JPH02135717A - Magnetic part for generating high-voltage pulse - Google Patents

Magnetic part for generating high-voltage pulse

Info

Publication number
JPH02135717A
JPH02135717A JP63289620A JP28962088A JPH02135717A JP H02135717 A JPH02135717 A JP H02135717A JP 63289620 A JP63289620 A JP 63289620A JP 28962088 A JP28962088 A JP 28962088A JP H02135717 A JPH02135717 A JP H02135717A
Authority
JP
Japan
Prior art keywords
refrigerant
magnetic core
magnetic
magnetic cores
end faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63289620A
Other languages
Japanese (ja)
Other versions
JP2778708B2 (en
Inventor
Akira Yamataka
山高 ▲あきら▼
Shunsuke Arakawa
俊介 荒川
Susumu Nakajima
晋 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63289620A priority Critical patent/JP2778708B2/en
Publication of JPH02135717A publication Critical patent/JPH02135717A/en
Application granted granted Critical
Publication of JP2778708B2 publication Critical patent/JP2778708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To improve the ability of refrigerant by installing refrigerant passages to pass the refrigerant approximately countercurrently on both end faces of magnetic cores at a part of a separation means to separate the refrigerant flowing to both the end faces of the magnetic cores on the side faces thereof. CONSTITUTION:A central body 5 made of an insulator is equipped with magnetic cores 1a and 1b and refrigerant separation plates 2a and 2b made of an insulator to divide refrigerant 14 flowing to both the end faces of the magnetic cores are installed on the outer peripheral surfaces of each of the magnetic core. Partition plates 3a and 3b made of an insulator are installed between the magnetic cores 1a and 1b and on the magnetic core 1b. By refrigerant passages 4a, 4b, 4c, and 4d installed on the refrigerant introduction plates 2a and 2b and the partition plates 3a and 3b, the refrigerant 14 introduced through a refrigerant introduction port 10 is passed in the direction of the arrow, drained through a drain port 11, cooled by a heat exchanger, and returned to the introduction port 10 for circulation. Thereby sufficient cooling ability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は放電励起レーザ、加速器等に用いられる高電圧
パルス発生装置用磁性部品に関するものであり、特に昇
圧変圧器及び磁気スイッチとして使用される高電圧パル
ス発生装置用磁性部品に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to magnetic components for high voltage pulse generators used in discharge-excited lasers, accelerators, etc., and particularly used as step-up transformers and magnetic switches. The present invention relates to magnetic components for high voltage pulse generators.

[従来の技術] エキシマレーザ、銅蒸気レーザ等のガスレーザを励起す
るために使用される高電圧パルス発生装−には、特開昭
63−186569号公報等に記載されているように、
その高電圧側にコンデンサと可飽和リアクトルを組み合
わせた回路が形成されている。
[Prior Art] A high-voltage pulse generator used to excite gas lasers such as excimer lasers and copper vapor lasers includes, as described in Japanese Patent Application Laid-Open No. 186569/1983, etc.
A circuit combining a capacitor and a saturable reactor is formed on the high voltage side.

この回路の高圧側の基本構成を第5図に示す。The basic configuration of the high voltage side of this circuit is shown in FIG.

第5図の低圧側ではサイリスタ等のスイッチ素子により
数kHz程度の繰り返し周波数を得、図示しない昇圧変
圧器を介して高圧側に接続されている。第5図のコンデ
ンサ16,17.18および可飽和リアクトル19,2
0.21によって低電圧側より入力された電流の時間幅
が順次圧縮されレーザ放電電極15に接続されている。
On the low voltage side in FIG. 5, a repetition frequency of about several kHz is obtained by a switching element such as a thyristor, and is connected to the high voltage side via a step-up transformer (not shown). Capacitors 16, 17, 18 and saturable reactors 19, 2 in Fig. 5
0.21, the time width of the current input from the low voltage side is sequentially compressed and connected to the laser discharge electrode 15.

このような回路により入力された電流の時間幅の百分の
1程度まで圧縮し電流の上昇率を1ookA/μSec
以上とすることも可能であった。
Such a circuit compresses the input current to about 1/100th of the time width, reducing the rate of increase of the current to 1ookA/μSec.
It was also possible to do more than that.

この場合可飽和リアクトルは巻磁心の非飽和時と飽和時
のインダクタンスの値の変化を利用した磁気的なスイッ
チの役割を果たしている。
In this case, the saturable reactor plays the role of a magnetic switch that utilizes the change in inductance value between the unsaturated and saturated cores.

すなわち、磁心が非飽和時には可飽和リアクトルには緩
やかな電流がわずかしか流れないが、飽和時には急便で
ピーク幅の高い電流が流れのであこの時巻磁心にはヒス
テリシス損、渦電流損等の損失が起こり発熱する。
In other words, when the magnetic core is not saturated, only a small, gentle current flows through the saturable reactor, but when it is saturated, a current with a high peak width flows, causing losses such as hysteresis loss and eddy current loss in the winding core. occurs and generates fever.

磁気スイッチは磁心の飽和磁束密度以上を使用するため
、トランスや磁気増幅器として磁心を用いた場合に比べ
その発熱量は非常に大きく、この熱を排出することが大
きな問題であった。
Since magnetic switches use a magnetic flux density higher than the saturation magnetic flux density of the magnetic core, the amount of heat generated is much greater than when a magnetic core is used as a transformer or magnetic amplifier, and discharging this heat has been a major problem.

特に、アモルファス磁心を用いた場合にはその使用温度
125℃以下に抑えなければならず、磁心の冷却は必須
であった。
In particular, when an amorphous magnetic core is used, the operating temperature must be kept below 125° C., and cooling of the magnetic core is essential.

このような問題のため冷媒を使用して磁心の冷却が行わ
れているが、更に冷却効率を向上するために特開昭63
−211608号公報に記載されるような巻磁心の内部
にスペーサを巻き込み冷媒を通すようにしたものが知ら
れている。
Because of these problems, magnetic cores are cooled using refrigerants, but in order to further improve cooling efficiency, Japanese Patent Laid-Open No. 63
There is known a device in which a spacer is wound inside a wound magnetic core to allow a refrigerant to pass therethrough, as described in Japanese Patent No. 211608.

[本発明が解決しようとする課題] 上記した巻磁心の内部にスペーサを有するものはそのス
ペーサのため磁心形状が大きくなり、又スペーサを巻き
込むため磁歪の影響のため磁気特性が劣化してしまうと
ともに占積率が低下するたb磁心飽和後のインダクタン
スが大きくなるという欠点があった。
[Problems to be Solved by the Present Invention] In the above-mentioned wound magnetic core having a spacer inside it, the shape of the magnetic core becomes large due to the spacer, and since the spacer is involved, the magnetic properties deteriorate due to the influence of magnetostriction. There was a drawback that the space factor decreased and the inductance after the b magnetic core was saturated increased.

また、磁心として巻磁心を使用する場合、過電流損等を
減少できる等の理由から絶縁フィルムを同時に巻回して
形成した巻磁心が使用される。
Further, when a wound core is used as the magnetic core, a wound core formed by simultaneously winding an insulating film is used because it can reduce overcurrent loss and the like.

この場合、絶縁フィルムの熱伝導率は磁心の熱伝導率に
比べて著しく小さいため、巻磁心の半径方向への熱移動
が疎外される。
In this case, since the thermal conductivity of the insulating film is significantly lower than that of the magnetic core, heat transfer in the radial direction of the wound magnetic core is inhibited.

本発明者等は上記の磁心を冷却するためには磁心の両端
面を冷却することが重要であることを見出し、特願昭6
3−142425号に磁性部品として磁心端面を均一に
冷却する絶縁ガイドを設けるもの、磁心の端面ごとに磁
心の中心部から外周部または外周部から中心部へ冷却媒
体が流れるように流路を形成したものを提出した。
The present inventors discovered that it is important to cool both end faces of the magnetic core in order to cool the above-mentioned magnetic core, and filed a patent application in 1986.
No. 3-142425 includes an insulated guide as a magnetic component to uniformly cool the end face of the magnetic core, and a flow path is formed on each end face of the magnetic core so that the cooling medium flows from the center to the outer periphery or from the outer periphery to the center. I submitted what I did.

しかし、このような磁心部品でも磁心の冷却能力は不十
分であり高電圧パルス発生装置の出力電流波高値がしだ
いに低下して行くという問題が生じていた。
However, even with such a magnetic core component, the cooling ability of the magnetic core is insufficient, resulting in a problem that the peak value of the output current of the high voltage pulse generator gradually decreases.

本発明の目的は、従来の磁心部品よりも冷却能力の優れ
た構造を有する高電圧パルス発生用磁性部品を提供する
ことである。
An object of the present invention is to provide a high-voltage pulse generating magnetic component having a structure with better cooling capacity than conventional magnetic core components.

[課題を解決するための手段] 本発明は磁心を冷媒中に設置してなる高電圧パルス発生
装置用磁性部品において、磁心の両端面に流れる冷媒を
磁心側面で分離するように設けた冷媒分離手段と、該冷
媒分離手段の一部に前記冷媒を磁心の両端面でほぼ向流
に流すための冷媒流路を有することを特徴とする高電圧
パルス発生用磁性部品である。
[Means for Solving the Problems] The present invention provides a magnetic component for a high-voltage pulse generator in which a magnetic core is installed in a refrigerant. A magnetic component for generating high voltage pulses, characterized in that a part of the refrigerant separating means has a refrigerant flow path for causing the refrigerant to flow substantially countercurrently on both end faces of a magnetic core.

本発明において、冷媒分離手段は磁心の端面ごとに冷媒
を仕切るものであり、その冷媒分離手段の一部に設けら
れた冷媒流路は磁心端面に流れる冷媒の方向を決定し、
さらに磁心のもう一方の端面に冷媒を移動する役割を果
たすものである。
In the present invention, the refrigerant separating means partitions the refrigerant for each end face of the magnetic core, and the refrigerant flow path provided in a part of the refrigerant separating means determines the direction of the refrigerant flowing to the end face of the magnetic core,
Furthermore, it plays the role of moving the coolant to the other end face of the magnetic core.

冷媒分離手段に設けられた流路は冷媒の淀みをなくすた
めに磁心の端面で向流であることが好ましい。すなわち
、隣合う冷媒流路は磁心の中心軸に対してほぼ点対象の
位置にあることが好ましい。
In order to eliminate stagnation of the refrigerant, the flow path provided in the refrigerant separation means preferably has a countercurrent flow at the end face of the magnetic core. That is, it is preferable that the adjacent refrigerant flow paths are located at substantially point-symmetrical positions with respect to the central axis of the magnetic core.

[実施例] 以下本発明の実施例について詳しく説明する。[Example] Examples of the present invention will be described in detail below.

第1図に本発明の磁性部品の一実施例の断面図を示す。FIG. 1 shows a sectional view of an embodiment of the magnetic component of the present invention.

第1図において、絶縁体で構成された中心体5は磁心1
a及び1bを装架し、これらは上下の支持体6と側壁9
で構成された容器の中に設置されている6磁心1a及び
磁心1bはGo基アモルファス合金をポリエチレンテレ
フタレートフィルムを層間絶縁材として同時に巻回して
形成したものであり、その寸法はそれぞれ120φ×6
0φx25t(mm)である。
In FIG. 1, a central body 5 made of an insulator is a magnetic core 1
a and 1b are mounted, and these are attached to the upper and lower supports 6 and the side walls 9.
The six magnetic cores 1a and 1b installed in the container are made by simultaneously winding a Go-based amorphous alloy with a polyethylene terephthalate film as an interlayer insulating material, and each has dimensions of 120φ x 6.
It is 0φx25t (mm).

また、これらの磁心にはそれぞれその外周面に冷媒分離
手段として磁心の両端面に流れる冷媒14を仕切る絶縁
体で形成した冷媒分離板2a及び2bが設けられている
Further, each of these magnetic cores is provided with refrigerant separating plates 2a and 2b formed of an insulator on the outer circumferential surface thereof as refrigerant separating means to partition the refrigerant 14 flowing to both end surfaces of the magnetic core.

また、磁心1aおよび1bの間及び磁心1bの上部には
絶縁体で形成した仕切り板3aおよび3bが設けられて
いる。
Furthermore, partition plates 3a and 3b made of an insulator are provided between the magnetic cores 1a and 1b and above the magnetic core 1b.

冷媒誘導板2a、 2bおよび仕切り板3a、 3bに
設けた冷媒流路4a、 4b、 4c、 4dにより、
冷媒導入口10より入った冷媒14は第1図中の矢印の
方向に流れ叢後に排出口11より排出される。この冷媒
は図示しない熱交換器により冷却され導入口10に戻さ
れ循環される。
By the refrigerant flow paths 4a, 4b, 4c, 4d provided in the refrigerant guide plates 2a, 2b and the partition plates 3a, 3b,
The refrigerant 14 entering from the refrigerant inlet 10 flows in the direction of the arrow in FIG. This refrigerant is cooled by a heat exchanger (not shown), returned to the inlet 10, and circulated.

第2図は第1図のA−A断面図を示したものである。第
2図には第1図で省略した磁心に巻く巻線29も示して
いる。この巻線29の両端は第1図の入力端7および出
力端8に接続される。
FIG. 2 shows a sectional view taken along the line AA in FIG. 1. FIG. 2 also shows the winding 29 wound around the magnetic core, which is omitted in FIG. Both ends of this winding 29 are connected to the input end 7 and the output end 8 in FIG.

巻線29は中心体5に形成された溝13と冷媒分離板2
a、 2bおよび仕切り板3aを貫通するように設けた
貫通孔12によって5ターンのコイルを形成している。
The winding 29 is connected to the groove 13 formed in the center body 5 and the refrigerant separation plate 2.
A, 2b and a through hole 12 provided to pass through the partition plate 3a form a five-turn coil.

第1図に示す磁性部品を銅蒸気レーザを想定した第4図
に示す回路の可飽和リアクトル26に使用して磁心表面
の温度変化を熱電対により測定した。
The magnetic component shown in FIG. 1 was used in the saturable reactor 26 of the circuit shown in FIG. 4 assuming a copper vapor laser, and temperature changes on the surface of the magnetic core were measured with a thermocouple.

第4図に示す回路は高電圧をサイラトロン22でスイッ
チングするものである。
The circuit shown in FIG. 4 switches a high voltage using a thyratron 22.

また、コイル27はサイラド・ロン22による急激な電
流変化を押さえるものである。
Further, the coil 27 suppresses sudden changes in current caused by the Cyrad Ron 22.

冷媒として粘度51IIIm!/Sのシリコンオイルを
用lい、流量101/+inで導入口ioの冷媒温度は
20七に設定した。
Viscosity 51IIIm as a refrigerant! /S silicone oil was used, the flow rate was 101/+in, and the refrigerant temperature at the inlet io was set to 207.

また、回路の条件は入力電圧Vi=17kV、繰り返し
周波数5kHz、動作時間60分であり、コンデンサ2
3.24はそれぞれ6nF 、コンデンサ25は2゜7
nF、負荷28は1Ωの抵抗である。
The conditions of the circuit are input voltage Vi = 17 kV, repetition frequency 5 kHz, operating time 60 minutes, and capacitor 2.
3.24 is 6nF each, capacitor 25 is 2°7
nF, the load 28 is a 1Ω resistor.

この結果、磁心表面温度がどの部分でも30℃を越えず
冷却が十分に行われた。
As a result, the surface temperature of the magnetic core did not exceed 30° C. in any part, and sufficient cooling was achieved.

また、比較例として第1図に示す磁心部品の冷媒分離板
2a、 2bを除き、さらに仕切り板3aの流路4bを
反対側、つまり第1図左側、に形成してそれぞれの磁心
1a、 lbのそれぞれの両端面を流れる冷媒の流れる
向きが磁心ごとに同じになるようにした場合も測定した
。この場合他の条件は実施例と同じである。
Further, as a comparative example, the refrigerant separation plates 2a and 2b of the magnetic core components shown in FIG. 1 were removed, and the flow passage 4b of the partition plate 3a was formed on the opposite side, that is, on the left side in FIG. Measurements were also made when the direction of flow of the refrigerant flowing through each end face was made to be the same for each magnetic core. In this case, other conditions are the same as in the example.

比較例では磁心1aの下側の面で磁心表面温度が上昇し
、最高65℃にも達する個所が有った。
In the comparative example, the surface temperature of the magnetic core increased on the lower surface of the magnetic core 1a, reaching a maximum of 65° C. at some points.

これは、眉間絶縁に使用するポリエチレンテレフタレー
トの使用温度60℃以下を上回っており、層間絶縁が砿
壊される危険があることを示している。
This exceeds the operating temperature of polyethylene terephthalate, which is used for glabellar insulation, at 60° C. or lower, and indicates that there is a risk that the interlayer insulation may be destroyed.

本実施例では磁心を二段使用した例を示したが第3図の
ように一段の磁心の場合でも良好な冷却能力が得られる
。この場合、冷媒14は第3図の矢印の向きに流れる。
Although this embodiment shows an example in which two stages of magnetic cores are used, a good cooling capacity can be obtained even in the case of a single stage of magnetic cores as shown in FIG. In this case, the refrigerant 14 flows in the direction of the arrow in FIG.

また、第1図の仕切り板3a、 3bはなるべく薄いも
のが良い。また、これら仕切り板がなくても冷媒誘導板
2bの流路4Cの位置を反対側、つまり第1図の右側に
することにより十分な冷却能力が得られる。
Further, it is preferable that the partition plates 3a and 3b shown in FIG. 1 be as thin as possible. Moreover, even without these partition plates, sufficient cooling capacity can be obtained by positioning the flow path 4C of the coolant guide plate 2b on the opposite side, that is, on the right side in FIG.

なお、仕切り板を付けることによる利点は磁心端面の冷
媒流速を上昇し、磁心からの熱拡散を促進することであ
る。
Note that the advantage of adding the partition plate is that it increases the coolant flow velocity at the end face of the magnetic core and promotes heat diffusion from the magnetic core.

[発明の効果] 本発明の構造を有する磁性部品を高電圧パルス発生装置
の可飽和リアクトルとして使用することにより、磁心の
発熱による磁気特性の劣化を防止でき、安定した回路を
構成することができる。また、磁心を十分に冷却できる
ことから、磁心の層間絶縁材としてポリイミド等の耐熱
性に優れた高1価な材料を使用しなくても、ポリエチレ
ンテレフタレートの様な安価な材料が使用でき経済的に
も有効である。
[Effects of the Invention] By using the magnetic component having the structure of the present invention as a saturable reactor of a high voltage pulse generator, it is possible to prevent deterioration of magnetic properties due to heat generation of the magnetic core, and to construct a stable circuit. . In addition, since the magnetic core can be sufficiently cooled, inexpensive materials such as polyethylene terephthalate can be used as the interlayer insulating material for the magnetic core, instead of using highly monovalent materials with excellent heat resistance such as polyimide. is also valid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した断面図、第2図は第
1図のA−A断面図、第3図は本発明の別の実施例を示
した図、第4図は本発明の評価に用いた回路の構成図、
第5図は高電圧パルス発生装置の概略を示す説明図であ
る。 la、lb:磁心、2a、2b二冷媒分離板、3a、3
b:仕切り板、4a、4b、4c、4d:冷媒流路、1
0:冷媒導入口、11:冷媒排出口、14:冷媒、15
:レーザ放′w1電極16.17,18,23,24,
25:コンデンサ、19.20,21.26:可飽和リ
アクトル、22:サイラトロン、28:負荷、29:巻
線y 図 友 ■
Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is a sectional view taken along line AA in Fig. 1, Fig. 3 is a diagram showing another embodiment of the invention, and Fig. 4 is A configuration diagram of a circuit used for evaluation of the present invention,
FIG. 5 is an explanatory diagram showing an outline of the high voltage pulse generator. la, lb: magnetic core, 2a, 2b two refrigerant separation plates, 3a, 3
b: Partition plate, 4a, 4b, 4c, 4d: Refrigerant channel, 1
0: Refrigerant inlet, 11: Refrigerant outlet, 14: Refrigerant, 15
:Laser emission 'w1 electrode 16, 17, 18, 23, 24,
25: Capacitor, 19.20, 21.26: Saturable reactor, 22: Thyratron, 28: Load, 29: Winding y diagram friend ■

Claims (1)

【特許請求の範囲】[Claims] (1)磁心を冷媒中に設置してなる高電圧パルス発生装
置用磁性部品において、磁心の両端面にある冷媒を磁心
側面で分離するように設けた冷媒分離手段と、該冷媒分
離手段の一部に前記冷媒を磁心の両端面でほぼ向流に流
すための流路を有することを特徴とする高電圧パルス発
生用磁性部品。
(1) In a magnetic component for a high-voltage pulse generator in which a magnetic core is installed in a refrigerant, a refrigerant separating means provided to separate the refrigerant on both end faces of the magnetic core at the side surface of the magnetic core, and one part of the refrigerant separating means are provided. A magnetic component for generating high voltage pulses, comprising a flow path for causing the refrigerant to flow substantially countercurrently on both end faces of a magnetic core.
JP63289620A 1988-11-16 1988-11-16 Magnetic components for high-voltage pulse generation Expired - Lifetime JP2778708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63289620A JP2778708B2 (en) 1988-11-16 1988-11-16 Magnetic components for high-voltage pulse generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63289620A JP2778708B2 (en) 1988-11-16 1988-11-16 Magnetic components for high-voltage pulse generation

Publications (2)

Publication Number Publication Date
JPH02135717A true JPH02135717A (en) 1990-05-24
JP2778708B2 JP2778708B2 (en) 1998-07-23

Family

ID=17745593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63289620A Expired - Lifetime JP2778708B2 (en) 1988-11-16 1988-11-16 Magnetic components for high-voltage pulse generation

Country Status (1)

Country Link
JP (1) JP2778708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220110B1 (en) * 2011-09-21 2013-01-14 국방과학연구소 High voltage pulse generating apparatus using amorphous magnetic core and manufacturing method of the amorphous magnetic core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152218A (en) * 1979-05-16 1980-11-27 Nippon Green Service:Kk Construction of inclination
JPS59172222A (en) * 1983-03-18 1984-09-28 Toshiba Corp Split winding transformer
JPS59195719U (en) * 1983-06-14 1984-12-26 三菱電機株式会社 electromagnetic coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152218A (en) * 1979-05-16 1980-11-27 Nippon Green Service:Kk Construction of inclination
JPS59172222A (en) * 1983-03-18 1984-09-28 Toshiba Corp Split winding transformer
JPS59195719U (en) * 1983-06-14 1984-12-26 三菱電機株式会社 electromagnetic coil

Also Published As

Publication number Publication date
JP2778708B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JPH0258811A (en) Magnetic component for high voltage pulse generator
Sakugawa et al. An all‐solid‐state pulsed power generator using a high‐speed gate‐turn‐off thyristor and a saturable transformer
JPH02135717A (en) Magnetic part for generating high-voltage pulse
JP4540243B2 (en) Pulse laser power supply
JP4171273B2 (en) High voltage pulse generator and discharge excitation gas laser device using the same
JP2703631B2 (en) Iron core cooling method
RU2037221C1 (en) Cylindrical winding
JP3132251B2 (en) Magnetic switch for pulse power supply
JP2002016307A (en) Cooling structure of switching element of discharge exciting gas laser device
JPH03212908A (en) Magnetic core part for generation high voltage pulse
JPH04283908A (en) Saturable reactor for generating high-voltage pulse
RU2150761C1 (en) Current and voltage converter
JPH07335447A (en) Transformer
JP2645459B2 (en) Saturable reactor for high voltage pulse generator
JPH01157280A (en) Saturable reactor for high-voltage pulse generating device
JPH04211185A (en) Laser oscillator and saturable reactor
JP3535308B2 (en) Pulse generation circuit
EP0674803A1 (en) Air-cooled magnetic cores
JPH0198206A (en) Magnetic component for high-voltage pulse generator
JPH04342107A (en) Magnetic component for high-voltage pulse generation use; high-voltage pulse generation apparatus using it
JPH11265826A (en) High voltage pulse generating circuit and magnetic component therefor
JPH03159218A (en) High tension pulse generating magnetic part
US20170338033A1 (en) Pulse power module
JP2003124550A (en) High-voltage pulse generating device and electric discharge stimulation gas laser
JPS5928042B2 (en) superconducting coil