JPH02137774A - Production of sintered ceramics - Google Patents

Production of sintered ceramics

Info

Publication number
JPH02137774A
JPH02137774A JP63288320A JP28832088A JPH02137774A JP H02137774 A JPH02137774 A JP H02137774A JP 63288320 A JP63288320 A JP 63288320A JP 28832088 A JP28832088 A JP 28832088A JP H02137774 A JPH02137774 A JP H02137774A
Authority
JP
Japan
Prior art keywords
sintered body
ceramic
dense film
pressure
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63288320A
Other languages
Japanese (ja)
Inventor
Toshikazu Moriguchi
敏和 森口
Fumio Hatakeyama
文夫 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63288320A priority Critical patent/JPH02137774A/en
Publication of JPH02137774A publication Critical patent/JPH02137774A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sliding part having excellent reliability and abrasion resistance by forming a dense film on a presintered ceramic material with a material same to or different from the ceramic material and subjecting the coated material to hot hydrostatic treatment. CONSTITUTION:A dense film is applied to the surface of a presintered ceramic containing SiC, etc., by CVD(Chemical Vapor Deposition) process or ion planing PVD(Physical Vapor Deposition) process of a raw material such as SiCl4 or CH4. The coated material produced by this process is subjected to hot hydrostatic treatment at about 2000 deg.C under a pressure of about 2000kg/cm<2> to produce the objective sintered ceramic material having sufficiently densified texture both at the core part and the surface part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックス焼結体の製造方法に関り、更に詳
しくは信頼性、耐摩耗特性に優れた緻密なセラミックス
焼結体を熱間静水圧処理(HotIsostatic 
Pressing、以下略してHIP処理という)によ
って得る方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a ceramic sintered body, and more specifically, a method for producing a dense ceramic sintered body with excellent reliability and wear resistance by hot static heating. Hydraulic treatment (HotIsostatic)
Pressing (hereinafter abbreviated as HIP processing).

(従来の技術) セラミックス予備焼結体等の被成形物をより高密度に焼
結する方法にいわゆるホウドブレス法があるが、このホ
ットプレス法では一方向のみしか加圧されない為に、焼
結体の構成粒子に配向性を生じる。すなわち、焼結体に
おいてホットプレス焼結時の加圧方向に垂直な面と平行
な面とでは機械的、物理的性質が異なるという欠点があ
った。
(Prior art) The so-called hot press method is a method for sintering objects to be formed, such as ceramic pre-sintered bodies, to a higher density. However, since this hot press method only applies pressure in one direction, gives an orientation to the constituent particles. That is, there is a drawback that the mechanical and physical properties of the sintered body are different between a plane perpendicular to the pressing direction during hot press sintering and a plane parallel to it.

そこでこの焼結体の異方性をなくす焼結方法として発達
してきたのが気体(主として不活性ガス)を圧力媒体と
して用い、被成形物を等分圧縮を行うという方法はHt
p処理である。
Therefore, a sintering method that has been developed to eliminate this anisotropy of the sintered body is a method that uses gas (mainly inert gas) as a pressure medium and compresses the molded object in equal parts.
p treatment.

従来セラミックスにHIP処理を施し、W1密化する場
合、HIP処理前の焼結体密度に応じて2通りの方法が
とられている。その1つは被処理体か高密度焼結体の場
合であり、この場合は被処理を直接高圧ガスにより加圧
してHIP処理を行う、もう1つの方法は被処理体が特
に理論密度の96%を下回るような低密度焼結体の場合
であり、この場合は焼結体内部に開気孔が形成されてい
るため単に直接加圧すると、開気孔内にガス圧力が浸透
し、これが内部圧力として逆に働くため全く緻密化しな
いか、又は表面近くのボアーを残すことになる。このよ
うな場合セラミ・ンクス予備焼結体等の被処理体を適当
なカプセル内に封入しカプセルごと加圧してHIP処理
する方法がとられている。
Conventionally, when performing HIP treatment on ceramics to increase the W1 density, two methods have been used depending on the density of the sintered body before HIP treatment. One method is when the object to be processed is a high-density sintered body, in which case the object to be processed is directly pressurized with high-pressure gas to perform HIP treatment. In this case, open pores are formed inside the sintered body, so if pressure is applied directly, gas pressure will penetrate into the open pores, which will increase the internal pressure. This works in the opposite way, resulting in either no densification or leaving a bore near the surface. In such cases, a method is used in which the object to be processed, such as a pre-sintered body of ceramic inx, is encapsulated in a suitable capsule and the capsule is pressurized to perform HIP treatment.

(発明が解決しようとする課8) カプセル弐〇IPのカプセルは通常ガラスが使用されて
いる。HIP処理温度がカプセル材質の融点以下である
場合は問題とはならないが例えば炭化ケイ素のように高
温度でのHIP処理が必要となる場合、適当なカプセル
材がない、HIP処理を施す場合1通常ルツボ内にセラ
ミックス予備焼結体等の被処理体を入れ、間にガラスを
充填し2溶融したガラス内に埋没した状態で加圧を行う
のが一般的である。このような場合、形状、寸法に制約
を生じ、場合によってはカプセル材と被処理体との反応
やカプセル材の被処理体内部への侵入等が問題となり期
待される焼結体が得られ難い、このような低密度のセラ
ミックス予備焼結体の場合にも有効なHIP処理する方
法を提供するのが本発明の目的である。
(Question 8 to be solved by the invention) Capsule 2 Glass is usually used for IP capsules. This is not a problem if the HIP treatment temperature is below the melting point of the capsule material, but if HIP treatment is required at a high temperature, such as silicon carbide, there is no suitable capsule material, and if HIP treatment is performed 1. Generally, an object to be processed, such as a pre-sintered ceramic body, is placed in a crucible, glass is filled between the crucible, and pressure is applied while the object is buried in the molten glass. In such cases, there are restrictions on the shape and dimensions, and in some cases, there may be problems such as reactions between the encapsulant and the object to be processed, or penetration of the encapsulant into the object to be processed, making it difficult to obtain the expected sintered body. It is an object of the present invention to provide an effective HIP treatment method even for such low-density ceramic presintered bodies.

〔課題を解決するための手段〕[Means to solve the problem]

本件発明者は上記の目的を達成するため鋭意研究を行っ
た結果、従来のカプセルに代えて、セラミックス予備焼
結体の表面に緻密な膜を形成させてHIP処理を行うと
全体が均一で緻密な焼結体が得られることを発見して本
件発明を完成させた。
As a result of intensive research to achieve the above object, the inventor of the present invention has found that, instead of using conventional capsules, a dense film is formed on the surface of a ceramic pre-sintered body and HIP treatment is performed to make the whole body uniform and dense. The present invention was completed by discovering that it is possible to obtain a sintered body.

すなわち本件発明の要旨は、セラミックス予備焼結体の
表面に同一又は異種の材質で緻密な膜を形成させ熱間静
水圧処理することを特徴とするセラミックス焼結体の製
造方法にある。
That is, the gist of the present invention resides in a method for producing a ceramic sintered body, which is characterized by forming a dense film of the same or different materials on the surface of the ceramic pre-sintered body and subjecting it to hot isostatic pressure treatment.

セラミックス予備焼結体の密度が十分でない場合では予
備焼結体の内部に開気孔が存在し。
If the density of the ceramic pre-sintered body is not sufficient, open pores will exist inside the pre-sintered body.

開気孔が完全に連結しているとカプセルフリー弐〇IP
処理では全く緻密化しない。また完全に連結していない
場合でも焼結体内部で生ずる圧力損失に応じて表面から
数10g■〜数■−の深さまでガスが侵入し、内部は緻
密化するが表面部のボアーはガスの侵入によりむしろ拡
大する。
Capsule-free 2〇IP when open pores are completely connected
The processing does not densify it at all. In addition, even if the sintered body is not completely connected, gas will penetrate from the surface to a depth of several tens of grams to several grams depending on the pressure loss that occurs inside the sintered body, and the interior will become dense, but the bores on the surface will not allow gas to penetrate. Rather, it expands through invasion.

これに対して本発明の予備焼結体の表面に緻密な膜を形
成すると焼結体内へのガスの侵入が阻止されるため低密
度の焼結体でも均一に緻密化が生じ表面にボアーを残さ
ない。
On the other hand, when a dense film is formed on the surface of the pre-sintered body of the present invention, gas infiltration into the sintered body is prevented, so even a low-density sintered body is uniformly densified and bores are formed on the surface. I won't leave anything behind.

本発明において予備焼結体の表面に形成させる膜は予備
焼結体の材質と異なる材質のものであっても良いが、同
一材質の膜の方が好ましく、この場合はガラスカプセル
の場合のような母材との反応による表面劣化の問題が生
じない。
In the present invention, the film formed on the surface of the pre-sintered body may be made of a material different from that of the pre-sintered body, but it is preferable that the film is made of the same material, and in this case, as in the case of a glass capsule, There is no problem of surface deterioration due to reaction with the base material.

膜を形成する方法は上記の問題を考慮しつつCV D 
(Chemical Vapor Depositio
n )法、pvD (Physical Vapor 
Deposition )法、溶射法等を考慮しつつ行
う0例えば直流法、高周波法、クラスタイオンビーム法
、熱陰極法、ARE法、プラズマ電子ビーム法(HCD
)、アーク放電型高真空法などのイオンプレーティング
法、真空蒸着法、スパッタリング法などのPVD法やプ
ラズマ法、減圧法、常圧法などのCVD法であるが、と
りわけイオンプレーティングPVD法又はCVD法が好
ましい。
The method of forming the film is CVD, taking into account the above problems.
(Chemical Vapor Depositio
n) method, pvD (Physical Vapor
For example, direct current method, high frequency method, cluster ion beam method, hot cathode method, ARE method, plasma electron beam method (HCD method)
), ion plating methods such as arc discharge type high vacuum method, PVD methods such as vacuum evaporation method and sputtering method, and CVD methods such as plasma method, reduced pressure method, and normal pressure method, but especially ion plating PVD method or CVD method. law is preferred.

以下実施例を挙げて本発明をさらに詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

(実施例) 炭化ケイ素にホウ素粉末0.15重量%、アルミニウム
粉末0.5重量%、カーボン粉末2.0重量%添加し1
900°C,1時間常圧焼結した。得られた焼結体の密
度は3.06g / c m”であった。この焼結体表
面に5iCI4およびCH4を原料としてCVD法にて
SiCの膜をコーティングした。これを2000℃、2
000kg/ c rn”でHIP処理した。得られた
焼結体の鏡面を顕微鏡て観察したところHIP処理前と
比較すると中心部および表面部とも十分W1密化してい
るのが観察された。
(Example) 0.15% by weight of boron powder, 0.5% by weight of aluminum powder, and 2.0% by weight of carbon powder were added to silicon carbide.
Normal pressure sintering was performed at 900°C for 1 hour. The density of the obtained sintered body was 3.06 g/cm''.A SiC film was coated on the surface of this sintered body by CVD using 5iCI4 and CH4 as raw materials.
When the mirror surface of the obtained sintered body was observed under a microscope, it was observed that the W1 density was sufficiently increased in both the center and the surface area when compared to before the HIP treatment.

(比較例) 実施例と同様の手順で作成した炭化ケイ素常圧焼結体を
CVD1liをコーティングすることな〈実施例と同一
条件てHIP処理を施した。得られた焼結体の鏡面組織
を顕微鏡で観察したところ中心部はHIP処理により緻
密化しているが表面部はガスの侵入によりボアーがむし
ろ拡大しているのが観察された。
(Comparative Example) A pressureless sintered silicon carbide body prepared in the same manner as in the example was subjected to HIP treatment under the same conditions as in the example without coating with CVD1li. When the specular structure of the obtained sintered body was observed under a microscope, it was observed that the center part was densified by the HIP treatment, but the bores in the surface part were rather enlarged due to the intrusion of gas.

(発明の効果) セラミックスの大型部材を製造する場合、小型の試験片
と異なり、密度は上がりにくい。しかもこのような大型
部材をカプセル方式によりHIP処理することは困難で
ある。一方コーティング膜によれば被)IIP処理部材
の大きさ、形状によらず均一に1![化が可能となる。
(Effect of the invention) When manufacturing a large ceramic member, unlike a small test piece, it is difficult to increase the density. Furthermore, it is difficult to perform HIP processing on such a large member using the capsule method. On the other hand, according to the coating film, 1! [It becomes possible to

また、摺動部材として利用する場合は、特に表面状態が
問題となる。単なるコーティングによる表面改質では、
使用中にコーテイング膜の剥離の問題が生じるがHIP
処理を施し母材そのものをffi密化することにより信
頼性の高い摺動部材が得られる。
Furthermore, when used as a sliding member, the surface condition becomes a particular problem. Surface modification by mere coating
There is a problem with the coating film peeling off during use, but HIP
By applying the treatment to make the base material itself ffi dense, a highly reliable sliding member can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 1.セラミックス予備焼結体の表面に同一又は異種の材
質で緻密な膜を形成させ熱間静水圧処理することを特徴
とするセラミックス焼結体の製造方法。
1. A method for producing a ceramic sintered body, which comprises forming a dense film of the same or different materials on the surface of a pre-sintered ceramic body and subjecting it to hot isostatic pressure treatment.
2.緻密な膜の形成方法がCVD法又はイオンプレーテ
ィングPVD法である請求項1記載のセラミックス焼結
体の製造方法。
2. 2. The method for producing a ceramic sintered body according to claim 1, wherein the method for forming the dense film is a CVD method or an ion plating PVD method.
JP63288320A 1988-11-15 1988-11-15 Production of sintered ceramics Pending JPH02137774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288320A JPH02137774A (en) 1988-11-15 1988-11-15 Production of sintered ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288320A JPH02137774A (en) 1988-11-15 1988-11-15 Production of sintered ceramics

Publications (1)

Publication Number Publication Date
JPH02137774A true JPH02137774A (en) 1990-05-28

Family

ID=17728654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288320A Pending JPH02137774A (en) 1988-11-15 1988-11-15 Production of sintered ceramics

Country Status (1)

Country Link
JP (1) JPH02137774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469130A (en) * 1992-11-27 1995-11-21 Murata Mfg. Co., Ltd. High frequency parallel strip line cable comprising connector part and connector provided on substrate for connecting with connector part thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469130A (en) * 1992-11-27 1995-11-21 Murata Mfg. Co., Ltd. High frequency parallel strip line cable comprising connector part and connector provided on substrate for connecting with connector part thereof

Similar Documents

Publication Publication Date Title
US4955135A (en) Method of making matrix composites
EP0131884A3 (en) Refractory electrically conductive materials, and method of making the same by isostatic hot-pressing
US3725110A (en) Process of coating articles with pyrolytic graphite and coated articles made in accordance with the process
JPH02243572A (en) Ceramic composite
JPH02137774A (en) Production of sintered ceramics
JPS61295371A (en) Production of aluminum material having aluminum nitride layer
US5441764A (en) Method of manufacturing a compound body and the resulting body
JP3370800B2 (en) Manufacturing method of composite material
JP3472993B2 (en) Sputtering target for forming indium tin oxide film and method for producing the same
JPS6137230B2 (en)
KR100292247B1 (en) Method for increasing strength of zirconia sintered body by surface modificaticon
JP3830302B2 (en) Nitride ceramic firing jig
JPS5815082A (en) Manufacture of silicon nitride tip for cutting tool
JPH03136846A (en) Preparation of heat-resistant and abrasion-resistant member
JPS6228917A (en) Slider for thin film magnetic head and its production
JPH0683890B2 (en) Method for manufacturing wear resistant member for molding machine
JPH02311376A (en) Production of sintered material by hot isotropic pressurizing treatment
JPH06122579A (en) Production of article coated with glassy carbon
JPS61141678A (en) Manufacture of fiber reinforced ceramic shell structure part
JPS5937748B2 (en) Method for forming sulfide thin film
JP2545731B2 (en) Method for producing intermetallic compound-coated composite by vapor phase method
JP2612300B2 (en) Method of modifying plasma sprayed ceramic coating
JPH02267254A (en) Hot hydrostatic pressurizing method using low-pressure plasma thermal spraying
JPS61256979A (en) Manufacture of silicon nitride sintered body
JPH01286981A (en) Production of gradient functional material