JPH02138431A - Single crystal ni-base super heat resistant alloy - Google Patents

Single crystal ni-base super heat resistant alloy

Info

Publication number
JPH02138431A
JPH02138431A JP1030172A JP3017289A JPH02138431A JP H02138431 A JPH02138431 A JP H02138431A JP 1030172 A JP1030172 A JP 1030172A JP 3017289 A JP3017289 A JP 3017289A JP H02138431 A JPH02138431 A JP H02138431A
Authority
JP
Japan
Prior art keywords
alloy
phase
creep rupture
rupture strength
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1030172A
Other languages
Japanese (ja)
Other versions
JP2552351B2 (en
Inventor
Takehiro Oono
丈博 大野
Rikizo Watanabe
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1030172A priority Critical patent/JP2552351B2/en
Priority to GB8911169A priority patent/GB2220422B/en
Priority to US07/469,740 priority patent/US4976791A/en
Publication of JPH02138431A publication Critical patent/JPH02138431A/en
Application granted granted Critical
Publication of JP2552351B2 publication Critical patent/JP2552351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Abstract

PURPOSE:To obtain the title super heat resistant alloy which is structurally stable and having excellent creep rupture strength and oxidation resistance by specifying the compsn. constituted of Cr, Al, W, Ta, Mo, Hf, Co and Ni and their compositional relationship. CONSTITUTION:The single crystal Ni-base super heat resistant alloy is constituted of, by weight, 4 to 9%, preferably 4.5 to 8.5% Cr, 4 to 6.5%, preferably 4 to 6% Al, 5 to 8.5%, preferably 5.5 to 8.2% W, 5 to 8.5%, preferably 5.5 to 8.2% Ta, 3 to 6%, preferably 3.5 to 5.5% Mo, 0.01 to 0.30%, preferably 0.05 to 0.25% Hf, 0.01 to 4%, preferably 0.5 to 3% Co and the balance Ni with impurities as well as constituted of <16% W+Ta. The alloy has excellent creep rupture strength and oxidation resistance, and by using it for a gas turbine blade, the efficiency can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主としてガスタービンエンジンのブレードに用
いられる、クリープ破断強度および耐酸化性のすぐれた
単結晶Ni基超超耐熱合金関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a single-crystal Ni-based ultra-super heat-resistant alloy with excellent creep rupture strength and oxidation resistance, which is mainly used for gas turbine engine blades.

〔従来の技術〕[Conventional technology]

一般に金属の高温での@壊は結晶粒界で起こるため、タ
ービンブレードを結晶粒界の存在しない単結晶組織とし
、かつ適切な熱処理を行なうことによりその高温でのク
リープ破断強度は大幅に向上する。この概念に基づ@ 
United TechnologiesCorpor
ationより、A11oy444.(米国特許第4.
.116,723号に記載)、A1.1oy454(米
国特許第4,209,348号に記載)、A11oy2
03E(米国特許第4,222,794号に記載)、A
ir Re5earch Corporat、ionよ
りNASAIRloo。
Generally, fracture of metals at high temperatures occurs at grain boundaries, so by creating a turbine blade with a single-crystal structure without grain boundaries and performing appropriate heat treatment, its creep rupture strength at high temperatures can be greatly improved. . Based on this concept @
United Technologies Corporation
ation, A11oy444. (U.S. Patent No. 4.
.. 116,723), A1.1oy454 (described in U.S. Pat. No. 4,209,348), A11oy2
03E (described in U.S. Pat. No. 4,222,794), A
NASAIRloo from ir Research Corporation, ion.

またCanon Muskegon Corporat
ionより、CMSX−2(特開昭57−89451号
に記載)、C万5X−3(特開昭59−1.90342
号に記載)等のLli結晶専用N4基超耐熱合金が開発
された。
Also, Canon Muskegon Corporation
ion, CMSX-2 (described in JP-A-57-89451), Cman5X-3 (JP-A-59-1.90342)
N4-based super heat-resistant alloys exclusively for Lli crystals have been developed.

さらに、英国特許1,557,900号、2,159,
174A号、ヨーロッパ特許006351]A1号、米
国特許4,402,772号等においても単結晶Ni基
超超耐熱合金提案されている。
Furthermore, British Patent No. 1,557,900, 2,159,
No. 174A, European Patent No. 006351] A1, US Pat. No. 4,402,772, etc. have also proposed single-crystal Ni-based super super heat-resistant alloys.

〔発明が解決しようとする課雇〕[The problem that the invention aims to solve]

上記の単結高合金は、従来の多結晶合金に比べるとはる
かに優れたクリープ破断強度を有するが、ガスタービン
エンジンの効率向上のためには、さらにクリープ破断強
度が高く、耐酸化性の優れた合金が望まれている。また
、Re等のあまりに高価な元素を使用することは望まし
くない。
The single-crystal high alloys mentioned above have much better creep rupture strength than conventional polycrystalline alloys, but in order to improve the efficiency of gas turbine engines, they are required to have even higher creep rupture strength and excellent oxidation resistance. There is a need for alloys that Further, it is not desirable to use an extremely expensive element such as Re.

従来の単結晶合金は主としてW、Taの増加により、ク
リープ破断強度の増加を図ってきたが、その添加量が過
度の場合、有害用析出等の間層があり、さらにクリープ
破断強度の高い合金の開発は容易ではない。例えば初期
に開発されたA11oy444、A11oy454等の
合金のクリープ破断強度はまだ十分高くない。またA1
1oY203Eおよび英国特許1.557,900号記
載の合金は高価なReを使用するという問題点がある。
Conventional single-crystal alloys have attempted to increase creep rupture strength mainly by increasing W and Ta, but if the amounts added are excessive, harmful interlayers such as precipitation may occur, and alloys with high creep rupture strength development is not easy. For example, the creep rupture strength of early developed alloys such as A11oy444 and A11oy454 is still not high enough. Also A1
The alloys described in 1oY203E and British Patent No. 1.557,900 have the problem of using expensive Re.

NASAIRlooはクリープ破断強度の増加を狙って
開発されたが、W量が高いため、α−W相やμ相などの
有害相が析出し、クリープ破断強度を低下させることが
見出されている。同様に英国特許2,159,174号
に記載の合金も、W。
NASA Rloo was developed with the aim of increasing creep rupture strength, but it has been found that due to the high W content, harmful phases such as α-W phase and μ phase precipitate, reducing creep rupture strength. Similarly, the alloy described in British Patent No. 2,159,174 is W.

Ta1lが高いため、α−W相等が析出すると考えられ
る。α−W相等の有害相の析出を防ぐためにはW、Mo
、Ta等の添加量を少なくすることが必要であるが、必
要以上に少なくするとクリープ破断強度を低下させる。
Since Ta1l is high, it is thought that α-W phase etc. are precipitated. In order to prevent the precipitation of harmful phases such as α-W phase, W, Mo
It is necessary to reduce the amount of addition of Ta, Ta, etc., but if it is reduced more than necessary, the creep rupture strength will be reduced.

CMSX−2,CMSX−3ハ、a −W 相ヤIt 
相ナト(1) 析出ヲ防ぎ、組織的に安定であることを
狙って開発された合金であるが、クリープ破断強度は十
分に高くない。また、ヨーロッパ特許0063511A
1号、ならびに米国特許4,402,772号に記載の
合金もクリープ破断強度は十分に高くない。
CMSX-2, CMSX-3, a - W Aiya It
Phase Nut (1) This alloy was developed with the aim of preventing precipitation and being structurally stable, but its creep rupture strength is not sufficiently high. Also, European patent 0063511A
No. 1, as well as the alloys described in US Pat. No. 4,402,772, do not have sufficiently high creep rupture strength.

さらに、タービンブレードは高温にさらされるため耐酸
化性も重要な要求特性の−っである。
Furthermore, since turbine blades are exposed to high temperatures, oxidation resistance is also an important required property.

般に耐酸化性はCr、A1等の元素の爪を増すことによ
り良くなるが、組織を安定化し、良好なりリープ破断強
度を得るためにはCr、AI量も狭い範囲に限定される
ので良好な耐酸化性を得ることは容易ではない。
In general, oxidation resistance is improved by increasing the number of elements such as Cr and Al, but in order to stabilize the structure and obtain good leap rupture strength, the amount of Cr and Al is also limited to a narrow range, so it is good. It is not easy to obtain good oxidation resistance.

本発明者らは、Re等の高価な合金元素を使用せず、組
織的に安定でかつクリープ破断強度が優れる合金を開発
するため、合金元素の個々の添加量ならびに合金元素相
互の成分バランスについて、詳細な検討を行なった結果
、特開昭62−116748号に開示したように重量%
でCr4〜10%、A14〜6.5%、W 4〜10%
、Ta4〜9%、Mo 1.5〜6%、残部N1および
不純物からなり、かつl/2W+172Ta+Mo−9
,5〜13.5%であることを特徴とする単結晶Ni基
還耐熱合金を見出した。
In order to develop an alloy that is structurally stable and has excellent creep rupture strength without using expensive alloying elements such as Re, the inventors investigated the amount of each alloying element added and the mutual composition balance of the alloying elements. As a result of detailed study, as disclosed in JP-A-62-116748, weight%
Cr4~10%, A14~6.5%, W 4~10%
, Ta 4-9%, Mo 1.5-6%, balance N1 and impurities, and 1/2W+172Ta+Mo-9
, 5 to 13.5%.A single crystal Ni-based reduced heat-resistant alloy has been found.

本発明者らは、前記合金のクリープ破断延性をさらに改
善した合金として、前記合金に12%以下のCOを添加
した合金を見出した(特開昭62−290839号に記
載)。
The present inventors have discovered an alloy in which 12% or less of CO is added to the above alloy as an alloy that further improves the creep rupture ductility of the above alloy (described in JP-A-62-290839).

これらの合金は、クリープ破断強度および組織安定性に
優れるが、耐酸化性をさらに改善すれば、ガスタービン
エンジンのタービンブレードの寿命が一段と向上するで
あろうということがわかってきた。
Although these alloys have excellent creep rupture strength and structural stability, it has been found that further improvements in oxidation resistance would further extend the life of turbine blades in gas turbine engines.

本発明の目的は、組織的に安定しかつクリープ破断強度
および耐酸化性のすぐれた単結晶Ni基超耐熱合金を提
供することである。
An object of the present invention is to provide a single-crystal Ni-based superalloy that is structurally stable and has excellent creep rupture strength and oxidation resistance.

〔課題を解決するための手段〕[Means to solve the problem]

ここで本発明者らは、先に発明した合金をベースに、そ
の耐酸化性を向上させるための検討を行なった結果、本
発明を完成したものである。すなわち、本発明において
は、注意深く制御された量のHfならびにCoを添加す
ることにより、先に達成されたクリープ破断強度ならび
に組織安定性を損なわないまま、耐酸化性を大幅に向上
させることに成功した。
The present inventors completed the present invention as a result of conducting studies to improve the oxidation resistance of the previously invented alloy. That is, in the present invention, by adding carefully controlled amounts of Hf and Co, we succeeded in significantly improving oxidation resistance without impairing the previously achieved creep rupture strength and structural stability. did.

本発明のうち第1の発明は、重量%でCr4〜9%、A
I 4〜6.5%、W 5〜8.5%、Ta 5〜8.
5%、Mo 3〜6%、Hf 0.01−0,30%、
Co 0.01−4%、残部Niおよび不純物からなり
、かつW +Taが16%末滴であることを特徴とする
単結晶Ni基超耐熱合金であり、第2の発明は、重量%
にてCr 4.5〜8.5%、A14〜6%、W 5.
5〜8.2%、Ta 5.5〜8.2%、Mo 3.5
〜5.5%、Hf0.05〜0.25%、Co 0.5
〜3%、残部Niおよび不純物からなり、かつW +T
 aが16%未満であることを特徴とする単結晶Ni基
超耐熱合金である。
The first invention of the present invention has Cr4 to 9% by weight, A
I 4-6.5%, W 5-8.5%, Ta 5-8.
5%, Mo 3-6%, Hf 0.01-0.30%,
The second invention is a single-crystal Ni-based super heat-resistant alloy consisting of 0.01-4% Co, the balance Ni and impurities, and 16% W + Ta as powder droplets.
Cr 4.5-8.5%, A14-6%, W 5.
5-8.2%, Ta 5.5-8.2%, Mo 3.5
~5.5%, Hf0.05~0.25%, Co0.5
~3%, the balance consists of Ni and impurities, and W +T
This is a single-crystal Ni-based super heat-resistant alloy characterized in that a is less than 16%.

以下に本発明合金の成分限定理由について述べる。The reasons for limiting the composition of the alloy of the present invention will be described below.

Crは合金の耐酸化性、耐食性を向上させる作用を持つ
が、過度の添加はσ相などの有害析出相を生じクリープ
破断強度を低下させるため、4〜9%に限定する。望ま
しくは4.5〜8.5%である。
Cr has the effect of improving the oxidation resistance and corrosion resistance of the alloy, but excessive addition produces harmful precipitated phases such as σ phase and reduces creep rupture strength, so it is limited to 4 to 9%. It is preferably 4.5 to 8.5%.

AiはNi基超超耐熱合金析出強化するγ′相と呼ばれ
る金属間化合物を形成する主要元素である。
Ai is a main element that forms an intermetallic compound called the γ' phase that strengthens the Ni-based super super alloy by precipitation.

γ′相は基本組成はNi、AIで表わされるが、AI以
外でもTi、Ta、W、Moなどを固溶することにより
更に強化される。これらの元素の作用は後で詳しく述べ
る。単結晶合金は通常体積率で50%以上もの多量のγ
′相を含むが、凝固終了時には共晶γ′相と呼ばれる粗
大γ′相が存在するので、これを母相(γ相と呼ばれる
)中へ一旦固溶させるため高温で固溶化処理を行なう。
The basic composition of the γ' phase is represented by Ni and AI, but it can be further strengthened by adding solid solutions other than AI such as Ti, Ta, W, and Mo. The effects of these elements will be described in detail later. Single-crystal alloys usually have a large amount of γ, with a volume fraction of more than 50%.
However, at the end of solidification, a coarse γ' phase called the eutectic γ' phase is present, so solution treatment is performed at a high temperature to temporarily dissolve this into the parent phase (referred to as the γ phase).

固溶化処理で固溶したγ′相は、冷却中およびその後の
時効処理により均一微細に析出することにより合金を強
化する。AIは4%未満ではγ′相の生成基が十分でな
く、また6、5%を越えるとγ′相が多過ぎ、共晶γ′
相を固溶化処理で完全に固溶させることができないため
クリープ破断強度は低下する。従ってAIは4〜6.5
%に限定する。望ましくは4〜6%である。
The γ' phase dissolved in the solid solution treatment strengthens the alloy by precipitating uniformly and finely during cooling and the subsequent aging treatment. If AI is less than 4%, there will not be enough γ' phase forming groups, and if it exceeds 6.5%, there will be too much γ' phase, resulting in eutectic γ'
Since the phases cannot be completely dissolved in the solid solution treatment, the creep rupture strength decreases. Therefore AI is 4-6.5
%. It is preferably 4 to 6%.

Wはγ相およびγ′相に固溶して両相を強化する元素で
あり、最低5%は必要である。しかしながら、過度の泳
方Uはα−W相と呼ばれる相を析出し、却ってクリープ
破断強度を低下させる。従ってWは5〜8.5%に限定
する。望ましくは5.5〜8,2%である。
W is an element that forms a solid solution in the γ phase and the γ' phase to strengthen both phases, and must be present in an amount of at least 5%. However, excessive swimming direction U causes a phase called α-W phase to precipitate, which actually reduces the creep rupture strength. Therefore, W is limited to 5 to 8.5%. It is preferably 5.5 to 8.2%.

Taは主としてγ′相に固溶してγ′相を強化する。従
って最低5%は必要であるが、過度に添加すると共晶γ
′相を固溶させることが困難となり、またγ、γ′相の
格子定数のミスマツチを太き(することによりγ′相が
粗大化してクリープ破断強度が低Fするため、5〜8.
5%に限定する。9)ましくけ5.5〜8.2%である
Ta mainly forms a solid solution in the γ' phase and strengthens the γ' phase. Therefore, it is necessary to add at least 5%, but if it is added too much, the eutectic γ
5 to 8. It becomes difficult to make the γ' phase a solid solution, and the mismatch in the lattice constants of the γ and γ' phases becomes thicker (by doing so, the γ' phase becomes coarser and the creep rupture strength becomes low F).
Limited to 5%. 9) It is 5.5 to 8.2%.

なお、W、Taはその合計が16%以上であると。Note that the total of W and Ta is 16% or more.

α−W相が析出しやすく、クリープ破断強度を低下させ
、また耐酸化性も悪くなるので、W 十T aを16%
未満に限定する。
The α-W phase is likely to precipitate, lowering the creep rupture strength and also worsening the oxidation resistance, so W
limited to less than

Maは一部γ′にも固溶するが、主としてγ相に固溶し
てγ相を強化するので最低3%は必要であるが、過度の
添加はα−Mo相を生じてクリープIll断強度を低下
させるため、3〜6%に限定する。望ましくは3,5〜
5.5%である。
Although a part of Ma also forms a solid solution in γ', it mainly dissolves in the γ phase and strengthens the γ phase, so a minimum amount of 3% is necessary; however, excessive addition may cause an α-Mo phase and lead to creep breakdown. In order to reduce the strength, it is limited to 3 to 6%. Preferably 3.5~
It is 5.5%.

以上述べたW、Ta、Moの3元素はそれぞれ異なった
強化作用をもつため、3元素を共に添加することが重要
である。前述のNASAIR100合金は、Wが10.
5%と高いためα−W相の析出が見られ、これを改良し
たCMSX−2合金およびCMSX−3合金はWを低め
、代わりにTaを増加することによりα−W相の析出を
抑えているが、MOが低いため固溶強化はまだ十分でな
い。同様に、ヨーロッパ特許0063511A1号、米
国特許4,402,772号に記載の合金もMo添加量
が本発明合金より低く、固溶強化は十分でない。また、
英国特許2,159,174A号に記載の合金は、W 
十Taが16%以上であるため、α−W析出の危険性が
ある。
Since the three elements W, Ta, and Mo mentioned above have different strengthening effects, it is important to add all three elements together. The aforementioned NASA AIR 100 alloy has W of 10.
5%, precipitation of the α-W phase is observed, and the improved CMSX-2 and CMSX-3 alloys suppress the precipitation of the α-W phase by lowering W and increasing Ta instead. However, solid solution strengthening is not yet sufficient due to the low MO content. Similarly, the alloys described in European Patent No. 0063511A1 and US Pat. No. 4,402,772 also have a lower amount of Mo added than the alloy of the present invention, and do not have sufficient solid solution strengthening. Also,
The alloy described in British Patent No. 2,159,174A is W
Since ten Ta is 16% or more, there is a risk of α-W precipitation.

本発明合金はW、Ta、Moの3元素のうち特にM。The alloy of the present invention particularly contains M among the three elements W, Ta, and Mo.

の添加量を従来より高くし、各元素の添加量について詳
細に検討した結果、α−(W、Mo)等の有害相を生じ
ない範囲でγ、γ′相の固溶強化を最大としたものであ
る。
As a result of a detailed study of the amount of each element added, we maximized the solid solution strengthening of the γ and γ′ phases without producing harmful phases such as α-(W, Mo). It is something.

Hfは、例えば米国特許第4,116,723号に開示
される単結晶合金においては、特に添加が必要でないと
されている。これに対して本発明において、Hfは耐酸
化性を改善するための重要な元素であり、積極的に添加
されるべきである。適正な量のHfの添加によりクリー
プ融断特性を低下させることなく耐酸化性を大幅に改善
できることが見出された。I−t fはその効果を得る
ため最低0.01%必要であるが、過度の添加は合金の
融点を下げるため固溶化処理温度を十分高くすることが
できず、共晶γ′相を固溶させることが困難であると共
に、組織を不安定にしクリープ破断強度を低下させるた
め0.01〜0.30%に限定する。望ましくは、0.
05〜0.25%である。
It is said that addition of Hf is not particularly necessary in the single crystal alloy disclosed in, for example, US Pat. No. 4,116,723. On the other hand, in the present invention, Hf is an important element for improving oxidation resistance and should be actively added. It has been found that by adding an appropriate amount of Hf, oxidation resistance can be significantly improved without deteriorating creep-fusion properties. I-t f is required at least 0.01% to obtain this effect, but excessive addition lowers the melting point of the alloy, making it impossible to raise the solution treatment temperature sufficiently, and solidifying the eutectic γ' phase. Since it is difficult to dissolve and also makes the structure unstable and lowers the creep rupture strength, it is limited to 0.01 to 0.30%. Preferably, 0.
05-0.25%.

COは、米国特許第4.1.16,723号(Al 1
oy444)に上れば、TCP相と呼ばれる有害相を形
成し易いため、不純物レベル以下に抑えられている。し
かしながら、G Oはその添加量を適正にし、かつCo
以外の元素の添加量を注意深く限定すれば、、TCI)
相の生成が防止できるだけでなく、Hfと共に適正量添
加することにより、耐酸化性をさらに向上させる作用を
持つことが新たに見出された。よって、本発明合金では
COはHfとの共同添加が必要で、COを0.01%以
上添加する。しかし、4%を越えて添加すると耐酸化性
はかえって悪くなるので、4%以下に限定する。望まし
くは、0.5〜3%である。
CO is described in U.S. Pat. No. 4.1.16,723 (Al 1
oy444), it tends to form a harmful phase called TCP phase, so it is kept below the impurity level. However, GO should be added in an appropriate amount and Co
If the amount of added elements other than .TCI) is carefully limited,
It has been newly discovered that it not only prevents the formation of phases, but also has the effect of further improving oxidation resistance by adding an appropriate amount together with Hf. Therefore, in the alloy of the present invention, CO needs to be added together with Hf, and 0.01% or more of CO is added. However, if it is added in an amount exceeding 4%, the oxidation resistance will deteriorate, so it is limited to 4% or less. Desirably, it is 0.5 to 3%.

なお、前述のCMSX−3合金はCMSX−2合金に少
量のHfを添加した合金であるが、COが4%以上であ
るため耐酸化性はまだ十分ではない。同様に米国特許4
,402,772号に記載の合金にもHfが添加されて
いるが、COが4%以上であるため、耐酸化性は十分で
ないと思われる。
Note that the above-mentioned CMSX-3 alloy is an alloy in which a small amount of Hf is added to the CMSX-2 alloy, but since the CO content is 4% or more, the oxidation resistance is still not sufficient. Similarly, US Patent 4
Although Hf is also added to the alloy described in No. 402,772, since the CO content is 4% or more, the oxidation resistance is considered to be insufficient.

なお、従来の単結晶合金にはTiが添加されていること
が多い。Tiはγ′相に固溶し、γ′相の形成ならびに
固溶強化に役立つが、共晶γ′相をつくりやすく、かつ
合金の融点を下げるため、固溶化処理温度を十分高くす
ることができず、共晶γ′相を固溶させることが困難で
ある。従って、本発明合金にはTiを無添加とした。
Note that Ti is often added to conventional single crystal alloys. Ti forms a solid solution in the γ' phase and is useful for the formation of the γ' phase and solid solution strengthening.However, in order to facilitate the formation of the eutectic γ' phase and to lower the melting point of the alloy, the solution treatment temperature must be set sufficiently high. It is difficult to form a solid solution of the eutectic γ' phase. Therefore, no Ti was added to the alloy of the present invention.

他の単結晶合金と同様、本発明合金においても、C,B
、Zr等は合金の初期溶融温度を低めるため、不純物レ
ベルに抑えることが必要である。
Similar to other single crystal alloys, the alloy of the present invention also contains C, B
, Zr, etc., lower the initial melting temperature of the alloy, and therefore need to be suppressed to an impurity level.

〔実施例〕〔Example〕

第1表に本発明合金、比較合金および従来合金の特性を
比較するために用いた試料の化学成分、各合金のクリー
プ破断時間(試験条件は表中に示す)および1100℃
で16時間加熱を10回繰り返した後の酸化減量を測定
した結果を示す。
Table 1 shows the chemical composition of the samples used to compare the properties of the inventive alloy, comparative alloy, and conventional alloy, the creep rupture time of each alloy (test conditions are shown in the table), and 1100°C
The results of measuring the oxidation loss after heating was repeated 10 times for 16 hours are shown.

単結晶試料にはそれぞれの合金に適正な次の熱処理を施
した。すなわち本発明合金および比較台金はすべて13
1O〜1345℃で4時間加熱後空冷、さらに1080
℃で5時間加熱後空冷、さらに870 ’Cで20時間
加熱後空冷の熱処理、従来合金NASAIR100は、
1320℃で4時間加熱後空冷、さらに980 ℃で5
時間加熱後空冷、さらに870℃で20時間加熱後空冷
の熱処理、従来合金CMSX−2は1316℃で4時間
加熱後空冷、さらに980℃で5時間加熱後空冷、さら
に870℃で20時間加熱後空冷、従来合金CMSX−
3は1302℃で4時間加熱後空冷、さらに980℃で
5時間加熱後空冷、さらに870℃で20時間加熱後空
冷の熱処理を行なった6 比較合金のうちNo、 1l−No、13合金はCo、
Hf以外の成分は本発明合金と同一であり、クリープ破
断強度は高いが、C01Hfを添加していないため耐酸
化性は良くない。No、14合金はW+Taが16%以
上のためクリープ破断強度はあまり高くなく、耐酸化性
も悪い、 No、15、No、16合金はCoが4%以
上のため耐酸化性が悪い。No、17〜No、20合金
はW、Ta、Moのうち1つ以上が本発明合金の成分範
囲をはずれており、クリープ破断強度は本発明合金より
大幅に低い。また従来合金(Alloy444のデータ
は、米国特許4.]16,723号から引用したもの)
も本発明合金に比ベクリープ敏断強度、耐酸化性共大幅
に低い値を示す。
The single crystal samples were subjected to the following heat treatments appropriate for each alloy. That is, the alloy of the present invention and the comparative base metal are all 13
After heating at 10 to 1345℃ for 4 hours, air cooling and further heating to 1080℃.
The conventional alloy NASA AIR 100 was heated at 870'C for 5 hours and then air cooled, and then heated at 870'C for 20 hours and then air cooled.
After heating at 1320℃ for 4 hours, air cooling, and then heating at 980℃ for 5 hours.
The conventional alloy CMSX-2 is heated at 1316°C for 4 hours, then air cooled, then heated at 980°C for 5 hours, air cooled, and further heated at 870°C for 20 hours. Air-cooled, conventional alloy CMSX-
3 was heated at 1302°C for 4 hours and then air cooled, further heated at 980°C for 5 hours and then air cooled, and further heated at 870°C for 20 hours and air cooled. 6 Among the comparative alloys, No, 1l-No, and 13 alloys were Co ,
The components other than Hf are the same as the alloy of the present invention, and the creep rupture strength is high, but the oxidation resistance is poor because no C01Hf is added. The No. 14 alloy has a W+Ta content of 16% or more, so its creep rupture strength is not very high, and its oxidation resistance is poor. The No. 15, No. 16 alloy has a Co content of 4% or more, so its oxidation resistance is poor. In alloys No. 17 to No. 20, one or more of W, Ta, and Mo is outside the composition range of the alloy of the present invention, and the creep rupture strength is significantly lower than that of the alloy of the present invention. Also, conventional alloys (data for Alloy 444 are taken from U.S. Pat. No. 4.] 16,723)
The alloys of the present invention also exhibit significantly lower creep strength and oxidation resistance than the alloys of the present invention.

これに対し本発明台金はクリープ破断強度、耐酸化性共
にすぐれていることが明らかである。
In contrast, it is clear that the base metal of the present invention has excellent creep rupture strength and oxidation resistance.

〔発明の効果〕 以上のようシこ、本発明合金は既存合金に比べて優れた
クリープ破断強度および耐酸化性を有するため、ガスタ
ービンブレードに用いてその効率向上に大きく寄与する
ものである。
[Effects of the Invention] As described above, since the alloy of the present invention has superior creep rupture strength and oxidation resistance compared to existing alloys, it can be used in gas turbine blades and greatly contributes to improving the efficiency thereof.

Claims (1)

【特許請求の範囲】 1 重量%にてCr4〜9%、Al4〜6.5%、W5
〜8.5%、Ta5〜8.5%、Mo3〜6%、Hf0
.01〜0.30%、Co0.01〜4%、残部Niお
よび不純物からなり、かつW+Taが16%未満である
ことを特徴とする単結晶Ni基超耐熱合金。 2 重量%にてCr4.5〜8.5%、Al4〜6%、
W5.5〜8.2%、Ta5.5〜8.2%、Mo3.
5〜5.5%、Hf0.05〜0.25%、Co0.5
〜3%、残部Niおよび不純物からなり、かつW+Ta
が16%未満であることを特徴とする単結晶Ni基超耐
熱合金。
[Claims] 1% by weight: Cr4-9%, Al4-6.5%, W5
~8.5%, Ta5~8.5%, Mo3~6%, Hf0
.. 1. A single-crystal Ni-based super heat-resistant alloy comprising 0.01 to 0.30% Co, 0.01 to 4% Co, the balance Ni and impurities, and W+Ta less than 16%. 2% by weight Cr4.5-8.5%, Al4-6%,
W5.5-8.2%, Ta5.5-8.2%, Mo3.
5-5.5%, Hf0.05-0.25%, Co0.5
~3%, the balance consists of Ni and impurities, and W+Ta
1. A single-crystal Ni-based super heat-resistant alloy, characterized in that the amount is less than 16%.
JP1030172A 1988-05-17 1989-02-09 Single crystal Ni-based super heat resistant alloy Expired - Fee Related JP2552351B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1030172A JP2552351B2 (en) 1988-05-17 1989-02-09 Single crystal Ni-based super heat resistant alloy
GB8911169A GB2220422B (en) 1988-05-17 1989-05-16 Heat resistant single-crystal nickel-base super alloy
US07/469,740 US4976791A (en) 1988-05-17 1990-01-19 Heat resistant single crystal nickel-base super alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-120023 1988-05-17
JP12002388 1988-05-17
JP1030172A JP2552351B2 (en) 1988-05-17 1989-02-09 Single crystal Ni-based super heat resistant alloy

Publications (2)

Publication Number Publication Date
JPH02138431A true JPH02138431A (en) 1990-05-28
JP2552351B2 JP2552351B2 (en) 1996-11-13

Family

ID=26368470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1030172A Expired - Fee Related JP2552351B2 (en) 1988-05-17 1989-02-09 Single crystal Ni-based super heat resistant alloy

Country Status (3)

Country Link
US (1) US4976791A (en)
JP (1) JP2552351B2 (en)
GB (1) GB2220422B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916382A (en) * 1992-03-09 1999-06-29 Hitachi, Ltd. High corrosion resistant high strength superalloy and gas turbine utilizing the alloy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443789A (en) * 1992-09-14 1995-08-22 Cannon-Muskegon Corporation Low yttrium, high temperature alloy
CA2440573C (en) * 2002-12-16 2013-06-18 Howmet Research Corporation Nickel base superalloy
US8216509B2 (en) 2009-02-05 2012-07-10 Honeywell International Inc. Nickel-base superalloys
US20100329921A1 (en) * 2009-06-30 2010-12-30 Joshua Leigh Miller Nickel base superalloy compositions and superalloy articles
CN111433378B (en) * 2017-11-29 2021-10-08 日立金属株式会社 Ni-based alloy for hot die, hot forging die using same, and method for producing forged product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864331A (en) * 1981-09-19 1983-04-16 ロ−ルス・ロイス・ピ−エルシ− Alloy suitable for manufacture of single crystal casted article and casted article therefrom

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526499A (en) * 1967-08-22 1970-09-01 Trw Inc Nickel base alloy having improved stress rupture properties
GB1260982A (en) * 1970-06-08 1972-01-19 Trw Inc Improvements in or relating to nickel base alloys
US4209348A (en) * 1976-11-17 1980-06-24 United Technologies Corporation Heat treated superalloy single crystal article and process
US4116723A (en) * 1976-11-17 1978-09-26 United Technologies Corporation Heat treated superalloy single crystal article and process
FR2374427A1 (en) * 1976-12-16 1978-07-13 Gen Electric PERFECTED NICKEL-BASED ALLOY AND CAST PART OBTAINED FROM THIS ALLOY
US4222794A (en) * 1979-07-02 1980-09-16 United Technologies Corporation Single crystal nickel superalloy
EP0052911B1 (en) * 1980-11-24 1985-09-18 Cannon-Muskegon Corporation Single crystal (single grain) alloy
FR2503188A1 (en) * 1981-04-03 1982-10-08 Onera (Off Nat Aerospatiale) MONOCRYSTALLINE SUPERALLIAGE WITH MATRIX MATRIX BASED ON NICKEL, PROCESS FOR IMPROVING WORKPIECES IN THIS SUPERALLIATION AND PARTS OBTAINED THEREBY
US4402772A (en) * 1981-09-14 1983-09-06 United Technologies Corporation Superalloy single crystal articles
JPS59190342A (en) * 1983-04-08 1984-10-29 キヤノン−マスキ−ガン・コ−ポレイシヨン Single crystal alloy
GB2159174A (en) * 1984-05-25 1985-11-27 Rolls Royce A nickel-base alloy suitable for making single-crystal castings
JPS62116748A (en) * 1985-11-18 1987-05-28 Hitachi Metals Ltd Superheat resistant single crystalline ni alloy
JPH0765134B2 (en) * 1986-06-11 1995-07-12 日立金属株式会社 Single crystal Ni-based super heat resistant alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864331A (en) * 1981-09-19 1983-04-16 ロ−ルス・ロイス・ピ−エルシ− Alloy suitable for manufacture of single crystal casted article and casted article therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916382A (en) * 1992-03-09 1999-06-29 Hitachi, Ltd. High corrosion resistant high strength superalloy and gas turbine utilizing the alloy

Also Published As

Publication number Publication date
GB8911169D0 (en) 1989-07-05
JP2552351B2 (en) 1996-11-13
GB2220422A (en) 1990-01-10
GB2220422B (en) 1991-06-26
US4976791A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
JP5278936B2 (en) Heat resistant superalloy
JP4995570B2 (en) Nickel base alloy and heat treatment method of nickel base alloy
US7169241B2 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JP3184882B2 (en) Ni-based single crystal alloy and method for producing the same
JP3814662B2 (en) Ni-based single crystal superalloy
JPH0561337B2 (en)
JP3902714B2 (en) Nickel-based single crystal superalloy with high γ &#39;solvus
JPH0245694B2 (en)
JPH0297634A (en) Ni base superalloy and its manufacture
JP5235383B2 (en) Ni-based single crystal alloy and casting
JPWO2008111585A1 (en) Ni-based single crystal superalloy and turbine blade using the same
TWI248975B (en) Nickel-base superalloy for high temperature, high strain application
EP2612935A2 (en) Low rhenium single crystal superalloy for turbine blades and vane applications
US20030075247A1 (en) Ni-based single crystal super alloy
JP2005097650A (en) Ni-BASED SUPERALLOY
JP6267890B2 (en) Ni-base cast superalloy and casting made of the Ni-base cast superalloy
JPH02138431A (en) Single crystal ni-base super heat resistant alloy
JP2905473B1 (en) Method for producing Ni-based directionally solidified alloy
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JP2546324B2 (en) Ni-based single crystal superalloy with excellent high temperature corrosion resistance
JPS62116748A (en) Superheat resistant single crystalline ni alloy
JP2787946B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees