circulation pump, (W
)... Heat storage material, (F)... Refrigerant, (F1)... Refrigerant liquid, (F2)... Refrigerant gas, (F3)... Refrigerant condensate.
Claims (2)
より比重が大きく且つ蓄熱材(W)に溶解することなく
蓄熱材(W)と熱を授受する冷媒(F)とが封入された
気密性の密閉容器(2)と、該密閉容器(2)内におけ
る上部の冷媒ガス(F2)空間に設けられて、上記冷媒
ガス(F2)を冷却して凝縮させる凝縮手段(3)と、
凝縮された冷媒凝縮液(F3)を回収するように上記凝
縮手段(3)の下方に設けられると共に、該冷媒凝縮液
(F3)の流出口(4a)が開設された受液皿(4)と
、該受液皿(4)の流出口(4a)に一端が所定間隙を
存して連通し、他端が密閉容器(2)内の下部冷媒液層
中に開口した冷媒凝縮液(F3)の戻し管(5)と、密
閉容器(2)内における冷媒液層の冷媒液(F1)を戻
し管(5)の冷媒液層側端部(5b)より受液皿側端部
(5a)に向かって放出する冷媒循環手段(6)とから
なる氷蓄熱装置。(1) A heat storage material (W) that changes solid-liquid phase, and the heat storage material (W)
An airtight airtight container (2) filled with a refrigerant (F) that has a higher specific gravity and that transfers heat to and from the heat storage material (W) without dissolving in the heat storage material (W); and the airtight container (2). a condensing means (3) provided in the upper refrigerant gas (F2) space in the refrigerant gas (F2) and cooling and condensing the refrigerant gas (F2);
A liquid receiving tray (4) provided below the condensing means (3) to collect the condensed refrigerant condensate (F3) and provided with an outlet (4a) for the refrigerant condensate (F3). The refrigerant condensate (F3) is connected at one end to the outlet (4a) of the liquid receiving pan (4) with a predetermined gap, and the other end opens into the lower refrigerant liquid layer in the closed container (2). ) and the refrigerant liquid (F1) of the refrigerant liquid layer in the closed container (2) from the refrigerant liquid layer side end (5b) of the return pipe (5) to the liquid receiving pan side end (5a). ) and a refrigerant circulation means (6) for discharging towards the ice heat storage device.
媒循環手段(6)は、戻し管(5)と冷媒液層を連通さ
せる冷媒循環管(6a)と、冷媒液層中の冷媒液(F1
)を上記冷媒循環管(6a)を経て戻し管(5)に向か
って送給する冷媒循環ポンプ(P)と、上記戻し管(5
)の冷媒液層側端部(5b)に具備されて、該戻し管(
5)を開閉自在とする第1電磁弁(V1)と、上記冷媒
循環管(6a)に介設され該冷媒循環管(6a)を開閉
自在とする第2電磁弁(V2)とでなることを特徴とす
る氷蓄熱装置。(2) In the ice heat storage device according to claim (1), the refrigerant circulation means (6) includes a refrigerant circulation pipe (6a) that communicates the return pipe (5) with the refrigerant liquid layer, and a refrigerant in the refrigerant liquid layer. Liquid (F1
) through the refrigerant circulation pipe (6a) toward the return pipe (5);
) is provided at the refrigerant liquid layer side end (5b) of the return pipe (
5) Consisting of a first solenoid valve (V1) that can be opened and closed, and a second solenoid valve (V2) that is interposed in the refrigerant circulation pipe (6a) and that can open and close the refrigerant circulation pipe (6a). An ice heat storage device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63299267A JPH02146499A (en) | 1988-11-25 | 1988-11-25 | Ice heat accumulating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63299267A JPH02146499A (en) | 1988-11-25 | 1988-11-25 | Ice heat accumulating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02146499A true JPH02146499A (en) | 1990-06-05 |
Family
ID=17870330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63299267A Pending JPH02146499A (en) | 1988-11-25 | 1988-11-25 | Ice heat accumulating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02146499A (en) |
-
1988
- 1988-11-25 JP JP63299267A patent/JPH02146499A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4408654A (en) | Accumulator for storing heat or cold | |
GB2036278A (en) | Stored cryogenic refrigeration | |
US4254635A (en) | Installation for the storage of continuously generated coldness and for the intermittent emission of at least a portion of the stored cold | |
EP0088468B1 (en) | Heat pump | |
JPS63502923A (en) | Method of generating and using cold air and apparatus for carrying out the method | |
CN110090467A (en) | A kind of vacuum sublimation evaporation is cold and hot can separation method and device | |
JPH02146499A (en) | Ice heat accumulating device | |
WO1985002458A1 (en) | Method and equipment for utilization of the freezing heat of water as a source of heat of a heat pump | |
JP2009222379A (en) | Automatic ice maker | |
WO2019070154A1 (en) | Device for low-temperature cooling | |
JPH02146438A (en) | Direct contact type cooling device | |
SU1725044A1 (en) | Ice generator | |
JPH0359335A (en) | Thermal accumulation system | |
JP2834722B2 (en) | Vacuum cooling device with regenerator | |
US1617631A (en) | Regenerative purging system for refrigerating plants | |
JP2006110416A (en) | Multi-step freeze concentration system | |
SU1449795A1 (en) | Refrigerant accumulator | |
JP2853439B2 (en) | Absorption type ice machine | |
JPH0794938B2 (en) | Ice storage method and equipment for heat storage | |
SU1556636A1 (en) | Installation for concentration liquid products | |
JPH04174229A (en) | Ice heat storage device | |
JPH0423949A (en) | Vacuum device for cooling equipped with cold reserving vessel | |
JPH02187546A (en) | Heat source system based on in-pipe ice making unit | |
JPS62268973A (en) | Direct contact type ice heat accumulating refrigerator | |
JPH081346B2 (en) | Ice storage method for heat storage |