JPH0214421B2 - - Google Patents

Info

Publication number
JPH0214421B2
JPH0214421B2 JP3564385A JP3564385A JPH0214421B2 JP H0214421 B2 JPH0214421 B2 JP H0214421B2 JP 3564385 A JP3564385 A JP 3564385A JP 3564385 A JP3564385 A JP 3564385A JP H0214421 B2 JPH0214421 B2 JP H0214421B2
Authority
JP
Japan
Prior art keywords
film
coil
coating
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3564385A
Other languages
Japanese (ja)
Other versions
JPS61195967A (en
Inventor
Shinji Noguchi
Kashi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3564385A priority Critical patent/JPS61195967A/en
Publication of JPS61195967A publication Critical patent/JPS61195967A/en
Publication of JPH0214421B2 publication Critical patent/JPH0214421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は減圧状態下における被膜の形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for forming a film under reduced pressure.

〔背景技術〕[Background technology]

真空蒸着法等、減圧状態下で基板上の被膜処理
面に被膜を形成する方法においては、前記被膜処
理面に吸着されている水分やゴミ等の不純物が、
この被膜処理面に形成される被膜の耐熱性、密着
性等の劣化のおもな原因となつている。被膜処理
面へのこれらの不純物の吸着は主としてこの被膜
処理面が大気中にあるときに進行し、一度吸着さ
れた不純物はこの被膜処理面を真空状態下に置い
ただけでは容易に取り除くことができない。
In a method such as a vacuum evaporation method in which a film is formed on a film-treated surface of a substrate under a reduced pressure condition, impurities such as moisture and dust adsorbed on the film-treated surface are
This is the main cause of deterioration in heat resistance, adhesion, etc. of the film formed on the film-treated surface. Adsorption of these impurities to the coated surface mainly occurs when the coated surface is exposed to the atmosphere, and once the impurities are adsorbed, they cannot be easily removed simply by placing the coated surface under a vacuum condition. .

被膜処理面に吸着された不純物を取り除くた
め、従来より、この被膜処理面を揮発性の溶媒等
で洗浄する方法や、減圧状態下の基板を加熱して
この基板上の被膜処理面の不純物を蒸発させる方
法等がおこなわれてきた。基板をあらかじめ揮発
性の溶媒等で洗浄する方法においては、洗浄され
た被膜処理面は減圧状態下に置かれるまでの間に
再び不純物を吸着するため、完全に不純物を取り
除くことができない。この方法において、洗浄液
に高揮発性の溶媒を使用する場合には、洗浄後の
溶媒の蒸発を充分におこなわないと、溶媒の蒸発
熱の吸収にともないかえつてこの被膜処理面に大
気中の水分が吸着される結果となる。減圧状態下
の基板を被膜の形成前にあらかじめ加熱して、こ
の基板上の被膜処理面の不純物を蒸発させる方法
では、基板を所定の温度に加熱したり、処理後冷
却するのに時間がかかる。基板の加熱による熱で
被膜処理面以外の面、たとえば真空槽内壁面等か
らもそこに吸着されたガスが蒸発してくるため、
被膜の形成に必要な真空度に到達するにも長時間
を要し、結果として1サイクルの被膜形成時間が
長くなり、生産性が低下する。この方法にはプラ
スチツク等の熱に弱い材料は使用できず、被膜処
理面にあらかじめ下地被膜が形成された基板で
は、熱によつてこの下地被膜に剥離やクラツク等
が発生する可能性があり、使用できる被膜処理面
の構成が限られてしまう。
In order to remove impurities adsorbed on the coated surface, conventional methods include cleaning the coated surface with a volatile solvent, or heating the substrate under reduced pressure to remove impurities on the coated surface of the substrate. Methods such as evaporation have been used. In the method of cleaning the substrate with a volatile solvent or the like in advance, impurities cannot be completely removed because the cleaned coating surface adsorbs impurities again before being placed under reduced pressure. In this method, if a highly volatile solvent is used in the cleaning solution, if the solvent is not sufficiently evaporated after cleaning, the heat of evaporation of the solvent will be absorbed and moisture in the atmosphere will be deposited on the coated surface. As a result, is adsorbed. In the method of pre-heating the substrate under reduced pressure before forming the film to evaporate impurities on the surface of the film-treated surface of the substrate, it takes time to heat the substrate to a predetermined temperature and cool it down after processing. . Due to the heat generated by heating the substrate, the gas adsorbed on surfaces other than the coating surface, such as the inner wall of the vacuum chamber, evaporates.
It takes a long time to reach the degree of vacuum necessary for forming a film, and as a result, the time required to form one cycle of film becomes longer, reducing productivity. Heat-sensitive materials such as plastics cannot be used in this method, and if the substrate has a base film formed on the surface to be coated, heat may cause the base film to peel or crack. The structure of the coated surface that can be used is limited.

そこで、近時、以上の問題を解決するため、減
圧状態下の残留大気や減圧状態外からの導入ガス
に直流や高周波の電圧を印加してイオン化し、被
膜形成前の被膜処理面にこれらの気体イオンを衝
突させ、吸着された不純物をとりのぞくイオンボ
ンバード処理がおこなわれるようになつてきた。
この処理の方法では、この被膜処理面からの不純
物の除去に高温を必要としないため、熱に弱い基
板が使用できる。不純物の除去は電圧を印加する
コイルの周辺部のみでその効果があるため、真空
槽の他の部分からのガスの発生も少なく、処理は
コイルに電圧を印加している間だけおこなわれる
ため、処理の時間は短時間でよく、したがつて、
1サイクルの被膜形成に要する時間が短縮でき、
生産性が向上する。この方法の吸着不純物の除去
は分子単位でおこなわれるため、従来の方法にく
らべて残留する不純物はいちじるしく減少するこ
とができる。このイオンボンバード処理による被
膜処理面の吸着不純物の除去では、従来、第4図
に示したような形状の電圧印加用のコイル20を
使用していた。ところが、図のような、表面形状
が立体的である基板1上の被膜処理面4に対して
このコイル20でイオンボンバード処理をおこな
うと、図中のa領域とb領域においては、被膜処
理面4とコイル20との距離がいちじるしく異な
るため、気体イオンによる不純物の除去効果にも
a領域とb領域で大きな差が発生し、a領域の不
純物はb領域にくらべて充分に除去されず被膜処
理面4上に残留する。その結果、この被膜処理面
4に形成された被膜は、a領域とb領域でその物
性が大きく異なり、a領域上に形成される被膜
は、残留した不純物の影響により充分な密着性や
耐熱性が得られず、問題となつてきた。
Recently, in order to solve the above problems, a DC or high frequency voltage is applied to the residual atmosphere under reduced pressure or gas introduced from outside the reduced pressure state to ionize it, and these are applied to the coated surface before coating is formed. Ion bombardment treatment, which involves colliding gaseous ions to remove adsorbed impurities, has come into use.
This treatment method does not require high temperatures to remove impurities from the coated surface, so a substrate that is sensitive to heat can be used. Since the removal of impurities is effective only in the area around the coil where voltage is applied, there is little gas generation from other parts of the vacuum chamber, and the process is performed only while voltage is applied to the coil. The processing time may be short, so
The time required for one cycle of film formation can be shortened,
Productivity improves. Since this method removes adsorbed impurities on a molecular basis, the amount of remaining impurities can be significantly reduced compared to conventional methods. Conventionally, a coil 20 for voltage application having a shape as shown in FIG. 4 has been used to remove adsorbed impurities from the coated surface by this ion bombardment process. However, when the coil 20 performs ion bombardment treatment on the film-treated surface 4 of the substrate 1, which has a three-dimensional surface shape as shown in the figure, in areas a and b in the figure, the film-treated surface Since the distance between the coil 20 and the coil 20 is significantly different, there is a large difference in the impurity removal effect by gas ions between the a region and the b region, and the impurities in the a region are not removed as much as in the b region, and the coating treatment is difficult. Remains on surface 4. As a result, the physical properties of the film formed on the film-treated surface 4 are significantly different between the a region and the b region, and the film formed on the a region has insufficient adhesion and heat resistance due to the influence of the remaining impurities. This has become a problem.

〔発明の目的〕[Purpose of the invention]

この発明は、基板上の被膜処理面に吸着された
不純物をこの被膜処理面全面にわたつて均等に効
率よく除去でき、被膜処理面上に形成された被膜
の物性に局部的な欠陥がなく、耐熱性、密着性等
にすぐれた被膜を得る被膜形成方法を提供するこ
とを目的としている。
This invention enables impurities adsorbed on the coated surface of the substrate to be removed uniformly and efficiently over the entire surface of the coated surface, and there are no local defects in the physical properties of the film formed on the coated surface. It is an object of the present invention to provide a film forming method that provides a film with excellent heat resistance, adhesion, etc.

〔発明の開示〕[Disclosure of the invention]

以上の目的を達成するため、この発明は、減圧
状態下にある気体に電圧を印加することでこの気
体中におかれた基板上の被膜処理面にイオンボン
バード処理をおこない、被膜材料の供給源より被
膜材料を供給してこの被膜処理面に被膜を形成す
る被膜形成方法において、気体に電圧を印加する
ためのコイルが被膜処理面の形状に沿つた形にな
つている被膜形成方法を要旨としている。
In order to achieve the above object, the present invention applies a voltage to a gas under reduced pressure to perform ion bombardment treatment on the coating surface of a substrate placed in this gas, thereby providing a source of coating material. The gist of this film forming method is to supply a coating material to form a coating on the coating treated surface, in which a coil for applying voltage to the gas is shaped to follow the shape of the coating treated surface. There is.

以下にこの発明を、その一実施例をあらわして
いる第1図ないし第3図にもとづき説明する。
The present invention will be explained below based on FIGS. 1 to 3 showing one embodiment thereof.

第1図aにみるように、碗形に形成された基板
1の内側に、あらかじめ下地被膜2および3を積
層し、被膜処理面4を形成する。すなわち、この
例では、多層の下地被膜の最上層たる下地被膜3
の表面が被膜処理面4となつている。この基板1
を、モータ5によつて回転可能な基板取付治具6
によつて真空槽7内に取り付け、この真空槽7内
を真空ポンプ8により排気して減圧状態とする。
真空槽7内の真空度が10-1〜10-2Torrまで排気
されたとき、この減圧状態下にある電圧印加用の
コイル9に電源10より50〜200wの電力を供給
し、真空槽7内の残留大気に電圧を印加してイオ
ン化する。
As shown in FIG. 1a, base coats 2 and 3 are laminated in advance on the inside of a bowl-shaped substrate 1 to form a coated surface 4. That is, in this example, the base coat 3 is the top layer of the multilayer base coat.
The surface is the film-treated surface 4. This board 1
, a board mounting jig 6 that can be rotated by a motor 5
The inside of the vacuum chamber 7 is evacuated by the vacuum pump 8 to reduce the pressure.
When the degree of vacuum in the vacuum chamber 7 is evacuated to 10 -1 to 10 -2 Torr, power of 50 to 200 W is supplied from the power supply 10 to the voltage application coil 9 under this reduced pressure state, and the vacuum chamber 7 is A voltage is applied to the residual atmosphere inside to ionize it.

残留大気のイオン化は、コイル9の周辺部で最
も密度が高くコイルからはなれるほど低下し、イ
オン化された残留大気成分ガス分子の衝突による
イオンボンバード処理の効果は、コイル周辺ほど
強く作用する。
The ionization of the residual atmosphere is highest at the periphery of the coil 9 and decreases as the distance from the coil increases, and the effect of ion bombardment due to the collision of ionized residual atmospheric component gas molecules is stronger near the coil.

この発明に使用されるコイル9は、第1図bに
も示したように、イオン化を維持するための主コ
イル11と、基板1の被膜処理面4の形状に沿つ
た形の補助コイル12とからなつており、基板1
をモータ5によつて回転することにより、基板1
の被膜処理面4は全面にわたつて均一にイオンボ
ンバード処理を受けることができる。主コイル1
1と補助コイル12の形状は第2図aおよびbに
示したような形状になつていてもよく、また、第
3図aおよびbのように主コイル11と補助コイ
ル12が一体に形成されたらせん状となつていて
もよい。
As shown in FIG. 1b, the coil 9 used in this invention includes a main coil 11 for maintaining ionization, and an auxiliary coil 12 shaped to follow the shape of the coated surface 4 of the substrate 1. It consists of a substrate 1
The substrate 1 is rotated by the motor 5.
The coated surface 4 can be uniformly subjected to ion bombardment over the entire surface. Main coil 1
The shapes of the main coil 11 and the auxiliary coil 12 may be as shown in FIGS. 2a and 2b, or the main coil 11 and the auxiliary coil 12 may be formed integrally as shown in FIGS. It may be in a spiral shape.

補助コイル12はその位置が基板1の方向に片
寄りすぎており、この補助コイル12だけで真空
槽7内の残留大気に電圧を印加すると、補助コイ
ル12に供給した電力の一部がイオン化に使用さ
れずに基板1から流出してしまい、残留大気のイ
オン化が充分におこなわれず、結果として基板1
の被膜処理面4に対するイオンボンバード処理の
効果が低くなつてしまう傾向にある。真空槽7内
の残留大気のイオン化を維持し、被膜処理面4へ
のイオンボンバード処理の効果を高めるために主
コイル11を補助コイル12と併用して使用する
ことが好ましい。
The position of the auxiliary coil 12 is too biased towards the substrate 1, and if a voltage is applied to the residual atmosphere in the vacuum chamber 7 using only this auxiliary coil 12, part of the power supplied to the auxiliary coil 12 will be ionized. It flows out from the substrate 1 without being used, and the residual atmosphere is not sufficiently ionized, and as a result, the substrate 1
The effect of the ion bombardment treatment on the coated surface 4 tends to be reduced. It is preferable to use the main coil 11 in combination with the auxiliary coil 12 in order to maintain the ionization of the residual atmosphere in the vacuum chamber 7 and to enhance the effect of ion bombardment on the coating surface 4.

基板1の被膜処理面4に対してイオンボンバー
ド処理を60〜180秒おこなつた後コイル9への電
力の供給を停止し、電子ビーム加熱による蒸発源
13の電子錠14に、電子ビーム電源15より電
力を供給して電子ビーム16をルツボ17内の被
膜材料18に照射し、これを加熱する。被膜材料
18が充分に加熱されて蒸発可能な状態になつた
時に、この蒸発源13を覆つていたシヤツタ19
を開き、被膜材料を蒸発させ、保護被膜を基板1
の被膜処理面4上に形成する。
After performing ion bombardment for 60 to 180 seconds on the coated surface 4 of the substrate 1, the power supply to the coil 9 is stopped, and the electronic lock 14 of the evaporation source 13 by electron beam heating is connected to the electron beam power source 15. More power is supplied to irradiate the coating material 18 in the crucible 17 with the electron beam 16 to heat it. When the coating material 18 is sufficiently heated to a state where it can be evaporated, the shutter 19 that covered this evaporation source 13
, evaporate the coating material, and apply the protective coating to substrate 1.
The coating is formed on the coated surface 4 of.

従来の方法では、第4図に示すようなリング状
のコイル20のみを使用していたため、基板1上
の被膜処理面4のa領域とb領域において、イオ
ンボンバード処理の効果に大きな差ができ、特
に、a領域において充分な不純物の除去がおこな
われず、このa領域上に形成される被膜はその物
性が不充分であつた。
In the conventional method, only the ring-shaped coil 20 as shown in FIG. In particular, impurities were not sufficiently removed in the a region, and the film formed on the a region had insufficient physical properties.

この発明の方法では、基板1上の被膜処理面4
のa′領域とb′領域のイオンボンバード処理の効果
に差がなく、どちらの領域においても充分に不純
物の除去がおこなわれるため、この上に形成され
た被膜は充分な耐熱性密着性等を有している。
In the method of this invention, a coating treatment surface 4 on a substrate 1 is provided.
There is no difference in the effect of the ion bombardment treatment on the a' and b' regions, and impurities are sufficiently removed in both regions, so the film formed on this has sufficient heat resistance and adhesion. have.

以上に示した実施例では基板に碗形のものを使
用したが、この発明の被膜形成方法では使用でき
る基板の形状はこれに限らず、コイルをその基板
上の被膜処理面の形状に沿つた形に形成しておけ
ば、やはりこの発明の効果が得られる。以上に示
した実施例では被膜処理面にあらかじめ下地被膜
として多層膜が形成されていたが、この発明の被
膜形成方法では、被膜処理面の構成はこれに限ら
ず、したがつて被膜処理面に単層の下地被膜が形
成されていても、基板表面そのままであつてもそ
の効果は達成される。また、この実施例では、被
膜の積層は真空蒸着法によつたが、この発明の被
膜形成方法では、被膜の積層はイオンプレーテイ
ング法や他の方法によることもできる。以上に示
した実施例では、イオンボンバード処理に真空排
気途中の残留大気を使用したが、この発明の被膜
形成方法においては、外部から種々のガスを導入
して使用することもでき、この実施例では被膜材
料の供給源に電子ビーム加熱による蒸発源を使用
したが、この発明の被膜形成方法では、被膜材料
の供給源に抵抗加熱による蒸発源や他の供給源を
使用することも可能である。
Although a bowl-shaped substrate was used in the embodiments described above, the shape of the substrate that can be used in the film forming method of the present invention is not limited to this. If it is formed into a certain shape, the effects of the present invention can still be obtained. In the embodiments shown above, a multilayer film was formed in advance as a base film on the film-treated surface, but in the film-forming method of the present invention, the structure of the film-treated surface is not limited to this. This effect can be achieved even if a single-layer base film is formed or if the substrate surface remains as it is. Furthermore, in this embodiment, the coatings were laminated by the vacuum evaporation method, but in the coating forming method of the present invention, the coatings may be laminated by the ion plating method or other methods. In the embodiment shown above, the residual atmosphere during evacuation was used for the ion bombardment process, but in the film forming method of the present invention, it is also possible to use various gases introduced from the outside. Although an evaporation source based on electron beam heating was used as a supply source of the coating material in the method of the present invention, it is also possible to use an evaporation source based on resistance heating or other sources as a supply source for the coating material. .

(実施例) 基板には第1図に示したものを使用し、この基
板1上に下地被膜2および反射膜3をこの順に積
層し、第1図aに示した装置内で透明材料からな
る保護被膜をこの発明の方法により形成したとこ
ろ、基板1の被膜処理面4のa′領域およびb′領域
において充分な耐食性、耐摩耗性を有し、高い耐
熱性および密着性を有した保護被膜を持つ反射板
を作成することができた。
(Example) The substrate shown in FIG. 1 is used, and the base film 2 and the reflective film 3 are laminated in this order on the substrate 1, and the film made of a transparent material is laminated in the apparatus shown in FIG. 1a. When the protective film was formed by the method of the present invention, the protective film had sufficient corrosion resistance and abrasion resistance in areas a' and b' of the coated surface 4 of the substrate 1, and had high heat resistance and adhesion. I was able to create a reflector with

〔発明の効果〕〔Effect of the invention〕

この発明の被膜形成方法は以上のように構成さ
れており、基板上の被膜処理面に吸着された不純
物は、被膜処理面全面にわたつて効率よく充分に
除去されているため、この被膜処理面上に形成さ
れた被膜の物性はこの被膜全体にわたつて均一で
あり、耐熱性、密着性等にすぐれたものになつて
いる。
The film forming method of the present invention is configured as described above, and impurities adsorbed on the film-treated surface of the substrate are efficiently and sufficiently removed over the entire surface of the film-treated surface. The physical properties of the coating formed thereon are uniform over the entire coating, and are excellent in heat resistance, adhesion, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aはこの発明の一実施例をあらわす断面
図、第1図bはこの実施例に用いるコイルの斜視
図、第2図a,bはこの発明の実施に用いられる
他のコイルをあらわす半断面側面図および一部切
欠き斜視図、第3図a,bは別のコイルをあらわ
す半断面側面図および一部切欠き斜視図、第4図
a,bは従来例に用いられるコイルをあらわす半
断面側面図および一部切欠き斜視図である。 1……基板、4……被膜処理面、9……コイ
ル、11……主コイル、12……補助コイル、1
3……蒸発源、18……被膜材料。
Figure 1a is a sectional view showing one embodiment of this invention, Figure 1b is a perspective view of a coil used in this embodiment, and Figures 2a and b are other coils used in carrying out this invention. A half-section side view and a partially cutaway perspective view, FIGS. 3a and 3b are a half-section side view and a partially cutaway perspective view showing another coil, and FIGS. 4a and 4b are a coil used in a conventional example. FIG. 2 is a half-sectional side view and a partially cutaway perspective view. 1... Substrate, 4... Film treated surface, 9... Coil, 11... Main coil, 12... Auxiliary coil, 1
3... Evaporation source, 18... Coating material.

Claims (1)

【特許請求の範囲】 1 減圧状態下にある気体に電圧を印加すること
でこの気体中におかれた基板上の被膜処理面にイ
オンボンバード処理をおこない、被膜材料の供給
源より被膜材料を供給してこの被膜処理面に被膜
を形成する被膜形成方法において、気体に電圧を
印加するためのコイルが被膜処理面の形状に沿つ
た形になつている被膜形成方法。 2 気体に電圧を印加するためのコイルが主コイ
ルと補助コイルによつて形成されており、補助コ
イルが被膜処理面の形状に沿つた形となつている
特許請求の範囲第1項記載の被膜形成方法。 3 被膜材料の供給源が加熱による蒸発源である
特許請求の範囲第1項または第2項記載の被膜形
成方法。 4 被膜処理面があらかじめこの基板上に形成さ
れた下地被膜である特許請求の範囲第1項から第
3項までのいずれかに記載の被膜形成方法。 5 下地被膜が多層膜であり、被膜処理面がこの
多層膜の最上層被膜である特許請求の範囲第4項
記載の被膜形成方法。 6 下地被膜が下地塗膜および光輝性金属膜をこ
の順に形成した多層膜からなつており、被膜処理
面がこの光輝性金属膜からなる光輝面である特許
請求の範囲第5項記載の被膜形成方法。 7 気体が真空排気途中の残留大気である特許請
求の範囲第1項から第6項までのいずれかに記載
の被膜形成方法。
[Claims] 1. Ion bombardment is performed on the coating surface of the substrate placed in the gas by applying a voltage to the gas under reduced pressure, and the coating material is supplied from the coating material supply source. In this method of forming a film, the coil for applying a voltage to the gas has a shape that follows the shape of the surface to be coated. 2. The coating according to claim 1, wherein the coil for applying voltage to the gas is formed by a main coil and an auxiliary coil, and the auxiliary coil has a shape that follows the shape of the coating treatment surface. Formation method. 3. The film forming method according to claim 1 or 2, wherein the supply source of the film material is an evaporation source by heating. 4. The film forming method according to any one of claims 1 to 3, wherein the film-treated surface is a base film previously formed on the substrate. 5. The method of forming a film according to claim 4, wherein the base film is a multilayer film, and the film-treated surface is the uppermost film of the multilayer film. 6. Film formation according to claim 5, wherein the base film is a multilayer film in which a base coating film and a glittering metal film are formed in this order, and the coated surface is a glittering surface made of the glittering metal film. Method. 7. The film forming method according to any one of claims 1 to 6, wherein the gas is residual atmosphere during evacuation.
JP3564385A 1985-02-25 1985-02-25 Film forming method Granted JPS61195967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3564385A JPS61195967A (en) 1985-02-25 1985-02-25 Film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3564385A JPS61195967A (en) 1985-02-25 1985-02-25 Film forming method

Publications (2)

Publication Number Publication Date
JPS61195967A JPS61195967A (en) 1986-08-30
JPH0214421B2 true JPH0214421B2 (en) 1990-04-09

Family

ID=12447550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3564385A Granted JPS61195967A (en) 1985-02-25 1985-02-25 Film forming method

Country Status (1)

Country Link
JP (1) JPS61195967A (en)

Also Published As

Publication number Publication date
JPS61195967A (en) 1986-08-30

Similar Documents

Publication Publication Date Title
US4237183A (en) Process for the surface treatment of a synthetic resin lens and the product thereof
JPS6219513B2 (en)
JPH0214421B2 (en)
JP7078745B2 (en) Vacuum processing equipment
WO2020136964A1 (en) Vacuum processing apparatus
JP3078853B2 (en) Oxide film formation method
JP6997863B2 (en) Vacuum processing equipment
US3700485A (en) Vacuum vapor deposited zinc coatings
JP3305786B2 (en) Manufacturing method of permanent magnet with excellent corrosion resistance
WO1996027699A1 (en) A non-chromate sealant for porous anodized aluminum
JP3836549B2 (en) Method for forming protective film
JPH0512033B2 (en)
JPS5831078A (en) Method and device for pretreatment of film substrate
JPH029104B2 (en)
KR950009992B1 (en) Method for coating of lenses
JPS6320445A (en) Ion plating
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
JPH02246326A (en) Manufacturing method and equipment for semiconductor device
JPS61104070A (en) Formation of thin film
JPH06158278A (en) Surface treatment of reflector
JPH01139751A (en) Formation of hard ceramic film
JPH0310706B2 (en)
JPS60184674A (en) Vacuum device for forming continuous thin film
JP2600092B2 (en) Surface modification method for metallic materials
JPS63230864A (en) Method and device for forming thin metallic film