JPH0214213A - Epoxy resin composition and prepreg therefrom - Google Patents

Epoxy resin composition and prepreg therefrom

Info

Publication number
JPH0214213A
JPH0214213A JP16568388A JP16568388A JPH0214213A JP H0214213 A JPH0214213 A JP H0214213A JP 16568388 A JP16568388 A JP 16568388A JP 16568388 A JP16568388 A JP 16568388A JP H0214213 A JPH0214213 A JP H0214213A
Authority
JP
Japan
Prior art keywords
epoxy resin
component
resin composition
glycidyl ether
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16568388A
Other languages
Japanese (ja)
Other versions
JP2696953B2 (en
Inventor
Hajime Kishi
肇 岸
Nobuyuki Odagiri
小田切 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP16568388A priority Critical patent/JP2696953B2/en
Publication of JPH0214213A publication Critical patent/JPH0214213A/en
Application granted granted Critical
Publication of JP2696953B2 publication Critical patent/JP2696953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To provide the composition of high breaking elongation, elastic modulus and heat resistance, low water absorptivity and flame-retardancy, comprising each specific two kinds of epoxy resins and curing agent in specified proportion. CONSTITUTION:The objective epoxy resin composition can be obtained by blending (A) a brominated bisphenol A glycidyl ether-type epoxy resin, (B) a bisphenol F glycidyl ether-type epoxy resin, and (C) an aromatic diamine (pref. diaminodiphenylsulfone) so that the components A+B+C account for >=70wt.% of the final resin composition and the weight ratio A/B=(10:90)-(95:15), pref. (30:70)-(90:10). Incorporation of this epoxy resin composition as a matrix with a reinforcing fiber such as carbon fiber will obtain the other objective prepreg of both high mechanical strength and breaking elongation, high heat resistance, low water absorptivity and flame retardancy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高伸度、高弾性率、さらには高耐熱性、低吸
水性、難燃性を要求される先端複合材料用マトリックス
樹脂およびプリプレグに関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to matrix resins and materials for advanced composite materials that require high elongation, high modulus of elasticity, high heat resistance, low water absorption, and flame retardancy. Regarding prepreg.

[従来の技術] 硬化性樹脂の中でもエポキシ樹脂はその優れた力学的特
性を生かし各種産業分野に広く使用されている。特に強
化繊維と、マトリックス樹脂を必須の構成要素とする複
合材料にはエポキシ樹脂が多く使われている。
[Prior Art] Among curable resins, epoxy resins are widely used in various industrial fields due to their excellent mechanical properties. In particular, epoxy resins are often used in composite materials that include reinforcing fibers and matrix resin as essential components.

複合材料は、その高い比強度、比弾性率を生かしてゴル
フクラブシャフトや釣竿などのプレミアム・スポーツ用
途及び航空機等の構造材料用途に広く使用されている。
Composite materials are widely used in premium sports applications such as golf club shafts and fishing rods, and in structural material applications such as aircraft, due to their high specific strength and specific modulus.

しかし、これらの複合材料に使用されているエポキシ樹
脂はさらに大きな強度、弾性率や靭性、耐熱・耐水性、
さらには難燃性を要求されている。
However, the epoxy resins used in these composite materials have even greater strength, elastic modulus, toughness, heat resistance, water resistance,
Furthermore, flame retardancy is required.

現在、航空機用複合材料に使用されているエポキシ樹脂
は、N、N、N’、N’−テトラグリシジルジアミノジ
フェニルメタンを主成分とし、硬化剤はジアミノジフェ
ニルスルボンが使用されている。この樹脂組成物は耐熱
性は高いが、樹脂伸度が小さく脆い硬化物になる。この
樹脂組成物から得られるCFRPは優れた耐熱性は示す
が、靭性は低いことが欠点である。
Epoxy resins currently used in aircraft composite materials have N,N,N',N'-tetraglycidyldiaminodiphenylmethane as a main component, and diaminodiphenyl sulfone is used as a curing agent. Although this resin composition has high heat resistance, the resin composition has low resin elongation and becomes a brittle cured product. Although CFRP obtained from this resin composition exhibits excellent heat resistance, it has a drawback of low toughness.

エポキシ樹脂には非常に多くの種類があり、それぞれ弾
性率、破断伸度、耐熱性、吸水率等の諸物性が異なる。
There are many types of epoxy resins, each with different physical properties such as modulus of elasticity, elongation at break, heat resistance, and water absorption.

一般にエポキシ樹脂なCFRPのマトリックス樹脂とし
て用いる場合、数種類のエポキシ樹脂を配合して要求特
性に合った組成物を得る。例えば、上で述べたN、N、
N’、N’−テトラグリシジルジアミノジフェニルメタ
ンは樹脂破断伸度が小さい。これを改善するために、破
断伸度の大きいビスフェノールAグリシジルエーテル型
エポキシ樹脂やビスフェノールFグリシジルエーテル型
エポキシ樹脂を配合することが考えられる。この場合、
確かに樹脂破断伸度は向上するが、その一方で弾性率や
耐熱性は低下する。つまり、組成物の物性は基本となる
エポキシ樹脂単品の物性から加成性が成り立つと仮定し
て計算した値を大きくはずれることはあまりないため、
単純なエポキシ樹脂どうしの配合では耐熱性や弾性率と
破断伸度とはtrade−offの関係にとどまるのが
一般的であるといえる。
When used as a matrix resin for CFRP, which is generally an epoxy resin, several types of epoxy resins are blended to obtain a composition that meets the required characteristics. For example, the N, N,
N',N'-tetraglycidyldiaminodiphenylmethane has a small resin elongation at break. In order to improve this, it is conceivable to blend a bisphenol A glycidyl ether type epoxy resin or a bisphenol F glycidyl ether type epoxy resin, which has a large elongation at break. in this case,
It is true that the resin elongation at break improves, but on the other hand, the elastic modulus and heat resistance decrease. In other words, the physical properties of the composition do not often deviate greatly from the values calculated assuming that additivity is established from the physical properties of the basic epoxy resin alone.
It can be said that in a simple formulation of epoxy resins, heat resistance, elastic modulus, and elongation at break generally remain in a trade-off relationship.

[発明が解決しようとする問題点コ 以上のように、エポキシ樹脂組成物を調製するにあたり
、基本となるエポキシ樹脂単品の物性から加成性が成り
立つと仮定して計算した値を大きく上回る伸度、弾性率
を持ち、しかも高耐熱性、低吸水率、難燃性を有する樹
脂組成物を得ることは従来難しいこととされてきた。本
発明者らは、この問題について鋭意検討を行なった結果
、意外にも上記の緒特性を満足する樹脂組成を見い出し
本発明の完成に致ったものである。
[Problems to be Solved by the Invention] As described above, when preparing an epoxy resin composition, the elongation greatly exceeds the value calculated on the assumption that additivity is established from the physical properties of the basic epoxy resin alone. , elastic modulus, high heat resistance, low water absorption, and flame retardancy, it has hitherto been considered difficult to obtain a resin composition. The inventors of the present invention have conducted intensive studies on this problem, and have unexpectedly found a resin composition that satisfies the above-mentioned characteristics, thereby completing the present invention.

[問題点を解決するための手段] 上記目的を達成するため本願発明は次の構成を有する。[Means for solving problems] In order to achieve the above object, the present invention has the following configuration.

(1)次の構成要素[A] 、[B] 、[C]を必須
成分とし、構成要素[A] + [B] + [C]が
樹脂組成物の70vtX以上であり、[A]酸成分[B
]酸成分の配合比率が重量比10:90〜95:15の
範囲にあることを特徴とするエポキシ樹脂組成物。
(1) The following components [A], [B], and [C] are essential components, and the components [A] + [B] + [C] are 70vtX or more of the resin composition, and [A] acid Ingredient [B
] An epoxy resin composition characterized in that the blending ratio of acid components is in the range of 10:90 to 95:15 by weight.

[Aコ ニブロム化ビスフェノールAグリシジルエーテ
ル型エポキシ樹脂 [Bコ :ビスフェノールFグリシジルエーテル型エポ
キシ樹脂 [Cコ :芳香族ジアミン (2)次の構成要素[A]、[B]、[Cコを必須成分
とし、構成要素[A] + [B] + [C]が樹脂
組成物の70wtJ以上であり、[A]酸成分[B]酸
成分の配合比率が重量比10:90〜95:15の範囲
にあることを特徴とするエポキシ樹脂組成物と強化繊維
から主としてなるプリプレグ。
[A: Nibrominated bisphenol A glycidyl ether type epoxy resin [B: Bisphenol F glycidyl ether type epoxy resin [C: Aromatic diamine (2) The following components [A], [B], and [C are required] The components [A] + [B] + [C] are 70 wtJ or more of the resin composition, and the blending ratio of [A] acid component [B] acid component is 10:90 to 95:15 by weight. A prepreg mainly consisting of an epoxy resin composition and reinforcing fibers.

[A]  ニブロム化ビスフェノールAグリシジルエー
テル型エポキシ樹脂 [B] :ビスフェノールFグリシジルエーテル型エポ
キシ樹脂 [Cコ :芳香族ジアミン (3)特許請求の範囲第(1)項において[C]酸成分
ジアミノジフェニルスルホンであるエポキシ樹脂組成物
[A] Nibrominated bisphenol A glycidyl ether type epoxy resin [B]: Bisphenol F glycidyl ether type epoxy resin [C: aromatic diamine (3) In claim (1), [C] acid component diaminodiphenyl An epoxy resin composition that is a sulfone.

(4)特許請求の範囲第(2)項において[C]酸成分
ジアミノジフェニルスルホンであるプリプレグ。
(4) A prepreg in which [C] the acid component is diaminodiphenylsulfone in claim (2).

(5)特許請求の範囲第(1)項において[A]酸成分
[B]酸成分の配合比率が重量比30:70〜90:1
0の範囲にあり、[C]酸成分ジアミノジフェニルスル
ホンであるエポキシ樹脂組成\ 物。
(5) In claim (1), the blending ratio of [A] acid component and [B] acid component is 30:70 to 90:1 by weight.
0, and the [C] acid component is diaminodiphenylsulfone.

(6)特許請求の範囲第(2)項において[A]酸成分
[B]酸成分の配合比率が重量比30:70〜90:1
0の範囲にあり、[C]酸成分ジアミノジフェニルスル
ホンであるエポキシ樹脂組成物を用いたプリプレグ。
(6) In claim (2), the blending ratio of [A] acid component and [B] acid component is 30:70 to 90:1 by weight.
A prepreg using an epoxy resin composition in which the [C] acid component is diaminodiphenylsulfone.

本発明に構成要素[A]として用いられるブロム化ビス
フェノールAグリシジルエーテル型エポキシ樹脂は、例
えばエビクロン152(大日本インキ化学工業社製)な
どの商品名で市販されている。この樹脂の構造式は下に
示すとおりである。
The brominated bisphenol A glycidyl ether type epoxy resin used as component [A] in the present invention is commercially available, for example, under a trade name such as Evicron 152 (manufactured by Dainippon Ink and Chemicals). The structural formula of this resin is shown below.

ブロム化ビスフェノールAグリシジルエーテル型エポキ
シ樹脂は、原子番号の大きな臭素が置換基としてベンゼ
ン環についており、低吸水率で難燃性を有することがそ
の特長である。この樹脂を化学当量の4,4′−ジアミ
ノジフェニルスルホンを硬化剤として180°C2時間
硬化させた硬化樹脂は、室温乾燥状態における曲げ弾性
率が約380 kg/mm2、破断伸度が約3.5%で
ある。
Brominated bisphenol A glycidyl ether type epoxy resin has bromine with a large atomic number attached to a benzene ring as a substituent, and is characterized by low water absorption and flame retardancy. The cured resin obtained by curing this resin at 180°C for 2 hours using a chemical equivalent of 4,4'-diaminodiphenylsulfone as a curing agent has a flexural modulus of about 380 kg/mm2 and a breaking elongation of about 3. It is 5%.

本発明に構成要素[B]として用いられるビスフェノー
ルFグリシジルエーテル型エポキシ樹脂は、エピクロン
830(大日本インキ化学工業社き“t)、エビコー)
807(油化シェルエポキシ社製)などの商品名で市販
されている。このエポキシ樹脂は非常に低粘度であり、
その添加により組成物の粘度は低下し作業性が改善でき
る。プリプレグ用樹脂として用いた場合、タック・ドレ
ープ性が向上し非常に好ましい。この樹脂を化学当量の
4,4′−ジアミノジフェニルスルホンを硬化剤として
180°C2時間硬化さぜた硬化樹脂は、室温乾)ス状
態における曲げ弾性率が約360 kg/n+m2、破
断伸度が約7.0%である。
The bisphenol F glycidyl ether type epoxy resin used as component [B] in the present invention is Epiclon 830 (Dainippon Ink & Chemicals Co., Ltd. "t", Ebicor).
It is commercially available under trade names such as 807 (manufactured by Yuka Shell Epoxy Co., Ltd.). This epoxy resin has a very low viscosity,
By adding it, the viscosity of the composition can be reduced and workability can be improved. When used as a resin for prepreg, the tack and drape properties are improved, which is very preferable. The cured resin obtained by curing this resin for 2 hours at 180°C using a chemical equivalent of 4,4'-diaminodiphenylsulfone as a curing agent has a flexural modulus of approximately 360 kg/n+m2 and a breaking elongation in a dry state at room temperature. It is about 7.0%.

本発明に構成要素[C]として用いられる芳香族ジアミ
ンはエポキシ樹脂の硬化剤としてよく用いられるもので
ある。例えばジアミノジフェニルメタンやジアミノジフ
ェニルスルホンが挙げられる。これらの硬化剤を用いて
硬化させた樹脂の耐熱性は優れており、特にジアミノジ
フェニルスルホンは好適である。アミノ基がベンゼン環
につく位置によって4.4’ +、3.4’ −,3,
3’−の3種類に分類できるが、本発明にとってはこの
3種のいずれもが好適である。4,4′−ジアミノジフ
ェニルスルホンはスミギュアS(住友化学工業社製)な
どの商品名で市販されている。
The aromatic diamine used as component [C] in the present invention is often used as a curing agent for epoxy resins. Examples include diaminodiphenylmethane and diaminodiphenylsulfone. Resins cured using these curing agents have excellent heat resistance, and diaminodiphenylsulfone is particularly suitable. Depending on the position where the amino group attaches to the benzene ring, 4.4' +, 3.4' -, 3,
It can be classified into three types: 3'-, and all three types are suitable for the present invention. 4,4'-diaminodiphenyl sulfone is commercially available under trade names such as Sumigure S (manufactured by Sumitomo Chemical Industries, Ltd.).

本発明においては構成要素[A] + [B] +[C
]が樹脂組成物の70wt%以上である。また構成要素
[A]と[B]との配合比率(重量)は10:90〜9
5:5の範囲であり、さらに好ましくは30:70〜9
0:10の範囲である。
In the present invention, constituent elements [A] + [B] + [C
] is 70 wt% or more of the resin composition. Also, the blending ratio (weight) of components [A] and [B] is 10:90 to 9
The range is 5:5, more preferably 30:70-9
The range is 0:10.

通常、エポキシ樹脂組成物の物性は基本となるエポキシ
樹脂単品の物性から加成性が成り立つと仮定して計算し
た値を大きくはずれることはあまりない。例えば、構成
要素[A]が90 wt$、構成要素[B]が10wt
Xの配合をする場合、化学当量の4,4′−ジアミノジ
フェニルスルホンな硬化剤として180℃2時間硬化さ
せた硬化樹脂の物性は、おおよそ両成分の重量分率をも
とに比例配分した値であると予測できる。すなわち、室
温乾燥状態における曲げ弾性率が、380kg/mm2
XO。
Generally, the physical properties of an epoxy resin composition do not often deviate greatly from values calculated on the assumption that additivity is established from the physical properties of the basic epoxy resin alone. For example, component [A] is 90 wt$, component [B] is 10wt
When compounding X, the physical properties of the cured resin cured for 2 hours at 180°C using a chemical equivalent of 4,4'-diaminodiphenylsulfone as a curing agent are approximately the values proportionally distributed based on the weight fractions of both components. It can be predicted that That is, the bending elastic modulus in a dry state at room temperature is 380 kg/mm2
XO.

9+360kg/mm2X帆1= 378 kg/im
2、破断伸度が3゜5XX0.9+7.0%:Xo、1
= 3 、9%である。
9+360kg/mm2X sail 1= 378 kg/im
2. Breaking elongation is 3゜5XX0.9+7.0%: Xo, 1
= 3, 9%.

ところが意外にも実際に調製した上記配合樹脂の物性は
曲げ弾性率が約400 kg/mm”、碌断伸度が約6
.7%であった。qまり、弾性率、破断伸度ともに予想
を大きく上回る物性を示したのである。このような例は
これまで報告されていない。
However, surprisingly, the physical properties of the above-mentioned compounded resin actually prepared were that the flexural modulus was about 400 kg/mm" and the breaking elongation was about 6.
.. It was 7%. It showed physical properties that far exceeded expectations in terms of elasticity, elastic modulus, and elongation at break. Such cases have not been reported so far.

しかも、両成分の配合比のかなり広い能囲にわたって、
この高弾性率かつ高伸度の特性が発現されることは予期
ぜぬことであり注目に値する。
Moreover, over a fairly wide range of blending ratios of both ingredients,
The development of these properties of high elastic modulus and high elongation is unexpected and worthy of attention.

さらにこの樹脂組成物の優れた特長として低吸水性およ
び難燃性をあげることができる。この2つの特性は、ブ
ロム化ビスフェノールAグリシジルエーテル型エポキシ
樹脂の特長として既に公知のことである。本発明のエポ
キシ樹脂組成物は、このブロム化ビスフェノールAグリ
シジルエーテル型エポキシ樹脂を多く含有するので、こ
れらの特長も兼ね備えていることは容易に理解できる。
Further, excellent features of this resin composition include low water absorption and flame retardancy. These two properties are already known as features of brominated bisphenol A glycidyl ether type epoxy resins. Since the epoxy resin composition of the present invention contains a large amount of this brominated bisphenol A glycidyl ether type epoxy resin, it is easy to understand that it also has these features.

その際、ブロム化ビスフェノールAグリシジルニーデル
型エポキシ樹脂の含有率が大きいほど吸水率が低く難燃
性が高いことはいうまでもない。
In this case, it goes without saying that the higher the content of the brominated bisphenol A glycidyl needle type epoxy resin, the lower the water absorption and the higher the flame retardancy.

本発明に用いられる強化繊維には、炭素繊維、ガラス繊
維、アラミド繊維、炭化ケイ素繊維、アルミナ!!A維
、ボロン繊維、タンクステンカーバイド繊維などが挙げ
られるが特にこれらに限定されるものではない。また、
これらは組合わせて用いることが可能であり、形状は限
定されない。
The reinforcing fibers used in the present invention include carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, and alumina! ! Examples include, but are not limited to, A fiber, boron fiber, and tank stainless carbide fiber. Also,
These can be used in combination, and the shape is not limited.

上記樹脂とこれら強化繊維との組合わせで得られるプリ
プレグより得られる複合材料は、樹脂の高伸度、高弾性
率を反映し、高強度、高伸度を有する。
A composite material obtained from a prepreg obtained by combining the above resin and these reinforcing fibers has high strength and high elongation, reflecting the high elongation and high modulus of elasticity of the resin.

以下、実施例により本発明をより詳キ■に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

[実施例1] 以下の組成よりなる樹脂組成物を調製した。[Example 1] A resin composition having the following composition was prepared.

[A]アブロム化ビスフェノールAグリシジルエーテル
エポキシ樹脂 (大日本インキ工業(株)製、エピクロン152)  
−−一−−−−90重量部[BコピスフエノールFグリ
シジルエーテル型エポキシ樹脂 (大日本インキ工業(株)!!、エピクロン830) 
 −−一−−−−10重瓜部[C] 4.4’ジアミノ
ジフエニルスルホン(注文化学工業(株)製、スミキュ
ア5)−−−−−一−−−−18重危部 あらかじめ用意したモールドに上記配合樹脂を注ぎ込み
オーブン中に置き、180°C2時間硬化反応させて2
+nm厚の樹脂硬化板を調製した。
[A] Abrominated bisphenol A glycidyl ether epoxy resin (manufactured by Dainippon Ink Industries, Ltd., Epiclon 152)
--1----90 parts by weight [B Copisphenol F glycidyl ether type epoxy resin (Dainippon Ink Industries, Ltd.!!, Epicron 830)
--1----10 Heavy melon part [C] 4.4' Diaminodiphenylsulfone (manufactured by Kaito Kagaku Kogyo Co., Ltd., Sumicure 5)---1----18 Serious part prepared in advance Pour the above compounded resin into the mold, place it in an oven, and let it harden for 2 hours at 180°C.
A cured resin plate with a thickness of +nm was prepared.

ここからJ I S K−7113−1に従いダンベル
型引張り試験用サンプルを切り出し、引張り試験に供し
た。オートグラフのクロスヘツドスピードは1mm/m
in、とじた。また、1cm幅の短冊型試験片を切り出
し曲げ弾性率の測定に供した。スパン(1)とサンプル
厚み(d)の比はl/d=16とし、クロスヘツドスピ
ードは2.5mm/min、とじた。なお曲げ弾性率の
測定は、室温乾燥状態以外に20時間煮沸吸水後のサン
プルについて所定の温度に昇温しで行った。測定結果を
表2に示した。基本となるエポキシ樹脂単品の破断伸度
および弾性率から加成性が成り立つと仮定して計算した
値を大きく上回っている。
A dumbbell-shaped tensile test sample was cut out from this according to JIS K-7113-1 and subjected to a tensile test. Autograph crosshead speed is 1mm/m
in, closed. In addition, a strip-shaped test piece with a width of 1 cm was cut out and used for measuring the bending elastic modulus. The ratio of span (1) to sample thickness (d) was l/d=16, and the crosshead speed was 2.5 mm/min. The bending modulus of elasticity was measured not only in a dry state at room temperature but also in a sample that had been boiled and absorbed water for 20 hours and then heated to a predetermined temperature. The measurement results are shown in Table 2. This greatly exceeds the value calculated on the assumption that additivity is established from the elongation at break and elastic modulus of the basic epoxy resin alone.

[実施例2] 構成要素[A]を70重量部、構成要素[B]を30重
量部、構成要素[C]を20重量部とした他は実施例】
と同様の手順を繰返した。結果を表2に示した。基本と
なるエポキシ樹脂単品の破断伸度および弾性率から加成
性が成り立つと仮定して計算した値を大きく上回ってい
る。
[Example 2] Example except that the component [A] was 70 parts by weight, the component [B] was 30 parts by weight, and the component [C] was 20 parts by weight]
The same procedure was repeated. The results are shown in Table 2. This greatly exceeds the value calculated on the assumption that additivity is established from the elongation at break and elastic modulus of the basic epoxy resin alone.

この樹脂をマトリックスとする一方向プリブレグを用い
たコンポジットのO°力方向圧縮強度および90’方向
の引張り伸度の測定を行った。プリプレグは次のように
して調製した。
Compressive strength in the 0° force direction and tensile elongation in the 90' direction of a composite using a unidirectional prepreg using this resin as a matrix were measured. The prepreg was prepared as follows.

ニーダで上記組成の樹脂を調製し、シリコン離型剤をあ
らかじめ薄く塗付した離型紙に一定の厚さでコーティン
グした。炭素繊維トレカT800H(東しく株)製)を
もちいて、先に調製した樹脂コーテイング紙2枚のあい
だに炭素繊維を1方向に引き揃えてから圧着させてプリ
プレグとした。この時プリプレグ中の樹脂の重量分率は
35%であった。このプリプレグを単一方向に8枚積層
して、オートクレーブ中で6 kg/am2の加圧下で
、180℃×2時間の加熱を行い、約1mmの厚さを有
する硬化板を得た。この硬化板にタブを接着し、A S
TM−D 695に準じて0°圧縮試験を行った。
A resin having the above composition was prepared in a kneader and coated to a constant thickness on a release paper to which a silicone mold release agent had been thinly applied in advance. Using a carbon fiber trading card T800H (manufactured by Toshiku Co., Ltd.), carbon fibers were aligned in one direction between two sheets of resin-coated paper prepared previously and then pressed together to obtain a prepreg. At this time, the weight fraction of resin in the prepreg was 35%. Eight sheets of this prepreg were laminated in a single direction and heated in an autoclave at 180° C. for 2 hours under a pressure of 6 kg/am 2 to obtain a cured plate having a thickness of about 1 mm. Glue the tab to this hardened plate and
A 0° compression test was conducted according to TM-D 695.

その結果、1721<g/mm”の圧縮強度を示した。The results showed a compressive strength of 1721<g/mm''.

また、上記プリプレグを、単一方向に16枚積層し、同
様に成形した硬化板を用いて90°引張伸度を測定した
ところ1.5%であった。
Furthermore, 16 sheets of the above prepreg were laminated in a single direction, and the 90° tensile elongation was measured using a cured plate formed in the same manner and found to be 1.5%.

[実施例3] 構成要素[A]を40重量部、構成要素[B]を60重
量部、構成要素[C]を23重量部とした他は実施例1
と同様の手順を繰返した。結果を表2に示した。基本と
なるエポキシ樹脂単品の破断伸度および弾性率から加成
性が成り立つと仮定して計算した値を大きく上回ってい
る。
[Example 3] Example 1 except that the component [A] was 40 parts by weight, the component [B] was 60 parts by weight, and the component [C] was 23 parts by weight.
The same procedure was repeated. The results are shown in Table 2. This greatly exceeds the value calculated on the assumption that additivity is established from the elongation at break and elastic modulus of the basic epoxy resin alone.

[実施例4コ 構成要素[C]として3,3′−ジアミノジフェニルス
ルホンを用いた他は実施例1と同様の手trillを繰
返した。結果を表2に示した。
[Example 4] The same hand trill as in Example 1 was repeated except that 3,3'-diaminodiphenylsulfone was used as component [C]. The results are shown in Table 2.

[比較例1コ 構成要素[A]のかわりにテトラグ刃シジルジアミノジ
フェニルメタン(ELM434:注文化学工業)を90
重量部用い、構成要素[C]として4,4′ジアミノジ
フエニルスルホンを50重量部加えた他は実施例1と同
様の手順を繰返した。
[Comparative Example 1] Tetrag-blade cydyldiaminodiphenylmethane (ELM434: Order Kagaku Kogyo) was used at 90%
The same procedure as in Example 1 was repeated except that 50 parts by weight of 4,4'diaminodiphenyl sulfone was added as component [C].

結果を表2に示した。基本となるエポキシ樹脂単品の破
断伸度および弾性率から加成性が成り立つと仮定して計
算した値と良い一致を示している。
The results are shown in Table 2. This shows good agreement with the value calculated on the assumption that additivity is established from the elongation at break and elastic modulus of the basic epoxy resin alone.

この樹脂をマトリックスとする一方向ブリプレグを用い
たコンポジットの06方向の圧縮強度および90°方向
の引張り伸度の測定を行った。プリプレグは次のように
して調製した。
Compressive strength in the 06 direction and tensile elongation in the 90° direction of a composite using a unidirectional Bripreg using this resin as a matrix were measured. The prepreg was prepared as follows.

ニーダで上記組成の樹脂を調製し、シリコン離型剤をあ
らかじめ薄く塗付した離型紙に一定の厚さでコーティン
グした。炭素繊維トレカ7800H(東しく株)製)を
もちいて、先に調製した樹脂コーテイング紙2枚のあい
だに炭素繊維を1方向に引き揃えてから圧着させてプリ
プレグとした。この時プリプレグ中の樹脂の重量分率は
35%であった。このプリプレグを単一方向に8枚積層
して、オートクレーブ中で6 k3/cm”の加圧下で
、180°C×2時間の加熱を行い、約1mmの厚さを
有する硬化板を得た。この硬化板にタブを接着し、AS
TM−D 695に準じて0°圧縮試験を行った。
A resin having the above composition was prepared in a kneader and coated to a constant thickness on a release paper to which a silicone mold release agent had been thinly applied in advance. Using Carbon Fiber Trading Card 7800H (manufactured by Toshiku Co., Ltd.), carbon fibers were aligned in one direction between two sheets of resin-coated paper prepared previously and then pressed together to obtain a prepreg. At this time, the weight fraction of resin in the prepreg was 35%. Eight sheets of this prepreg were laminated in a single direction and heated at 180° C. for 2 hours in an autoclave under a pressure of 6 k3/cm'' to obtain a cured plate having a thickness of about 1 mm. Glue the tab to this hardened plate and
A 0° compression test was conducted according to TM-D 695.

その結果、1701<8/n+m”の圧縮強度を示した
。また、上記プリプレグを単一方向に16枚積層し、同
様に成形した硬化板を用いて90°引張伸度を測定した
ところ0.9%と低伸度であった。
The results showed a compressive strength of 1701<8/n+m''.Furthermore, 16 sheets of the above prepreg were laminated in a single direction and the 90° tensile elongation was measured using a cured plate formed in the same way. The elongation was low at 9%.

[比較例2] 構成要素[A]のかわりに2−ジグリシジルアミノ5−
グリシジルエーテルトルエン(ELMIoo:注文化学
工業)を90重量部用い、構成要素[C]として4,4
′ジアミノジフエニルスルホンを55重量部加えた他は
実施例1と同様の手順を繰返した。結果を表2に示した
。基本となるエポキシ樹脂単品の破断伸度および弾性率
から加成性が成り立つと仮定して計算した値と良い一致
を示している。
[Comparative Example 2] 2-diglycidylamino 5- instead of component [A]
Using 90 parts by weight of glycidyl ether toluene (ELMIoo: Order Kagaku Kogyo), 4,4 as the component [C]
'The same procedure as in Example 1 was repeated except that 55 parts by weight of diaminodiphenyl sulfone was added. The results are shown in Table 2. This shows good agreement with the value calculated on the assumption that additivity is established from the elongation at break and elastic modulus of the basic epoxy resin alone.

[比較例3コ 構成要素[A]のかわりにビスフェノールAグリシジル
エーテル型エポキシ樹脂を90重量部用い、構成要素[
C]として4,4′ジアミノジフエニルスルホンを40
重量部加えた他は実施例1と同様の手順を繰返した。結
果を表2に示した。
[Comparative Example 3] 90 parts by weight of bisphenol A glycidyl ether type epoxy resin was used instead of component [A], and component [
C] as 4,4'diaminodiphenyl sulfone as 40
The same procedure as in Example 1 was repeated except that part by weight was added. The results are shown in Table 2.

基本となるエポキシ樹脂単品の破断伸度および弾性率か
ら加成性が成り立つと仮定して計算した値と良い一致を
示している。
This shows good agreement with the value calculated on the assumption that additivity is established from the elongation at break and elastic modulus of the basic epoxy resin alone.

[比較例4] 構成要素[B]のかわりにビスフェノールAグリシジル
エーテル型エポキシ樹脂を10重量部用い、構成要素[
C]として4,42ジアミノジフエニルスルホンを20
重量部加えた他は実施例1と同様の手順を繰返した。結
果を表2に示した。
[Comparative Example 4] 10 parts by weight of bisphenol A glycidyl ether type epoxy resin was used instead of component [B], and component [B] was replaced with component [B].
C] 4,42 diaminodiphenyl sulfone as 20
The same procedure as in Example 1 was repeated except that part by weight was added. The results are shown in Table 2.

基本となるエポキシ樹脂単品の破断伸度および弾性率か
ら加成性が成り立つと仮定して計算した値と良い一致を
示している。
This shows good agreement with the value calculated on the assumption that additivity is established from the elongation at break and elastic modulus of the basic epoxy resin alone.

[発明の効果コ 本発明によるエポキシ樹脂組成物は高伸度、高弾性率か
つ高耐熱性、低吸水率および難燃性を有する。さらに、
これをマトリックス樹脂とするプリプレグより得られる
繊維強化複合材料は高強度、高伸度、かつ高耐熱性、低
吸水率および難燃性を有する。
[Effects of the Invention] The epoxy resin composition according to the present invention has high elongation, high elastic modulus, high heat resistance, low water absorption, and flame retardancy. moreover,
A fiber-reinforced composite material obtained from a prepreg using this as a matrix resin has high strength, high elongation, high heat resistance, low water absorption, and flame retardancy.

Claims (6)

【特許請求の範囲】[Claims] (1)次の構成要素[A]、[B]、[C]を必須成分
とし、構成要素[A]+[B]+[C]が樹脂組成物の
70wt%以上であり、[A]成分と[B]成分との配
合比率が重量比10:90〜95:15の範囲にあるこ
とを特徴とするエポキシ樹脂組成物。 [A]:ブロム化ビスフェノールAグリシジルエーテル
型エポキシ樹脂 [B]:ビスフェノールFグリシジルエーテル型エポキ
シ樹脂 [C]:芳香族ジアミン
(1) The following components [A], [B], and [C] are essential components, and the components [A] + [B] + [C] account for 70 wt% or more of the resin composition, and [A] An epoxy resin composition characterized in that the blending ratio of component and component [B] is in the range of 10:90 to 95:15 by weight. [A]: Brominated bisphenol A glycidyl ether type epoxy resin [B]: Bisphenol F glycidyl ether type epoxy resin [C]: Aromatic diamine
(2)次の構成要素[A]、[B]、[C]を必須成分
とし、構成要素[A]+[B]+[C]が樹脂組成物の
70wt%以上であり、[A]成分と[B]成分との配
合比率が重量比10:90〜95:15の範囲にあるこ
とを特徴とするエポキシ樹脂組成物と強化繊維から主と
してなるプリプレグ。 [A]:ブロム化ビスフェノールAグリシジルエーテル
型エポキシ樹脂 [B]:ビスフェノールFグリシジルエーテル型エポキ
シ樹脂 [C]:芳香族ジアミン
(2) The following components [A], [B], and [C] are essential components, and the components [A] + [B] + [C] account for 70 wt% or more of the resin composition, and [A] A prepreg mainly consisting of an epoxy resin composition and reinforcing fibers, characterized in that the blending ratio of component and component [B] is in the range of 10:90 to 95:15 by weight. [A]: Brominated bisphenol A glycidyl ether type epoxy resin [B]: Bisphenol F glycidyl ether type epoxy resin [C]: Aromatic diamine
(3)特許請求の範囲第(1)項において[C]成分が
ジアミノジフェニルスルホンであるエポキシ樹脂組成物
(3) An epoxy resin composition according to claim (1), wherein component [C] is diaminodiphenylsulfone.
(4)特許請求の範囲第(2)項において[C]成分が
ジアミノジフェニルスルホンであるプリプレグ。
(4) The prepreg according to claim (2), wherein the component [C] is diaminodiphenylsulfone.
(5)特許請求の範囲第(1)項において[A]成分と
[B]成分との配合比率が重量比30:70〜90:1
0の範囲にあり、[C]成分がジアミノジフェニルスル
ホンであるエポキシ樹脂組成物。
(5) In claim (1), the blending ratio of component [A] and component [B] is 30:70 to 90:1 by weight.
0, and the [C] component is diaminodiphenylsulfone.
(6)特許請求の範囲第(2)項において[A]成分と
[B]成分との配合比率が重量比30:70〜90:1
0の範囲にあり、[C]成分がジアミノジフェニルスル
ホンであるエポキシ樹脂組成物を用いたプリプレグ。
(6) In claim (2), the blending ratio of component [A] and component [B] is 30:70 to 90:1 by weight.
A prepreg using an epoxy resin composition in which the component [C] is diaminodiphenylsulfone.
JP16568388A 1988-07-01 1988-07-01 Epoxy resin composition and prepreg Expired - Lifetime JP2696953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16568388A JP2696953B2 (en) 1988-07-01 1988-07-01 Epoxy resin composition and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16568388A JP2696953B2 (en) 1988-07-01 1988-07-01 Epoxy resin composition and prepreg

Publications (2)

Publication Number Publication Date
JPH0214213A true JPH0214213A (en) 1990-01-18
JP2696953B2 JP2696953B2 (en) 1998-01-14

Family

ID=15817057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16568388A Expired - Lifetime JP2696953B2 (en) 1988-07-01 1988-07-01 Epoxy resin composition and prepreg

Country Status (1)

Country Link
JP (1) JP2696953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316624A (en) * 1991-09-25 1994-11-15 Kumagai Gumi Co Ltd Epoxy resin composition for high tensile material made of frp
US8732977B2 (en) 2006-08-14 2014-05-27 Airbus Operations Limited Method of producing structural components having improved toughness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316624A (en) * 1991-09-25 1994-11-15 Kumagai Gumi Co Ltd Epoxy resin composition for high tensile material made of frp
US8732977B2 (en) 2006-08-14 2014-05-27 Airbus Operations Limited Method of producing structural components having improved toughness

Also Published As

Publication number Publication date
JP2696953B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH0214213A (en) Epoxy resin composition and prepreg therefrom
KR0154122B1 (en) Epoxy resin composition for use in carbon fiber reinforced plastics
JPH02225517A (en) Epoxy resin composition
JP2008013711A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material intermediate
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
JPH11279261A (en) Heat-resistant epoxy resin composition for fiber-reinforced composite material
JP2003041093A (en) Resin composition for composite material, intermediate material for composite material and composite material
JP2009013254A (en) Matrix resin for fiber-reinforced composite material and prepreg
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
US5053475A (en) Epoxy resin composition
JPS6360056B2 (en)
JPS62169829A (en) Prepreg
JPH02124919A (en) Epoxy resin composition
JPH03243619A (en) Epoxy resin composition
JPS6310618A (en) Epoxy resin composition
JPH0641396A (en) Epoxy resin composition
JPH06136242A (en) Epoxy resin composition and prepreg
JP2003040973A (en) Resin composition for composite material, intermediate material for composite material and composite material
JPS6244772B2 (en)
JPH0480226A (en) Epoxy resin composition for composite material
JPS6244770B2 (en)
JPH03281635A (en) Resin composition for prepreg