JPH02136737A - Evaluating method for remaining service life of high temperature apparatus parts - Google Patents

Evaluating method for remaining service life of high temperature apparatus parts

Info

Publication number
JPH02136737A
JPH02136737A JP29079288A JP29079288A JPH02136737A JP H02136737 A JPH02136737 A JP H02136737A JP 29079288 A JP29079288 A JP 29079288A JP 29079288 A JP29079288 A JP 29079288A JP H02136737 A JPH02136737 A JP H02136737A
Authority
JP
Japan
Prior art keywords
width
hardness
repetitions
ratio
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29079288A
Other languages
Japanese (ja)
Inventor
Toru Goto
徹 後藤
Takashi Konishi
隆 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29079288A priority Critical patent/JPH02136737A/en
Publication of JPH02136737A publication Critical patent/JPH02136737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To predict with high accuracy a fatigue crack generation service life in high temperature apparatus parts by evaluating a fatigue remaining service life by using an X-ray diffracting method or a hardness measurement. CONSTITUTION:First of all, the inspection surface is formed on a surface layer of high temperature apparatus parts to be inspected. By irradiating this inspection surface with an X-ray, width at half max. from its diffraction line or a distribution of hardness is derived at the time point of the number of repetitions N1, N2. Subsequently, based on the drived width at half max. or hardness, a width at half max. ratio to initial width at half max. or a hardness ratio to initial hardness is derived at the time point of the number of repetitions N1, N2. Next, a rate of change beta of the width at half max. ratio or the hardness ratio between the number of repetitions N1, N2 derived by them is derived. Thereafter, the number of repetitions NC by which a microcrack is generated and a crack propagation speed da/dN (a and N denote a distance from the surface to the tip of a crack and length of the crack, and the number of repetions, respectively) are derived from an expression I and an expression II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸気タービンの高温ロータ等の高温機器部品の
疲労余寿命評価を、X線回折法あるいは硬さ測定を用い
て行う余寿命評価方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for evaluating the remaining fatigue life of high-temperature equipment parts such as a high-temperature rotor of a steam turbine using X-ray diffraction or hardness measurement. Regarding.

[従来の技術] 従来、X線回折法による疲労検出及び余寿命の評価法の
研究は歴史が古く、例えば、日本機械学会論文集〔平田
・本田、 2B (1’1132) 4582)に記載
されている。第10図および第11図は上記論文に示さ
れている内容を説明するための図であり、第10図はX
線回折法により求めたX線回折強度と回折角2θの関係
を示している。第10図において、X線回折強度曲線H
の半価幅(強度曲線のピークの1/2高さにおける回折
角2θの幅)を測定するものである。
[Prior Art] Research on fatigue detection and remaining life evaluation methods using X-ray diffraction has a long history, for example, as described in the Proceedings of the Japan Society of Mechanical Engineers [Hirata and Honda, 2B (1'1132) 4582]. ing. Figures 10 and 11 are diagrams for explaining the contents shown in the above paper, and Figure 10 is
It shows the relationship between the X-ray diffraction intensity and the diffraction angle 2θ determined by the line diffraction method. In FIG. 10, the X-ray diffraction intensity curve H
The half width (the width of the diffraction angle 2θ at 1/2 height of the peak of the intensity curve) is measured.

第11図は数多くの実験から、横軸に破断繰返し数N 
1繰返し数をNとしたときの繰返し数比N / N r
にとり、また縦軸にX線回折線の広がりb(第10図の
半価幅で表示されることが多い)と疲労試験前のBとの
半価幅比b/Bをとったものである。この図から明らか
なように繰返し応力の大小によらず、はぼ−本の線で近
似されることがわかる。
Figure 11 shows the number of rupture cycles N on the horizontal axis based on numerous experiments.
Repetition number ratio N / N r when 1 repetition number is N
In addition, the vertical axis is the half-width ratio b/B between the spread b of the X-ray diffraction line (often expressed as the half-width in Figure 10) and B before the fatigue test. . As is clear from this figure, regardless of the magnitude of the repeated stress, it can be approximated by a straight line.

ただし、その関係は材料に依存し、第11図(a)は、
焼なました炭素鋼の例であり、これは繰返し数比N/N
rの増加に伴って半価幅比b/Bが増加する場合である
。第11図(b)は塑性加工をあらかじめ与えた炭素鋼
の例であり、これは繰返し数比N/N rの増加に伴っ
て半価幅比b/Bが減少する場合である。
However, the relationship depends on the material, and Fig. 11(a) shows that
An example of annealed carbon steel, which has a repetition rate of N/N
This is a case where the half width ratio b/B increases as r increases. FIG. 11(b) is an example of carbon steel that has been previously subjected to plastic working, in which the half width ratio b/B decreases as the repetition rate ratio N/N r increases.

以上のような論文の考え方を発展させて検査すべき部品
の破断を寿命として残余寿命が求められるようにしたも
のが特開昭56−87849号公報(以下公知例と称す
)に示されている。第12図〜第17図はその公知例を
説明するためのもので、第12図は前述した論文から残
余寿命と半価幅比との関係を求めたもので、横軸に残余
寿命N 、縦+B−bl 軸に     かとってあり、X’ 、Y’およびZ′
はそれぞれ、応力振幅がσ 、σ およびσ3の場合を
示している。第1企図は、残余寿命が短い範囲、すなわ
ち、成る程度の応力繰返しの行なわれた後においては、
応力振幅の値が変って−b も  8  の値がほぼ一定となることを示して−b おり、このことは、   8  をA11J定して残余
寿命の余地が可能なことを示している。このようなり−
b 1 残余寿命と     との関係をあらかじめ求めてマス
ターカーブを作っておくことによって、残余寿命を測定
できる。
JP-A-56-87849 (hereinafter referred to as the known example) shows a method that develops the idea of the above paper and calculates the remaining life using the fracture of the part to be inspected as the life. . Figures 12 to 17 are for explaining known examples, and Figure 12 shows the relationship between the remaining life and the half-width ratio obtained from the above-mentioned paper, and the horizontal axis shows the remaining life N, It is on the vertical +B-bl axis, and X', Y' and Z'
show cases where the stress amplitudes are σ, σ, and σ3, respectively. The first idea is that in a range where the remaining life is short, that is, after a certain number of stress cycles have been carried out,
It is shown that the value of -b also becomes almost constant as the value of the stress amplitude changes, which indicates that it is possible to set A11J for 8 and have a margin for the remaining life. It goes like this-
b 1 The remaining life can be measured by determining the relationship between the remaining life and and creating a master curve in advance.

第13図は、そのマスターカーブのそれを示したもので
、例えば5FA55旋削加工材に対するもので、横軸に
残余寿命N 、縦軸に半価幅比−b B  がとってあり、黒丸は10φ、白丸は20φの試
料について得られたものである。このように、熱処理条
件、加工条件によって、マスターカーブは異なるので、
各々の場合についてマスターカーブを求めて゛お(。そ
して、例えばコンピュータに被検試料の測定半価幅を被
検試料のマスターカーブと比較するようにプログラムを
与えておけば、被検試料の残余寿命は、第13図のマス
ターカーブから求められることになる。例えば、旋削加
工した5FA55を用いた機械部品では、第13図から
半価幅比が、例えば0.1であれば、残余寿命は約10
5サイクル、半価幅比が0.04であれば、残余寿命は
約3×106サイクルと予知される。
Figure 13 shows the master curve, for example, for 5FA55 turned material.The horizontal axis shows the remaining life N, the vertical axis shows the half-width ratio -bB, and the black circle is 10φ. , white circles are those obtained for a 20φ sample. In this way, the master curve differs depending on the heat treatment conditions and processing conditions, so
Find a master curve for each case (and, for example, by giving a program to a computer to compare the measured half-width of the test sample with the master curve of the test sample, you can calculate the remaining lifetime of the test sample. can be found from the master curve in Fig. 13.For example, in a machine part using 5FA55 that has been turned, if the half-width ratio is, for example, 0.1 from Fig. 13, the remaining life is approximately 10
If it is 5 cycles and the half width ratio is 0.04, the remaining life is predicted to be approximately 3×10 6 cycles.

第14図は繰返し数と半価幅との間の関係を示すもので
ある。この図の横軸、縦軸には、それぞれ、繰返し数Ω
ogN、半価幅すとがとってあり、E、Fはそれぞれ加
工材、焼なまし材の場合を示しており、繰返し数Ωog
Nと半価幅すとの間にはb −AN ogN + B 
      −−−・−(2)の関係が成り立ち、半価
幅変化率IAIと破断繰返し数N、との関係は焼なまし
材、加工材に依らず一本の線で表わすことができる。
FIG. 14 shows the relationship between the number of repetitions and the half width. The horizontal and vertical axes of this figure show the number of repetitions Ω, respectively.
ogN, the half width is taken, E and F indicate the case of processed material and annealed material respectively, and the number of repetitions Ωog
Between N and half width is b −AN ogN + B
The relationship (2) holds true, and the relationship between the half width change rate IAI and the number of rupture cycles N can be expressed by a single line regardless of whether the material is annealed or processed.

第15図は破断繰返し数Nrと疲労過程中の半価幅変化
率IAIとの関係を示すもので、5FA55焼なまし材
および旋削材について求めたものである。第15図を利
用して残余寿命N を予知する場合には、ある繰返し数
N1において半価幅b1をal1定し、ある程度間隔を
おいた繰返し数N において半価幅b2を/l1ll定
し、半価幅変化率A−(b  −b2) / (N o
gNl−ΩogN 2 )を求め、第15図を用いて破
断繰返し数N1を求めることかでき、N2における残余
寿命をNr−N、−N2として予知することができ、半
価幅変化率が0.02以下であれば負荷応力振幅は疲労
限界以下であり、残余寿命は十分あると判定することが
できる。
FIG. 15 shows the relationship between the number of rupture cycles Nr and the half-width change rate IAI during the fatigue process, which was determined for 5FA55 annealed material and turned material. When predicting the remaining life N using FIG. 15, the half-width b1 is determined by al1 at a certain number of repetitions N1, and the half-width b2 is determined by /l1ll at a certain number of repetitions N, Half width change rate A-(b-b2)/(N o
gNl-ΩogN 2 ), the number of rupture cycles N1 can be determined using FIG. 15, and the remaining life at N2 can be predicted as Nr-N, -N2, and the half-width change rate is 0. If it is less than 02, the load stress amplitude is less than the fatigue limit, and it can be determined that the remaining life is sufficient.

第16図はき裂が存在する場合の半価幅の測定位置を示
す図であり、き裂先端の測定位置で半儲−b 幅を測定し、この半価幅比     とき裂進展速度d
a/dN(ここで、aは表面からき裂先端までの距離で
、き裂長さと称し、alは、き裂長さを示している)さ
の関係を求めると、第17図の如くになる。この図の横
軸、縦軸には、き裂進展速da/ dNの広い範囲にわ
たって 但し、m、nは材料定数 の関係があることが明らかとなった。従って、ある繰返
し数Nにおいて、き裂先端の半価幅b1を測定すれば、
第17図の関係からき裂進展速度(da/ dN) 1
が求まるので、ある繰返し数の間隔をおいて数回き裂先
端の半価幅を測定すれば、き裂進展曲線を作ることがで
きる。
Fig. 16 is a diagram showing the measurement position of the half-width when a crack exists. Half-width -b is measured at the measurement position of the crack tip, and this half-width ratio is equal to the crack growth rate d.
The relationship between a/dN (where a is the distance from the surface to the crack tip and is called the crack length, and al indicates the crack length) is as shown in FIG. 17. The horizontal and vertical axes of this figure cover a wide range of crack growth rates da/dN, where m and n are clearly related to material constants. Therefore, if the half width b1 of the crack tip is measured at a certain number of repetitions N,
From the relationship shown in Figure 17, the crack growth rate (da/dN) 1
can be determined, and by measuring the half width of the crack tip several times at a certain number of repetition intervals, a crack growth curve can be created.

以上述べた従来例によれば、疲労強度が問題となる構造
物の余寿命の評価ができる。
According to the conventional example described above, it is possible to evaluate the remaining life of a structure in which fatigue strength is a problem.

なお、高温機器の疲労損傷に対しては、半価幅と硬さは
同じ挙動を示すので、前述の半価幅を硬さに、また、半
価幅比を硬さ比と置きかえても同じことが言える。
Note that half-width and hardness exhibit the same behavior when it comes to fatigue damage in high-temperature equipment, so even if the half-width described above is replaced with hardness, or the half-width ratio is replaced with hardness ratio, the results will be the same. I can say that.

[発明が解決しようとする課題] 従来、火力発電設備の多くは、長年月起動停止の少ない
運用がなされてきたが、極く最近に至って毎日発停をす
る等起動の頻繁な運転に移行している。このような場合
、次のような事を配慮して余”寿命予測をする必要があ
る。
[Problem to be solved by the invention] Traditionally, most thermal power generation facilities have been operated for many years with few monthly starts and stops, but very recently they have shifted to frequent starts and stops, such as daily starts and stops. ing. In such cases, it is necessary to estimate the remaining lifespan by considering the following points.

(1)長年の起動停止の少ない運用期間中に変化してい
る可能性もあるので、疲労前の半価幅はわからない。
(1) The half-value width before fatigue is unknown, as it may have changed over many years of operation with few startups and stops.

(2)ユニット運用は、第18図に示すように数種の起
動方式があり、起動方式に応じて応力が異り、実機はそ
の組み合7゛せで運用されている。
(2) For unit operation, there are several starting methods as shown in Fig. 18, and the stress varies depending on the starting method, and the actual unit is operated with seven combinations of these methods.

また、蒸気タービンのロータに使用されている材料とし
てCr−Mo−V鍛鋼が使用されており、これは第19
図に示すように、一定ひずみ繰返し条件下の疲労過程で
、明瞭な繰返しひずみ範囲依存性を示すと共に、 (3)小さいひずみ範囲が繰返された場合、疲労初期に
は半価幅は変化しない。
In addition, Cr-Mo-V forged steel is used as a material for the rotor of steam turbines, and this is
As shown in the figure, during the fatigue process under constant strain cyclic conditions, there is a clear dependence on the cyclic strain range, and (3) when a small strain range is repeated, the half-width does not change in the early stage of fatigue.

(4)破断に至る後半過程で半価幅は変化しない。(4) Half width does not change in the latter half of the process leading to rupture.

が認められた。was recognized.

即ち、上記(1)については、前述した公知例の第13
図の半価幅比と残余寿命を求めることは困難である。上
記公知例は使用前にBを求める必要があるが、実際に検
査を要求される実機の使用前にBは測られていない。こ
のため、使用中の現時点においてBを求める必要がある
That is, regarding (1) above, the 13th known example mentioned above
It is difficult to determine the half-width ratio and remaining life shown in the figure. In the above-mentioned known example, it is necessary to determine B before use, but B is not measured before use of the actual machine that requires actual inspection. Therefore, it is necessary to obtain B at the current point in time when the device is in use.

又、上記(4)の事象は破断に至る後半過程で半価幅は
変化しないことから第12図、第14図のようにならな
い。このため、第15図のような整理は出来ない。
Furthermore, in the event (4) above, the half-width does not change in the latter half of the process leading to fracture, so it does not occur as shown in FIGS. 12 and 14. For this reason, it is not possible to organize as shown in FIG.

一方、破断前には明らかなき裂が認められるが、寿命は
破断てはなくき裂発生時とする必要がある。
On the other hand, although clear cracks are observed before rupture, the life span must be measured at the time of crack initiation, not at rupture.

以上述べたように前述した公知例では、蒸気タービンの
ロータのように高温機器部品の疲労寿命を精度よく推定
できない。
As described above, in the above-mentioned known examples, the fatigue life of high-temperature equipment parts such as the rotor of a steam turbine cannot be accurately estimated.

このようなことから本発明では、高温機器部品における
疲労き裂発生寿命を精度よく予測できる高温機器部品の
余寿命評価方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method for evaluating the remaining life of high-temperature equipment parts, which can accurately predict the fatigue crack initiation life of high-temperature equipment parts.

[課題を解決するための手段] 本発明は上記目的を達成するため、次のようにしたもの
である。すなわち検査すべき高温機器部品の表面層に検
査面を形成する工程Aと、前記検査面にX線を照射して
その回折線からの半価幅あるいは硬さの分布を繰返し数
N  、N  の時点で求める工程Bと、この工程Bで
求めた半価幅あるいは硬さに基づき初期半価幅との半価
幅比あるいは初期硬さとの硬さ比を繰返し数N  、N
  の時点で求める工程Cと、前記工程B、Cで求めた
繰返し数N、N2の間における半価幅比あるいは■ 硬さ比の変化率βを求める工程りと、次の両式よリミク
ロ(微細)なき裂の発生する繰返し数N。
[Means for Solving the Problems] In order to achieve the above object, the present invention is as follows. That is, step A of forming an inspection surface on the surface layer of a high-temperature equipment component to be inspected, and irradiating the inspection surface with X-rays and measuring the half-width or hardness distribution from the diffraction line over a number of repetitions N and N. Based on the half-width or hardness obtained at step B, the half-width ratio between the initial half-width or the initial hardness is determined by the number of repetitions N and N.
The half-width ratio or the hardness ratio change rate β between the process C obtained at the time point and the number of repetitions N and N2 obtained in the above steps B and C, and the Rimicro ( The number of repetitions N at which microscopic cracks occur.

及びき裂伝播速度da/ dNを求める工程Eとからな
る高温機器部品の余寿命評価方法。
and a step E of determining the crack propagation velocity da/dN.

(N  −N  )β −01 CO ただし、n及びC1は材料定数、Noは半価幅比あるい
は硬さ比が1.0から変化する繰返し数である。
(N −N )β −01 CO However, n and C1 are material constants, and No is the number of repetitions at which the half width ratio or hardness ratio changes from 1.0.

da/dN−C2β −C3 唸―臥C、C及びmは材料定数。da/dN-C2β-C3 C, C and m are material constants.

[作用] 本発明は上記のようにすることにより、疲労損傷初期に
生じる材質変化領域にて、ミクロな疲労き裂発生寿命及
びき裂伝播速度を予想することが可能となり、ミクロな
き裂に至る余寿命の評価が可能である。
[Function] By doing the above, the present invention makes it possible to predict the micro fatigue crack initiation life and crack propagation speed in the material change region that occurs at the initial stage of fatigue damage, leading to micro cracks. It is possible to evaluate the remaining life.

[実施例コ 以下、本発明の実施例について説明するが、はじめに本
発明の概要について説明する。本発明を完成するために
引張圧縮疲労試験機にて色々なひずみ繰返し様式での疲
労試験を実使用温度で行った。第3図はその方法を示す
もので、破断及び破断に至る様々な段階の途中過程まで
疲労試験をして試験片をはずす事を行い、各種の疲労付
与試験片を作成してそれらの半価幅及び硬さ(表面には
スケールが付着しているので、表面を削除するが、切断
して中央断面で測定することが必要)と共に断面の試験
片表面側でき裂を観察した。このような観察を詳細に行
って、疲労に伴う半価幅や硬さの変化とき裂の挙動にル
ールがあるかないかを詳細に調査した。
[Examples] Examples of the present invention will be described below, but first an outline of the present invention will be explained. In order to complete the present invention, fatigue tests were conducted using a tensile compression fatigue testing machine in various strain repetition modes at actual operating temperatures. Figure 3 shows the method, in which fatigue tests are carried out up to the various stages leading up to rupture, the specimen is removed, various fatigued test specimens are created, and the half value of these specimens is Width and hardness (scale was attached to the surface, so the surface was removed, but it was necessary to cut and measure at the center section), as well as cracks on the surface side of the test piece in cross section. These observations were made in detail to determine whether there are any rules for changes in half-value width and hardness due to fatigue and crack behavior.

第4図は、それら結果を示している。0.5m11程度
以上のき裂が発生すると半価幅や硬さbは変化しないの
で、それ以上の繰返し数における71p]定結果は省略
した。なお、第4図において、0 、01 mm及びO
,1mmのき裂が発生した繰返し数も併示しである。 
第4図から次のことが言える。
Figure 4 shows the results. Since the half width and hardness b do not change when a crack of approximately 0.5 m11 or more occurs, the 71 p] constant results for a greater number of repetitions are omitted. In addition, in Fig. 4, 0, 01 mm and O
, the number of repetitions at which a 1 mm crack occurred is also shown.
The following can be said from Figure 4.

(イ)半価幅や硬さは繰返し数の対数に対してプロット
すると、疲労初期は変化せず水平となるが、ある繰返し
数N を過ぎると変化が現われ、繰返し数の対数に対し
てほぼ直線的に減少する。
(b) When the half-width and hardness are plotted against the logarithm of the number of repetitions, they do not change at the initial stage of fatigue and remain flat, but after a certain number of repetitions N, changes appear and they become almost constant relative to the logarithm of the number of repetitions. Decrease linearly.

(ロ)一定ひずみ繰返しでは、ひずみ振幅が大きい程繰
返し数N は小さくなり、また繰返し数のN の対数に
対する傾き(βと以後呼ぶ)も大きい。
(b) In constant strain repetition, the larger the strain amplitude, the smaller the number of repetitions N, and the greater the slope (hereinafter referred to as β) of the number of repetitions with respect to the logarithm.

(ハ)例えばΔε とΔε3のひずみ範囲が組み合わさ
れた場合、半価幅や硬さは、Δε1とΔε3の各々が一
定での疲労で認められる変化線の間には収まらず、繰返
し数N は太きい振幅Δεl一定での繰返し数N。より
も小さくなったりする。但し、傾きβはΔε1やΔε3
一定での傾きの間に収り、過程中はぼ一定である。
(c) For example, when the strain ranges Δε and Δε3 are combined, the half-width and hardness do not fall between the change lines observed in fatigue when Δε1 and Δε3 are constant, and the number of repetitions N is The number of repetitions N when the large amplitude Δεl is constant. It may become smaller than. However, the slope β is Δε1 or Δε3
It falls within the range of constant slope and remains almost constant during the process.

そこで、金属顕微鏡で判定しうる限界と考えられるき裂
深さ(0,01mm)が発生する繰返し数N。
Therefore, the number of repetitions N at which a crack depth (0.01 mm) occurs, which is considered to be the limit that can be judged with a metallurgical microscope.

と゛14価幅あるいは硬さの変化を調べてみた。この間
の半価幅や硬さは、一定ひずみ範囲が繰り返される場合
やひずみ範囲が組み合された場合でも、模式的に、第5
図の如くになる。
I investigated changes in the 14 value range or hardness. The half-width and hardness during this period are schematically the fifth
It will look like the figure.

疲労の初期では、繰返されるひずみは疲労特有の材料組
織変化を生じるが、き裂発生には寄与しないと考えると
、上記のN は無効な繰返し数である。又、繰返し数の
対数に対する半価幅や硬さの傾き(変化率)βはき裂発
生に寄与する有効なひずみエネルギーの大小に対応する
と考える。すると、次のような関係が成立すると考えら
れる。
At the initial stage of fatigue, repeated strain causes changes in the material structure characteristic of fatigue, but considering that it does not contribute to crack initiation, the above N is an invalid number of repetitions. Further, it is considered that the half width or the slope (rate of change) β of hardness with respect to the logarithm of the number of repetitions corresponds to the magnitude of effective strain energy contributing to crack initiation. Then, the following relationship is considered to hold.

(N  −N  )β −C、(1) CO そこで、データを(1)式で整理したが、結果は第6図
に示すようにnが約2.5で各種疲労過程でのN が推
定できることが判明した。同様に、き裂深さの異る場合
についても調査したが、nは異るけれどもいずれの場合
も式(1)でその発生繰返し数が表現できた。
(N - N ) β - C, (1) CO Therefore, the data were organized using equation (1), and as shown in Figure 6, the results are as follows: When n is approximately 2.5, N during various fatigue processes is estimated. It turns out it can be done. Similarly, cases with different crack depths were investigated, and although n was different, the number of repetitions of crack occurrence could be expressed using equation (1) in all cases.

続いて、金属顕微鏡でしか判別しにくいような微少き裂
であるが、その伝播速度da/ dn (1回の繰返し
で進展するき裂深さ)の表示式を検討した。
Next, we investigated a formula for displaying the propagation speed da/dn (the depth of a crack that propagates in one repetition), which is a microscopic crack that is difficult to discern only with a metallurgical microscope.

その表示式は(2)式で可能であった。この結果を第7
図に示している。
The display formula was possible using formula (2). This result is the seventh
Shown in the figure.

da/dn=c  β −C3(2) ま ただし、C、m及びC3は材料定数 ここで式(1)、式(2)の定数の求め方について説明
する。
da/dn=c β -C3 (2) Furthermore, C, m, and C3 are material constants. Here, how to obtain the constants of equations (1) and (2) will be explained.

(1)式の(N  −N  )  β0−01の定数は
、5CO 種類の疲労試験過程の観察結果をもとにしたもので、各
々についてN  −N  及びβを求め、次いCO でnを変えて(N  −N  )β を計算し、5種C
O 類の結果がほぼ一定の値を示すようなnを求める。
The constant (N - N ) β0-01 in equation (1) is based on the observation results of 5 CO types of fatigue test processes. N - N and β are determined for each, and then n is Calculate (N − N ) β by changing the 5 types C
Obtain n such that the results of class O show approximately constant values.

なお、その時の(N  −N  )β0の平均値がC0 C1となる。In addition, the average value of (N - N) β0 at that time is C0 It becomes C1.

(2)式のda/dN−Cβ1−C3の定数は、同様の
観察結果をもとに実験的に求めたものである。
The constant da/dN-Cβ1-C3 in equation (2) was determined experimentally based on similar observation results.

以上から、実機で半価幅あるいは硬さを測定して、寿命
と判断されるような巨視的なき裂が発生する繰返し数及
びその前段階での各種損傷状況が現われる繰返し数を予
測する方法が提供できる。
From the above, there is a method to measure the half-width or hardness using an actual machine and predict the number of repetitions at which macroscopic cracks occur, which is considered to be the end of life, and the number of repetitions at which various damage conditions appear in the preceding stages. Can be provided.

なお、金属顕微鏡でしか判別困難なき裂は後述するレプ
リカ法及び特殊な観察面の作成法を用いれば検出可能で
ある。
Note that cracks that are difficult to identify only with a metallurgical microscope can be detected by using the replica method and the method of creating a special observation surface, which will be described later.

しかしながら、問題は、変化率βをどのようにして求め
るかにある。即ち、適切な時期を選んで2回以上の計1
(111を行う事と共に初期値との比で半価幅あるいは
硬さを表示しなければならない。
However, the problem lies in how to determine the rate of change β. In other words, choose an appropriate time and do it twice or more in total.
(In addition to performing 111, the half width or hardness must be displayed as a ratio to the initial value.

後者については、本出願人が出願した特開昭6l−21
27411(特願昭60−53796)及び特開昭62
−247238(特願昭61−90025)の技術思想
を用いればよい。
Regarding the latter, Japanese Patent Application Laid-Open No. 61-21 filed by the present applicant
27411 (Japanese Patent Application 1986-53796) and Japanese Unexamined Patent Application 1986
-247238 (Japanese Patent Application No. 61-90025) may be used.

即ち、第8図に示すように外周溝底を極く浅く水平に研
磨し、且つ電界研磨をして観察面とする。
That is, as shown in FIG. 8, the bottom of the outer circumferential groove is polished very shallowly and horizontally, and then subjected to electric field polishing to obtain an observation surface.

すると、観察面の両端はロータの硬質スケールに接する
が、その位置は極めてロータ母材表面に近い。又、観察
面の中央部は最つとも表面より深い母材を露呈すること
になる。溝底では、応力集中部でもあり、疲労は表面に
近い所に集中する。
Then, both ends of the observation surface touch the hard scale of the rotor, but their positions are extremely close to the surface of the rotor base material. In addition, the central part of the observation surface exposes the base material that is deeper than the surface. The groove bottom is also a stress concentration area, and fatigue is concentrated near the surface.

そこで、観察面にて水平方向に半価幅あるいは硬さHを
測定すれば、第9図に示すように両端部では値が小さく
、且つ中央部では水平な分布が得られる筈である。第9
図は半価幅あるいは硬さHの測定位置Xに対する分布図
であり、中央が平坦となり、その値Hを初期値Bとする
こと、また外挿値Hをbとすることとの説明である。即
ち、中央部は疲労を受けてない事を示しており、そこで
得られる半価幅あるいは硬さの初期値Bと置くことが出
来る。同図に示すように、表面での半価幅あるいは硬さ
Hはデータのプロット点から外挿して求めることが出来
る。
Therefore, if the half-width or hardness H is measured in the horizontal direction on the observation surface, the value should be small at both ends and a horizontal distribution should be obtained at the center, as shown in FIG. 9th
The figure is a distribution diagram of the half width or hardness H with respect to the measurement position X, and explains that the center is flat and that value H is the initial value B, and that the extrapolated value H is set as b. . In other words, this shows that the central part is not subjected to fatigue, and can be set as the initial value B of the half-width or hardness obtained there. As shown in the figure, the half-width at the surface or the hardness H can be obtained by extrapolating from the data plot points.

以上の方法を用いれば、未使用時の半価幅や硬さが不明
な場合でも、現時点の測定で求めたい半価幅比や硬さ比
が求められることになる。
If the above method is used, even if the half-width or hardness when not in use is unknown, the half-width ratio or hardness ratio that is desired by current measurement can be determined.

次に本発明の実施例について説明する。第1図本発明方
法を説明するためのフローチャートであり、第2図は本
発明方法に使用する繰返し数の対数と半価幅比(あるい
は硬さ比)の関係を示す図である。
Next, examples of the present invention will be described. FIG. 1 is a flow chart for explaining the method of the present invention, and FIG. 2 is a diagram showing the relationship between the logarithm of the number of repetitions used in the method of the present invention and the half width ratio (or hardness ratio).

(1)本発明方法を実施する際、はじめに第2図に示す
ように縦軸に半価幅比(あるいは硬さ比)と横軸の繰返
し数(対数表示)のグラフを作成し、縦軸の半価比(あ
るいは硬さ比)1.0に相当位置に横軸に平行な線を描
く。
(1) When carrying out the method of the present invention, first create a graph of the half width ratio (or hardness ratio) on the vertical axis and the number of repetitions (logarithmic display) on the horizontal axis, as shown in Figure 2. Draw a line parallel to the horizontal axis at a position corresponding to the half value ratio (or hardness ratio) of 1.0.

(2)次に、検査すべき高温機器部品に対して、第8図
に示す検査面を作成し、第9図に示す測定を行なう。こ
の特進に本部品の受けた応力繰返し数をN1回とする。
(2) Next, the inspection surface shown in FIG. 8 is prepared for the high-temperature equipment component to be inspected, and the measurement shown in FIG. 9 is performed. The number of stress repetitions that this part received during this special trip is assumed to be N1 times.

この結果から、その時点での半価幅あるいは硬さBと初
期半価幅あるいは初期硬さBが得られ、その比b/Bが
求められる。これを第1回目検査(Sl)の測定値(b
/B)  、として繰返し数N1に対してグ■ ラ フ上にプロットする(N2)。
From this result, the half-width or hardness B at that point and the initial half-width or initial hardness B are obtained, and their ratio b/B is determined. This is the measured value (b
/B), and plot it on the graph against the number of repetitions N1 (N2).

(3)そして、適切な時期を選んで第1回目と同様のU
j定を行なう(N3)。これを第2回目の測定値(b/
B)  として繰返し数N2に対してグラフ上にプロッ
トする。
(3) Then, choose an appropriate time and use the same U as the first time.
j is determined (N3). This is the second measurement value (b/
B) Plot on a graph against the number of repetitions N2.

(4)第1回目のプロット点と第2回目のプロット点を
結びその傾きβを求める(N4)。
(4) Connect the first plot point and the second plot point to find the slope β (N4).

(5)次にその線を延長して(1)項の半価幅比1.0
の線との交点を求め、その繰返し数をN とする(N4
)。
(5) Next, extend that line to make the half-width ratio of term (1) 1.0
Find the intersection with the line and set the number of repetitions to N (N4
).

以上求められた傾きβ、変化の現われる繰返し数N お
よび別途求めておいた材料定数n′から(3)式を用い
てN を算出することができる(N5)。又、N 後の
き裂伝播速度を(4)式から求めて、定義する長さ(例
えば0.5mm)のき裂発生寿命を求める。
N can be calculated using equation (3) from the slope β determined above, the number of repetitions N at which the change appears, and the material constant n' determined separately (N5). In addition, the crack propagation velocity after N 2 is determined from equation (4), and the crack initiation life of the defined length (for example, 0.5 mm) is determined.

(6)N2くN。かどうかを判断しくN6)、ノーの場
合にはレプリカ法によりミクロなき裂を観察しくS7)
、その長さを測定しくN8)、(4)式によりき裂伝播
速度を求め(N9)、そのき裂が定義する一定長さ(例
えば0.5+am)までの余寿命が推定できる(S 1
0)。
(6) N2kuN. If no, please use the replica method to observe micro-cracks (S7)
, measure its length (N8), calculate the crack propagation velocity using equation (4) (N9), and estimate the remaining life up to a certain length (for example, 0.5+am) defined by the crack (S1
0).

(7)N6においてN2くN。がイエスの場合には、き
裂発生までの余寿命を推定する(Sll)。
(7) N2 × N at N6. If YES, the remaining life until crack initiation is estimated (Sll).

(8)そして運転を行い(S 12) 、N<N  か
とうかが判断される(313)。このときノーの場合に
は312の運転にもどり、イエスの場合にはS7に進む
(8) Operation is then performed (S12), and it is determined whether N<N or not (313). At this time, if the answer is no, the process returns to step 312, and if the answer is yes, the process proceeds to S7.

以上述べた実施例によれば、蒸気タービン高温ロータの
疲労余寿命を評価する上で、疲労損傷初期に生じる材質
変化領域にて、ミクロな疲労き裂発生寿命及びき裂伝播
速度を予想することが可能となり、虐クロなき裂発生に
至る迄の各段階の余寿命の評価が可能である。
According to the examples described above, when evaluating the remaining fatigue life of a steam turbine high-temperature rotor, it is possible to predict the micro fatigue crack initiation life and crack propagation speed in the material change region that occurs at the early stage of fatigue damage. This makes it possible to evaluate the remaining life at each stage up to the occurrence of severe cracks.

すなわち、いかなるき裂が発生していない時点でミクロ
なき裂発生までの寿命(例えば0.01市)、および定
義する長さ(例えば0.5 rm■)までのき裂成長寿
命を求めることができる。
In other words, it is possible to determine the lifespan from when no cracks have occurred until microscopic cracks occur (e.g. 0.01 mm) and the crack growth lifespan up to a defined length (e.g. 0.5 rm). can.

前述実施例は検査すべき対象物として蒸気タービンの高
温ロータをあげたが、これに限らず大型回転機で、かつ
、類似の材料挙動を示す材料からなる高温機器部品なら
なんでもよい。
In the above embodiment, the object to be inspected is a high-temperature rotor of a steam turbine, but the object to be inspected is not limited to this, but any high-temperature equipment part that is a large rotating machine and is made of a material exhibiting similar material behavior may be used.

[発明の効果] 本発明によれば、高温機器部品における疲労き裂発生寿
命を精度よく予測できる高温機器部品の余寿命評価方法
を提供できる。
[Effects of the Invention] According to the present invention, it is possible to provide a method for evaluating the remaining life of high-temperature equipment parts, which can accurately predict the fatigue crack initiation life of high-temperature equipment parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示すフローチャート図
、 第2図は本発明の方法に使用する繰返し数の対数と半価
比(あるいは硬さ比)を示す図、第3図は同実施例とし
ての色々なひずみ繰返し様式の例の図、 第4図は同実施例としての各社ひずみ様式における半価
幅あるいは硬さとき裂の発生との関係図、第5図は同実
施例として、微少き裂が発生する繰返し数N までの半
価幅あるいは硬さの変化を示した模式図、 第6図は同実施例として、(1)式 (N  −N  )β0−一定が成り立つことを示しC
O た図、 第7図は同実施例としての、き裂伝播速度と半価幅変化
率あるいは硬さの変化率の指数形との間に直線関係があ
ることを示した図、 第8図は本発明方法に使用する半価幅あるいは硬さの初
期値を求めるための検査面の作成方法を示した図、 第9図は本発明方法に使用する半価幅あるいは硬さの測
定位置に対する分布図、 第10図および第11図は従来例のX線による余寿命評
価方法の一例を説明するための図であり、第10図はX
線解説線の拡がり量を表わす半価幅し数の関係図、第1
6図はき裂が存在る場合の半価幅の測定位置を示す図、
第17図は半価幅比とき裂進展速度の関係図、 第18図および第19図は従来例の課題を説明するため
の図であり、第18図は起動方式の違いを示す模式図、
第19図は一定ひずみ繰返し条件下での疲労過程におけ
る半価幅と繰返し数の関係図である。 塑性加工をあらかじめ与えた炭素鋼の場合をそれぞれ示
す半価幅比と繰返し数比の関係図、第12図〜第17図
はX線による余寿命評価方法の他の例を説明するための
図であり、第12図は残余寿命と半価幅比の関係を示し
た図、第13図は第12図の関係が成立するとしてI 
B−b I/Bで整理した図、第14図は第12図の半
価幅変化率の説明図、第15図は半価幅変化率と繰返出
願人代理人 弁理士 鈴 江 武 彦第10 口 第12 斗曳(し毫j(logN) 第140 !裂遺雇執(山/dN) 浸勉 蓚工 丸勅船凡切船 第180 第13 石7L貯に、*し数(N↑) 第15
Figure 1 is a flowchart showing one embodiment of the method of the present invention, Figure 2 is a diagram showing the logarithm of the number of repetitions and the half value ratio (or hardness ratio) used in the method of the present invention, and Figure 3 is the same diagram. Figure 4 is a diagram showing the relationship between the half-width or hardness and the occurrence of cracking in the strain patterns of each company as an example; , a schematic diagram showing the change in half-width or hardness up to the number of repetitions N at which micro-cracks occur. FIG. indicates C
Figure 7 is a diagram showing that there is a linear relationship between the crack propagation velocity and the exponential shape of the half-width change rate or hardness change rate, as the same example, and Figure 8. Figure 9 shows the method for preparing the inspection surface for determining the initial value of the half-width or hardness used in the method of the present invention. Distribution diagrams, Figures 10 and 11 are diagrams for explaining an example of a conventional method for evaluating remaining life using X-rays, and Figure 10 is
Line explanation Diagram showing the spread of the line at half maximum and number, 1st
Figure 6 shows the measurement position of the half width when a crack exists.
Fig. 17 is a diagram showing the relationship between the half width ratio and the crack propagation speed, Figs. 18 and 19 are diagrams for explaining the problems of the conventional example, and Fig. 18 is a schematic diagram showing the difference in the starting method.
FIG. 19 is a diagram showing the relationship between the half width and the number of repetitions in the fatigue process under constant strain repetition conditions. Relationship diagrams between half-value width ratio and repetition rate ratio showing the case of carbon steel subjected to plastic working in advance, and Figures 12 to 17 are diagrams for explaining other examples of the remaining life evaluation method using X-rays. 12 is a diagram showing the relationship between the remaining life and the half width ratio, and FIG. 13 is a diagram showing the relationship between the remaining life and the half width ratio, and FIG.
B-b Diagram organized by I/B, Figure 14 is an explanatory diagram of the half price width change rate in Figure 12, Figure 15 is the half price width change rate and repeat applicant patent attorney Takehiko Suzue 10th mouth 12th douhiki (logN) 140th! splitting employment (mountain / dN) 180th 180th 13th stone 7L storage, * and number (N ↑) No. 15

Claims (1)

【特許請求の範囲】 検査すべき高温機器部品の表面層に検査面を形成する工
程Aと、 前記検査面にX線を照射してその回折線からの半価幅あ
るいは硬さの分布を繰返し数N_1、N_2の時点で求
める工程Bと、 この工程Bで求めた半価幅あるいは硬さに基づき初期半
価幅との半価幅比あるいは初期硬さとの硬さ比を繰返し
数N_1、N_2の時点で求める工程Cと、 前記工程B、Cで求めた繰返し数N_1、N_2の間に
おける半価幅比あるいは硬さ比の変化率βを求める工程
Dと、 次の両式よりミクロ(微細)なき裂の発生する繰返し数
N_C及びき裂伝播速度da/dNを求める工程Eとか
らなる高温機器部品の余寿命評価方法。 (N_C−N_O)β^n=C ただし、n及びC_1は材料定数、N_Oは半価幅比あ
るいは硬さ比が1.0から変化する繰返し数。 da/dN=C_2β^m−C_3 C_2、C_3及びmは材料定数。
[Scope of Claims] Step A of forming an inspection surface on the surface layer of a high-temperature equipment component to be inspected; irradiating the inspection surface with X-rays and repeating the half-width or hardness distribution from the diffraction line; Process B obtained at the time points N_1 and N_2 and the half-width ratio with the initial half-width or the hardness ratio with the initial hardness based on the half-width or hardness obtained in this step B are repeated for the number N_1 and N_2. Step C, which calculates the rate of change in the half-width ratio or hardness ratio between the repetition numbers N_1 and N_2 obtained in steps B and C, and the micro (fine) ) A method for evaluating the remaining life of high-temperature equipment parts, comprising a step E of determining the number of repetitions N_C at which no cracks occur and the crack propagation speed da/dN. (N_C-N_O)β^n=C where n and C_1 are material constants, and N_O is the number of repetitions at which the half-width ratio or hardness ratio changes from 1.0. da/dN=C_2β^m-C_3 C_2, C_3 and m are material constants.
JP29079288A 1988-11-17 1988-11-17 Evaluating method for remaining service life of high temperature apparatus parts Pending JPH02136737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29079288A JPH02136737A (en) 1988-11-17 1988-11-17 Evaluating method for remaining service life of high temperature apparatus parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29079288A JPH02136737A (en) 1988-11-17 1988-11-17 Evaluating method for remaining service life of high temperature apparatus parts

Publications (1)

Publication Number Publication Date
JPH02136737A true JPH02136737A (en) 1990-05-25

Family

ID=17760556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29079288A Pending JPH02136737A (en) 1988-11-17 1988-11-17 Evaluating method for remaining service life of high temperature apparatus parts

Country Status (1)

Country Link
JP (1) JPH02136737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764267A4 (en) * 1994-05-18 1997-01-17 Fatigue Man Associates L L C Method for measuring and extending the service life of fatigue-limited metal components
JP2004271355A (en) * 2003-03-10 2004-09-30 Koyo Seiko Co Ltd Method of inspecting burn mark in metal component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764267A4 (en) * 1994-05-18 1997-01-17 Fatigue Man Associates L L C Method for measuring and extending the service life of fatigue-limited metal components
EP0764267A1 (en) * 1994-05-18 1997-03-26 Fatigue Management Associates L.L.C. Method for measuring and extending the service life of fatigue-limited metal components
JP2004271355A (en) * 2003-03-10 2004-09-30 Koyo Seiko Co Ltd Method of inspecting burn mark in metal component

Similar Documents

Publication Publication Date Title
Parkins et al. Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solution
Hinds et al. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel
Tong T-stress and its implications for crack growth
Rao et al. On characterisation of local stress–strain properties in friction stir welded aluminium AA 5083 sheets using micro-tensile specimen testing and instrumented indentation technique
Lord et al. 25 year perspective Aspects of strain and strength measurement in miniaturised testing for engineering metals and ceramics
Haggag et al. Structural integrity evaluation based on an innovative field indentation microprobe
CN109870258B (en) Instrumented spherical indentation detection method for plane random residual stress
Sancho et al. Experimental techniques for ductile damage characterisation
Kamaludin et al. Fracture mechanics testing for environmental stress cracking in thermoplastics
Cussac et al. Low-cycle fatigue crack initiation and propagation from controlled surface imperfections in nuclear steels
JP4676323B2 (en) Method for measuring fracture toughness value of metallic materials
JP5410395B2 (en) Method and apparatus for evaluating crack growth rate of metallic material
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
Antunes et al. Identification of fatigue crack propagation modes by means of roughness measurements
Thomas et al. A CODE OF PRACTICE FOR CONSTANT‐AMPLITUDE LOW CYCLE FATIGUE TESTING AT ELEVATED TEMPERATURES
JPH02136737A (en) Evaluating method for remaining service life of high temperature apparatus parts
JPH0634625A (en) High temperature damage evaluation of austenitic heat resistant steel
JP2000275164A (en) Stress corrosion crack test method
JP4112830B2 (en) Structural material soundness evaluation method and program
JP2007225333A (en) Damage evaluation method by metal texture as to creep fatigue damage
Alaoui et al. Short surface fatigue cracks growth under constant and variable amplitude loading
JP2007108095A (en) Method and device for diagnosing member irradiated with neutron
Abbadi et al. Fatigue crack growth in nickel-based superalloys at elevated temperatures
WO2003054521A2 (en) Method for tasting structural materials fatigue
Banks et al. Test methods for evaluating the mechanical properties of coatings