JPH02143536A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02143536A
JPH02143536A JP63296179A JP29617988A JPH02143536A JP H02143536 A JPH02143536 A JP H02143536A JP 63296179 A JP63296179 A JP 63296179A JP 29617988 A JP29617988 A JP 29617988A JP H02143536 A JPH02143536 A JP H02143536A
Authority
JP
Japan
Prior art keywords
layer
photoresist layer
mask
type photoresist
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296179A
Other languages
Japanese (ja)
Inventor
Yoshiko Abe
安倍 好子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP63296179A priority Critical patent/JPH02143536A/en
Publication of JPH02143536A publication Critical patent/JPH02143536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To assure the yield of gate electrode pattern in the gate length not exceeding 0.5mum by a method wherein a negative type photoresist layer is formed by exposure and development using a mask in fine lineal width and then an evaporated Al layer is etched away using a pattern of the formed negative type photoresist layer as a mask and then a positive type photoresist is exposed and developed using the evaporated Al layer as a mask. CONSTITUTION:An evaporated Al layer 6 is formed on the surface of a positive type photoresist layer in the unexposed state and then the Al layer 6 is spin- coated with a negative type photoresist to be prebaked in an N2 atmosphere circulating oven to form a negative type photoresist layer 7. The negative type photoresist layer 7 is exposed and developed; the Al layer 6 is etched away by 85% phosphoric acid using the pattern of the formed negative type photoresist layer 7 as a mask; furthermore the positive type photoresist layer 5 is exposed and developed using the pattern of the formed Al layer 6 as a mask. Through these procedures, an opening width in 0.35mum can be assured using a mask in lineal width of 0.5mum by selecting the optimum exposure requirements in case of patterning the negative type photoresist layer 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法、特に、ケ°−ト長が
短く低抵抗のケ°−ト電極のリフトオフ法による形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a gate electrode having a short gate length and low resistance by a lift-off method.

〔従来の技術〕[Conventional technology]

以下、GaAs FETのゲート電極を例に説明する。 The following will explain the gate electrode of a GaAs FET as an example.

第2図は従来のGaAs FETのゲート電極の形成法
を示す。
FIG. 2 shows a method of forming a gate electrode of a conventional GaAs FET.

半絶縁性GaAs単結晶基板表面にN動作層をエピタキ
シャル成長させた半導体基板1上にホトレジスト層2を
形成し、マスクを使用してホトレジスト層2をパターニ
ングし、露出した基板層1をリセスエッチングし〔第2
図(a) ) 、金属層3を蒸着し〔第2図(b)〕、
リフトオンする。
A photoresist layer 2 is formed on a semiconductor substrate 1 in which an N active layer is epitaxially grown on the surface of a semi-insulating GaAs single crystal substrate, the photoresist layer 2 is patterned using a mask, and the exposed substrate layer 1 is recess-etched. Second
FIG. 2(a)), a metal layer 3 is deposited [FIG. 2(b)],
Lift on.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

GaAs FETのゲート電極の幅(以下ゲート長とい
う)は、マイクロ波領域の特性の向上を計るため、一般
に、0.5μm程度の微小さが要求される。
The width of the gate electrode (hereinafter referred to as gate length) of a GaAs FET is generally required to be as small as about 0.5 μm in order to improve the characteristics in the microwave region.

このゲート長は、ホトレジスト層2のパターンの線幅に
よって決まるが、現状の紫外光または遠紫外光の密着露
光による限り、従来のリフトオフ法では、0,5μmの
ホトレジスト線幅の形成は、はぼ限界であり、その実現
には細心の注意が必要である。
This gate length is determined by the line width of the pattern of the photoresist layer 2, but as long as the current close exposure of ultraviolet light or deep ultraviolet light is used, it is almost impossible to form a photoresist line width of 0.5 μm using the conventional lift-off method. This is a limit, and achieving it requires extreme caution.

そして、0.5μm以下のホトレジストツクターンの形
成には、電子線露光装置などのように高価な装置が必要
である。
Further, forming a photoresist pattern of 0.5 μm or less requires an expensive device such as an electron beam exposure device.

一方、ケ°−ト長を短くすると、ケ°−ト金属の蒸着厚
さが一定の場合は、ケ2−ト抵抗が増大する。
On the other hand, when the gate length is shortened, the gate resistance increases if the deposited thickness of the gate metal is constant.

このゲート抵抗を低減することも、FETマイクロ波特
性の向上のためには、重要なパラメートとなる。
Reducing this gate resistance is also an important parameter for improving FET microwave characteristics.

本発明は上記の事情に鑑みてなされたもので、ゲート長
が0.5μmまたはそれ以下のゲート電極パターンを、
紫外光または遠紫外光の密着露光により歩留りよく実現
するリフトオフ法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to use a gate electrode pattern with a gate length of 0.5 μm or less.
It is an object of the present invention to provide a lift-off method that can be realized with high yield by contact exposure with ultraviolet light or deep ultraviolet light.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的達成のために、所定の半導体基板表
面上に下からポジ型ホトレジスト層、蒸着Al層、ネガ
型ホトレジスト層を形成し、上層のネガ型ホトレジスト
層を線幅0.5μmのマスクによシ、露光、現像し、形
成されたネガ型ホトレジスト層のパターンをマスクにA
l層をエツチングし、形成されたAl層のノ(ターンを
マスクに下層のボッ型ホトレジストを露光、現像し、露
出した半導体基板層にリフトオフ法により蒸着金属層を
形成し、一定の温度範囲での熱処理によりボッ型ホトレ
ジストのみを流動させて上記蒸着金属層に接触させ、ボ
ッ型ホトレゾスト層のパターンの開口幅を狭め、上記蒸
着金属層をエンチングして除去し、露出した半導体基板
層をリセスエッチングし、リセスエッチングした部分に
リフトオフ法によりゲート電極を実現するものである。
In order to achieve the above object, the present invention forms a positive photoresist layer, a vapor-deposited Al layer, and a negative photoresist layer from below on the surface of a predetermined semiconductor substrate, and forms the upper negative photoresist layer with a line width of 0.5 μm. The pattern of the negative photoresist layer is exposed to light and developed using a mask.
After etching the formed Al layer, the bottom-layer bot-type photoresist is exposed and developed using the formed Al layer as a mask, and a vapor-deposited metal layer is formed on the exposed semiconductor substrate layer by a lift-off method. The heat treatment causes only the bottom photoresist to flow and contact the vapor deposited metal layer, narrowing the opening width of the pattern of the bottom photoresist layer, etching and removing the vapor deposited metal layer, and recess etching the exposed semiconductor substrate layer. Then, a gate electrode is realized in the recess-etched part by a lift-off method.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

比抵抗1060m以上の半絶縁性GaAs単結晶基板表
面にN動作層をエピタキシャル成長させた半導体基板1
に対し、メサエッチングによってN動作層の素子ごとの
分離を行い、さらに、N動作層表面へのソース・ドレイ
ン電極4の形成を終えた〔第1図(a〕〕後、表面にボ
ッ型ホトレジストMP−2400(シプレー社)を回転
数200 Orpmで回転塗布し、空気雰囲気循環式オ
ーブンで95℃。
Semiconductor substrate 1 in which an N active layer is epitaxially grown on the surface of a semi-insulating GaAs single crystal substrate with a specific resistance of 1060 m or more
On the other hand, after separating the N active layer into each element by mesa etching, and completing the formation of the source/drain electrodes 4 on the surface of the N active layer (see Fig. 1(a)), a bottom-type photoresist was applied to the surface. MP-2400 (Shipley) was spin-coated at 200 rpm and heated to 95°C in an air circulation oven.

30分間プリベーク処理を行い、ポジ型ホトレジスト層
5を形成する。
A prebaking process is performed for 30 minutes to form a positive photoresist layer 5.

このボッ型ホトレジスト層5を未露光の状態でその表面
にAlを蒸着し、厚さ約2000Xの蒸着Al層6を形
成し、さらに、このAl層6の上にネガ型ホトレノス)
 0DUR・120(東京応化針)を回転数400 O
rpmで回転塗布し、N2雰囲気循環式オープンで85
℃、30分間プリベーク処理し、ネガ型ホトレジスト層
7を形成する。
Al is vapor-deposited on the surface of this bottom-type photoresist layer 5 in an unexposed state to form a vapor-deposited Al layer 6 with a thickness of about 2000×, and then a negative-type photoresist layer 6 is formed on this Al layer 6.
0DUR・120 (Tokyo Ohka needle) at rotation speed 400 O
Rotate coating at rpm, open with N2 atmosphere circulation, 85
C. for 30 minutes to form a negative photoresist layer 7.

次に、0.5μm線幅のマスクを使用し、ネガ型ホトレ
ジスト層を露光、現像し、形成されたネガ型ホトレジス
ト層7のパターンをマスクにAl層6を85%シん酸(
30〜40℃)でエツチングし、さらに、形成されたA
l層6のノでターンをマスクにボッ型ホトレジスト層5
を露光、現像する〔第1図(b)〕。
Next, using a mask with a line width of 0.5 μm, the negative photoresist layer is exposed and developed, and using the pattern of the formed negative photoresist layer 7 as a mask, the Al layer 6 is coated with 85% cynic acid (
The formed A
Using the turn of the l layer 6 as a mask, form a hollow photoresist layer 5.
is exposed and developed [Fig. 1(b)].

上記作業によって露出した半導体基板l上にり7トオ7
法により金属層8を蒸着する〔第1図(C)〕。
Place it on the semiconductor substrate l exposed by the above operation.
A metal layer 8 is deposited by a method [FIG. 1(C)].

この金属層8は後で除去するので、除去に使用するエツ
チング液がGaAs基板をエツチングしない物質として
Alを選択した。
Since this metal layer 8 will be removed later, Al was selected as a material that does not allow the etching solution used to etch the GaAs substrate.

なお、上記ネガ型ホトレジスト層7(ODUR・12o
)のパターニングの際、最適の露光条件を選ぶことで、
0.5μm線幅のマスクによって0.35μmの開口幅
を得ることができた。
Note that the negative photoresist layer 7 (ODUR・12o
) When patterning, by selecting the optimal exposure conditions,
An opening width of 0.35 μm could be obtained using a mask with a line width of 0.5 μm.

次に130〜150℃範囲の温度での熱処理によりボッ
型ホトレジスト層5のみを流動させて蒸着金属層8に接
触させる〔第1図(d)〕。ホトレジスト層は温度が上
ると流動性を帯びる。130℃以下ではMP −240
0のポジ型ホトレジスト層5の流動性は不十分で、15
0℃以上になると上層の0DUR−120のネガ型ホト
レジスト層7も流動性を帯びてくる。
Next, by heat treatment at a temperature in the range of 130 DEG to 150 DEG C., only the bottom-shaped photoresist layer 5 is made to flow and come into contact with the vapor-deposited metal layer 8 [FIG. 1(d)]. The photoresist layer becomes fluid as the temperature increases. MP -240 below 130℃
The fluidity of the positive photoresist layer 5 of 0 is insufficient, and 15
When the temperature exceeds 0° C., the upper negative photoresist layer 7 of 0DUR-120 also becomes fluid.

上記熱処理後、蒸着金属層8をHClでエツチングして
除去し、露出した半導体基板層1をリセスエッチングし
、リセスエッチングした半導体基板層lにリフトオフ法
によりゲート電極3を形成する〔第1図(e)〕。
After the above heat treatment, the vapor deposited metal layer 8 is removed by etching with HCl, the exposed semiconductor substrate layer 1 is recess-etched, and a gate electrode 3 is formed on the recess-etched semiconductor substrate layer l by a lift-off method [Fig. e)].

以上の工程によって、ゲート長0.35μmのケ3−ト
電極を歩留りよく得ることができた。
Through the above steps, a gate electrode with a gate length of 0.35 μm could be obtained with a high yield.

上記工程で蒸着金属層8を形成してボッ型ホトレジスト
層5を流動させ、該ホトレジスト層の開口幅を狭める手
段を省いた場合でも、MP−2400のポジ型ホトレジ
スト層をO15μm線幅のマスクで露光、現像して得ら
れるゲート長に比べ、より細いパターンを均一に形成す
ることができた。
Even when the vapor-deposited metal layer 8 is formed in the above process, the bottom-type photoresist layer 5 is made to flow, and the means for narrowing the opening width of the photoresist layer is omitted, the positive-type photoresist layer of MP-2400 is formed using a mask with a line width of 015 μm. Compared to the gate length obtained by exposure and development, we were able to uniformly form a narrower pattern.

上記工程では、ゲート電極3を多少厚くしても、ホトレ
ジスト層7に蒸着される蒸着金属層3と確実に分離され
るので、ケ°−ト抵抗を十分低減できる。
In the above process, even if the gate electrode 3 is made somewhat thicker, it is reliably separated from the vapor-deposited metal layer 3 deposited on the photoresist layer 7, so that the gate resistance can be sufficiently reduced.

〔考案の効果〕[Effect of idea]

以上説明したように、本発明によれば高価な露光装置を
必要としなく、コストが余シアツブしない方法で、ゲー
ト長が0.5μm以下で低抵抗のゲート電極を、歩留り
よく形成することができ、例えば、GaAs FETな
どのマイクロ波特性の向上が容易になるという効果があ
る。
As explained above, according to the present invention, a gate electrode with a gate length of 0.5 μm or less and low resistance can be formed with high yield without requiring an expensive exposure device and without increasing costs. For example, this has the effect of making it easier to improve the microwave characteristics of GaAs FETs and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の〒実施例を示す説明図、第2図は従来
のGaAs FETのr−4電極の形成法を示す説明図
である。 1・・・半導体基板層、3・・・ケ°−ト電極、4・・
・ソース・ドレイン電極、5・・・ポジ型ホトレジスト
層、6・・・蒸着Al層、7・・・ネガ型ホトレジスト
層、8・・・蒸着金属層、 なお図中同一符号は同一または相当する部分を示す。 特許出願人 新日本無線株式会社 第1図 第1図 第2図
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a method of forming an r-4 electrode of a conventional GaAs FET. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate layer, 3... Kate electrode, 4...
・Source/drain electrode, 5... Positive type photoresist layer, 6... Vapor deposited Al layer, 7... Negative photoresist layer, 8... Vapor deposited metal layer, Note that the same reference numerals in the drawings are the same or correspond to each other. Show parts. Patent applicant New Japan Radio Co., Ltd. Figure 1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 表面に動作層をエピタキシャル成長させた半導体基板に
ゲート長が短く低抵抗のゲート電極を形成する半導体装
置の製造方法において、表面にエピタキシャル成長させ
た動作層を素子ごとに分離した半導体基板表面上に下か
らポジ型ホトレジスト層、蒸着Al層、ネガ型ホトレジ
スト層を形成し、上記ネガ型ホトレジスト層を線幅の微
細なマスクにより露光、現像し、形成されたネガ型ホト
レジスト層のパターンをマスクに上記蒸着Al層をエッ
チングし、形成されたAl層のパターンをマスクに上記
ポジ型ホトレジストを露光、現像し、露出した半導体基
板上にリフトオフ法により蒸着金属層を形成し、一定の
温度範囲での熱処理により上記ポジ型ホトレジストのみ
を流動させて上記蒸着金属層に接触させ、上記蒸着金属
層をエッチングして除去し、露出した半導体基板層をリ
セスエッチングし、リセスエッチングした半導体基板層
にリフトオフ法によりゲート電極を形成するゲート電極
の形成工程を備えたことを特徴とする半導体装置の製造
方法。
In a method for manufacturing a semiconductor device in which a gate electrode with a short gate length and low resistance is formed on a semiconductor substrate on which an active layer is epitaxially grown, the active layer is epitaxially grown on the surface and is grown on the surface of a semiconductor substrate separated into individual elements from below. A positive photoresist layer, a vapor deposited Al layer, and a negative photoresist layer are formed, and the negative photoresist layer is exposed and developed using a mask with a fine line width. Using the pattern of the formed negative photoresist layer as a mask, the vapor deposited Al The layer is etched, the positive photoresist is exposed and developed using the formed Al layer pattern as a mask, a vapor-deposited metal layer is formed on the exposed semiconductor substrate by a lift-off method, and the above-described metal layer is formed by heat treatment within a certain temperature range. Only the positive photoresist is flowed and brought into contact with the vapor deposited metal layer, the vapor deposited metal layer is etched and removed, the exposed semiconductor substrate layer is recess-etched, and a gate electrode is formed on the recess-etched semiconductor substrate layer by a lift-off method. 1. A method of manufacturing a semiconductor device, comprising a step of forming a gate electrode.
JP63296179A 1988-11-25 1988-11-25 Manufacture of semiconductor device Pending JPH02143536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296179A JPH02143536A (en) 1988-11-25 1988-11-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296179A JPH02143536A (en) 1988-11-25 1988-11-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02143536A true JPH02143536A (en) 1990-06-01

Family

ID=17830187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296179A Pending JPH02143536A (en) 1988-11-25 1988-11-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02143536A (en)

Similar Documents

Publication Publication Date Title
JPS6110279A (en) Method of producing thin film field effect transistor and transistor obtained by same method
JPH0787195B2 (en) Method of manufacturing Schottky gate field effect transistor
US5587328A (en) Method for manufacturing semiconductor device
JPH02143536A (en) Manufacture of semiconductor device
JPH03147338A (en) Manufacture of semiconductor device
JPH04177738A (en) Manufacture of semiconductor device
JP2803641B2 (en) Method for manufacturing semiconductor device
JP2626238B2 (en) Method for manufacturing semiconductor device
JP2503667B2 (en) Method for manufacturing semiconductor device
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JPS616870A (en) Manufacture of field-effect transistor
JPS6237972A (en) Metal-electrode forming method
JPH0845962A (en) Manufacture of semiconductor device
JP2591639B2 (en) Method for manufacturing semiconductor device
JPH01243476A (en) Formation of electrode
JPH0442940A (en) Manufacture of semiconductor device
JPH0684951A (en) Manufacture of semiconductor device
JPS63158841A (en) Manufacture of gaas semiconductor device
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor
JPS6257221A (en) Minute-pattern forming method
JPS6292480A (en) Manufacture of compound semiconductor device
JPS6279677A (en) Manufacture of semiconductor device
JPH0684954A (en) Manufacture of semiconductor device
JPH01120832A (en) Formation of hood pattern
JPH01225366A (en) Manufacture of semiconductor device