JPH0213520Y2 - - Google Patents

Info

Publication number
JPH0213520Y2
JPH0213520Y2 JP1984105858U JP10585884U JPH0213520Y2 JP H0213520 Y2 JPH0213520 Y2 JP H0213520Y2 JP 1984105858 U JP1984105858 U JP 1984105858U JP 10585884 U JP10585884 U JP 10585884U JP H0213520 Y2 JPH0213520 Y2 JP H0213520Y2
Authority
JP
Japan
Prior art keywords
fiberboard
sludge
thickness
water
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984105858U
Other languages
Japanese (ja)
Other versions
JPS6120600U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10585884U priority Critical patent/JPS6120600U/en
Publication of JPS6120600U publication Critical patent/JPS6120600U/en
Application granted granted Critical
Publication of JPH0213520Y2 publication Critical patent/JPH0213520Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、従来は埋立し処理していた板紙製
造時の廃棄物から得た単層繊維板に関する。 日本標準規格(JIS)の繊維板とは、植物繊維
たとえば廃材チツプ、バガス、パルプくず、おが
くずを主原料として成形した板を意味し、機械的
強度および耐水性などの点で硬質繊維板が最もす
ぐれている。したがつて、硬質繊維板の用途は建
築資材や梱包材などとして広いけれども、価格が
相当に高いのでより安くすることが期待されてい
る。 この問題とは別に、板紙製造工場では、板紙原
料として主にクラフトパルプと古紙の混合物を使
用し、このために板紙製造工程で種々の廃棄物が
発生する。たとえば、クラフトパルプ製造時には
大量のノツト(蒸解)かすが生じ、一方、古紙や
パルプを離解する際にパルパーかすが発生し、さ
らに離解した古紙を適当な紙料と配合した後にも
各種のスクリーンかすやクリーナかすおよび終末
スラツジが発生する。これらの廃棄物の内で、ノ
ツトかすおよびクリーナかすの一部を下級紙の原
料としたり終末スラツジを再循環したり、チツパ
ーダストなどはボイラーの燃料にされるけれど
も、その大部分は経済的かつ有効に処理する方法
がなく、しかも大量に発生するのでその処理に苦
慮しているのが現状である。特に、使用済みの板
紙を離解する際に生じるパルパーかすなどの廃棄
物は、紙器や紙袋に付着していたガムテープ、ビ
ニルテープ、酢酸ビニル系接着材、プラスチツク
フイルム、綴針、土砂などを含むので、埋立て処
理以外に適当な処分方法がなく、その処分に費用
がかかるうえに公害発生の元凶であると非難され
ている。 この考案は、前述したような従来の硬質繊維板
に関する価格上の問題と、製紙工場より大量に排
出される製紙廃棄物の処理問題とを同時に改善す
るために提案されたものである。したがつてこの
考案の目的は、大量の製紙廃棄物を有益に処理し
て製造した安価な単層繊維板を提供するにある。 第1図に例示するような単層繊維板1を製造す
る際に、その原料は製紙廃棄物であり、水切れが
良いので板紙工場からの廃棄物を主として用い、
該廃棄物は再精選や回収による再利用が不可能ま
たは相当に不経済なものである。この種の廃棄物
としては、パルパーかす、ヤンソンかす、フラツ
トスクリーンかす、セントリクリーナかす、終末
スラツジ、和紙の終末スラツジなどを単独または
2種以上を混合して用い、得た繊維板の品質調整
のためにノツトかす、調整スラツジなどを添加し
てもよい。パルパーかす、各種のスクリーンかす
やクリーナかすは、古紙やパルプから分離される
繊維質副産物のほかに、ガムテープ、ビニルテー
プ、酢酸ビニル系接着剤、プラスチツクフイル
ム、綴針、土砂などを含み、これらはその一部を
除いて繊維板の製造に利用できる。 この考案に係る単層繊維板1には、製紙廃棄物
中のガムテープ、ビニルテープ、酢酸ビニル系接
着剤、プラスチツクフイルムなどが小片状で約20
〜30重量%残存するけれども、これらは高温の加
熱・加圧工程において大部分溶融され、融着物A
として繊維板1の機械的強度を高めるのに役立つ
ている。この繊維板1は、各種の繊維質固形物B
を主成分として含有し、実質的にクラフト紙と類
以の性質を持つているから保温性・遮音性にすぐ
れ、かつ耐水剤の存在によつて耐水性・防湿性に
もすぐれている。さらにこの繊維板1は、100℃
の熱湯で2時間煮沸しても形状の変化が生じず、
鋸による切断が可能で釘の保持力も優秀であり、
表面塗装を行う場合でも化粧塗料が良く伸びて剥
離が生じない。この繊維板1は、単層で厚さ2〜
15mmまで可能であつて、実質的にJIS A5907に規
定する硬質繊維板に相当する品質にでき、油、樹
脂などによつて特殊処理を施すと曲げ強さをいつ
そう大きくすることも可能であるが、曲げ強度が
それほど大きくなくてもよい用途の場合には、約
50mm以下の厚みまで形成することができる。 次にこの考案の繊維板1の製造工程を第2図に
よつて説明する。製紙廃棄物の内で固形物の多い
パルパーかす、各種のスクリーンかすやクリーナ
かすは、繊維板の品質および水性廃液の流動性を
高めるために、まず解砕槽2に投入して小片状
(たとえば約5mm以下の長さ)に解砕する。解砕
槽2では、内容物の撹拌を行うとともに1台また
は2台の湿式解砕機(たとえば商品名スルーザー
ポンプ、小松ゼノア社製)を循環させる。解砕槽
2の底部4からは、解砕不可能な綴針などの金属
片、土砂を除去する。解砕された内容物は、一般
に移送ポンプ(図示しない)を経てサイクロン5
を通過し、ここで残存する金属片や土砂などを完
全に除去し、ついで該サイクロンから所望に応じ
てスクリーンやローラ脱水器(図示しない)を経
て混合槽6に投入する。解砕の必要がないチツプ
状のノツトかす、各種のスラツジなどは所望に応
じて混合槽6に直接投入してもよい。混合槽6で
は、濃度測定器7によつて水性廃液の濃度を約2
〜4重量%に定めて、該水性廃液の流動性を高め
るとともに、薬品槽8から結合剤、耐水剤などを
加えて強く撹拌する。一例として、結合剤は熱硬
化性フエノール系樹脂(たとえば商品名SK剤、
大日本インキ化学工業社製)および耐水剤はパラ
フイン系エマルジヨン(たとえば商品名WR+N
液、大日本インキ化学工業社製)である。熱硬化
性フエノール系樹脂の添加量は、水性廃液の絶乾
量100重量部に対して約2〜8重量部であり、一
般に添加量が多いほど繊維板の機械的強度が高く
なるけれども、所定量を超えると機械的強度は上
昇せずかつ所定量以下では硬質繊維板として使用
できない。一方、耐水剤の添加量は、水性廃液の
絶乾量100重量部に対して約1〜3重量部であり、
この範囲内が繊維板の所定の耐水性を維持するう
えで有効である。この場合には、さらに結合剤と
耐水剤の定着のために硫酸ばん土を適量添加して
水性廃液のPH値を4.5〜5.0に調整するとともに、
所望に応じて薬品槽8から塗料などを添加しても
よい。こうして得た水性廃液は、水を分散媒とし
たゾル状物質であり、たとえば遠心ポンプ(図示
しない)を経て原料タンク9に送る。原料タンク
9では撹拌を行い、ついで水性廃液は所望に応じ
て計量タンク(図示しない)を介して1次成形機
10へ定量装入する。 1次成形機10は、第3図に例示するような構
造を有する。1次成形機10において、上部の加
圧盤11は前面壁12に多数の貫通溝13を有
し、該前面壁の表面に金網14を張設する。加圧
盤11は、真空ポンプ(図示しない)によつて矢
印Vの方向に搾水する。また受盤15の前面壁1
6にも多数の貫通溝17を設け、該前面壁の表面
に金網18を張設するとともに、受盤15上に加
圧盤11の外径にほぼ等しい内径の型枠19を配
置し、貫通溝17から落下する液は矢印Fの方
向に排出する。水性廃液は、矢印Lのように投入
口20から型枠19内に入る。型枠19内の水性
廃液21は2段階で搾水され、まず第1段階で加
圧盤11を矢印Dの方向に移動して、たとえば面
圧約5〜10Kg/cm2で脱水する。ついで第2段階で
は、平板状の加圧盤(図示しない)を用いかつ型
枠19を除去して、面圧約10〜30Kg/cm2の高圧で
脱水して平板状に成形する。この結果、得た1次
成形板の含水率は約50%以下好ましくは40〜45%
になり、その厚みは流入時の約40〜45%である。
1次成形機10より排出された液は、液タン
ク22(第2図)に送り、該液タンクから移送
ポンプ(図示しない)を経て混合槽6に戻し、そ
の一部を排水として放出する。また1次成形機1
0で用いた洗浄水は、過タンク23に送り、該
過タンクから移送ポンプ(図示しない)を経て
解砕槽2に戻す。 1次成形板は、まだ含水率が高いので水分蒸発
処理することを要し、このために加熱炉24を通
過させる。この水分蒸発法としては、暗赤外線装
置(たとえば商品名インフラスタイン、日本碍子
社製)によつて200〜250℃に加熱乾燥しても、ス
チーム熱源によつて熱風加熱で乾燥してもよい
が、生産効率や設備面積などの点で暗赤外線装置
の方がすぐれている。加熱炉24を通過すると、
1次成形板の含水率は約22〜25%に低下する。 水分蒸発処理後の1次成形板は、さらに2次成
形機25によつて規定の厚みにまで2次成形す
る。2次成形機25としては、たとえば公知のホ
ツト多段プレスを用い、該プレスの熱板の温度は
170〜180℃前後、かつ面圧は約20〜30Kg/cm2に調
節する。2次成形によつて、繊維板の含水率は約
10%以下になる。 得た単層繊維板は、順次スリツタ26によつて
耳切りを行い、オートストツカ27に積載して倉
庫に保管する。倉庫では10〜15日間保管し、適当
に調湿してから出荷すればよい。 この考案に係る単層繊維板は、再利用できない
か再利用が相当に不経済な製紙廃棄物を原料とし
て用いるために安価であり、省資源効果を生じる
とともに公害の発生防止にも寄与できる。この考
案の繊維板は、単層で厚さ2〜15mmまで可能であ
るからそのままでも各種の用途に適応でき、積層
材とした際の製造工程の複雑化によるコストアツ
プや板材の剥離強度の低下などを回避できる。こ
の繊維板の用途としては、プレハブ住宅や木造家
屋の壁材、保温材、床材、天井板などの建築用パ
ネル、コンクリート型枠用板、家具や建具の心
材、自動車や造船・車両の内装材、電機器用部品
などが例示できる。また、パレツトの桁のように
主として耐圧を受ける用途の場合には、曲げ強度
がそれほど大きくなくてもよいので、単層で約50
mm以下の厚みまで形成可能である。 実施例 1 厚さ2.5mmの繊維板を試験的に製造するために、
板紙製造工程で生じたパルパーかす5Kg(絶乾
量、以下同じ)およびヤンソンスクリーン5Kgを
用いる。これらは水340を含む解砕槽に投入し、
解砕機(商品名スルーザーポンプ)で約10分間解
砕すると、長さ約5mmの小片状になる。この水性
廃液を混合槽に入れ、熱硬化性フエノール系樹脂
(商品名SK剤)を絶乾量の5重量%添加して10分
間撹拌し、ついでパラフイン系エマルジヨン(商
品名WR+N液)を添加して5分間撹拌してか
ら、硫酸ばん土を絶乾量の3重量%添加して撹拌
する。 得た水性廃液68を、1次成形機である加圧プ
レスの型枠(横975×縦975×高さ200mm)に送入
し、面圧5Kg/cm2で約25秒間ついで面圧15Kg/cm2
で約25秒間加圧する。得た1次成形板は、厚さ
3.9mm、重さ3.7Kg、含水率45%である。この1次
成形板は、暗赤外線装置(商品名インフラスタイ
ン)の加熱炉を通過させ、水分1.1を蒸発させ
る時の使用電気量は1KW/分である。次に2次
成形を行い、2次成形機のホツトプレスは熱源ス
チーム、熱板温度180℃であり、面圧20Kg/cm2
約2分間熱加圧する。最終製品は含水率8%前後
であり、その寸法は横975×縦975×厚さ2.5±0.5
mmである。 この繊維板の物性を、JIS A5905〜5907に従つ
て測定すると下記の通りである。
This invention relates to single-layer fiberboard obtained from paperboard manufacturing waste, which has traditionally been disposed of in landfills. Fibreboard according to the Japanese Standard (JIS) refers to a board made from vegetable fibers such as waste wood chips, bagasse, pulp shavings, and sawdust as main raw materials. Hard fiberboard is the best in terms of mechanical strength and water resistance. It is excellent. Therefore, although hard fiberboard has a wide range of uses such as building materials and packaging materials, it is quite expensive, so it is hoped that it will become cheaper. Apart from this problem, paperboard manufacturing plants mainly use a mixture of kraft pulp and waste paper as paperboard raw materials, which generates various wastes during the paperboard manufacturing process. For example, a large amount of knots (cooking) residue is generated during the production of kraft pulp, while pulper residue is generated when waste paper or pulp is disintegrated, and even after the disintegrated waste paper is blended with an appropriate paper stock, various screen residues and cleaners are generated. Dregs and terminal sludge are produced. Of these wastes, some of the knot and cleaner residues are used as raw materials for low-grade paper, the final sludge is recycled, and chipper dust is used as fuel for boilers, but most of them are used economically and effectively. Currently, there is no way to dispose of it, and it is difficult to dispose of it since it is generated in large quantities. In particular, waste such as pulper residue generated when disintegrating used paperboard includes gummed tape, vinyl tape, vinyl acetate adhesives, plastic film, staples, dirt, etc. that adhered to paper cartons and paper bags. There is no suitable disposal method other than landfilling, which is expensive and has been blamed for being a source of pollution. This invention was proposed in order to simultaneously solve the above-mentioned cost problems associated with conventional hard fiberboards and the problem of disposing of paper manufacturing waste discharged in large quantities from paper mills. It is therefore an object of this invention to provide an inexpensive single-layer fiberboard manufactured by advantageously processing large amounts of paper manufacturing waste. When manufacturing the single-layer fiberboard 1 as illustrated in FIG. 1, the raw material is paper manufacturing waste, and because it drains easily, waste from paperboard factories is mainly used.
The waste cannot be recycled or is considerably uneconomical to reuse by re-selection or recovery. Examples of this type of waste include pulper sludge, Jansson sludge, flat screen sludge, centric cleaner sludge, terminal sludge, and Japanese paper terminal sludge, etc., used alone or in combination of two or more to control the quality of the fiberboard obtained. For this purpose, knot dregs, adjusted sludge, etc. may be added. Pulper sludge, various types of screen sludge, and cleaner sludge include fibrous byproducts separated from waste paper and pulp, as well as duct tape, vinyl tape, vinyl acetate adhesive, plastic film, staples, earth and sand, etc. All but a portion of it can be used for manufacturing fiberboard. The single-layer fiberboard 1 according to this invention is made of about 20 small pieces of gummed tape, vinyl tape, vinyl acetate adhesive, plastic film, etc. contained in paper manufacturing waste.
Although ~30% by weight remains, most of these are melted during the high-temperature heating and pressurizing process, forming the fused material A.
This serves to increase the mechanical strength of the fiberboard 1. This fiberboard 1 includes various fibrous solids B
It has properties similar to those of kraft paper as a main component, so it has excellent heat retention and sound insulation properties, and the presence of a waterproofing agent also makes it excellent in water resistance and moisture resistance. Furthermore, this fiberboard 1 is heated to 100°C.
No change in shape occurs even after boiling in boiling water for 2 hours.
It can be cut with a saw and has excellent nail holding power.
Even when surface painting is performed, the decorative paint spreads well and does not peel off. This fiberboard 1 is a single layer with a thickness of 2~
It can be made up to 15mm and has a quality equivalent to that of hard fiberboard specified in JIS A5907, and its bending strength can be greatly increased by special treatment with oil, resin, etc. However, in applications where the bending strength does not need to be very high, approximately
Can be formed up to a thickness of 50mm or less. Next, the manufacturing process of the fiberboard 1 of this invention will be explained with reference to FIG. Pulper dregs, various screen dregs, and cleaner dregs, which have a high solid content among paper manufacturing wastes, are first put into the crushing tank 2 and crushed into small pieces ( For example, the material is crushed into pieces with a length of approximately 5 mm or less. In the crushing tank 2, the contents are stirred and circulated by one or two wet crushers (for example, Sluzer Pump, trade name, manufactured by Komatsu Zenoah Co., Ltd.). From the bottom 4 of the crushing tank 2, metal pieces such as staples that cannot be crushed and earth and sand are removed. The crushed contents generally pass through a transfer pump (not shown) to a cyclone 5.
Here, remaining metal pieces, earth and sand are completely removed, and the water is then fed from the cyclone to a mixing tank 6 via a screen or roller dehydrator (not shown) as desired. Chip-shaped knot dregs, various types of sludge, etc. that do not require crushing may be directly charged into the mixing tank 6 as desired. In the mixing tank 6, the concentration measuring device 7 measures the concentration of the aqueous waste liquid at approximately 2
-4% by weight to increase the fluidity of the aqueous waste liquid, and add a binder, a water resistance agent, etc. from the chemical tank 8 and stir vigorously. As an example, the binder may be a thermosetting phenolic resin (for example, the trade name SK agent,
(manufactured by Dainippon Ink & Chemicals Co., Ltd.) and the water resistant agent is a paraffin emulsion (for example, the product name WR+N
liquid, manufactured by Dainippon Ink and Chemicals Co., Ltd.). The amount of thermosetting phenolic resin added is approximately 2 to 8 parts by weight per 100 parts by weight of the aqueous waste liquid. Generally speaking, the larger the amount added, the higher the mechanical strength of the fiberboard. If it exceeds a certain amount, the mechanical strength will not increase, and if it is less than a certain amount, it cannot be used as a hard fiberboard. On the other hand, the amount of water resistance agent added is about 1 to 3 parts by weight per 100 parts by weight of the absolute dry amount of aqueous waste liquid,
A value within this range is effective for maintaining a predetermined water resistance of the fiberboard. In this case, the pH value of the aqueous waste liquid is adjusted to 4.5 to 5.0 by adding an appropriate amount of sulfuric acid to fix the binder and waterproofing agent.
If desired, paint or the like may be added from the chemical tank 8. The aqueous waste liquid thus obtained is a sol-like substance using water as a dispersion medium, and is sent to the raw material tank 9 via, for example, a centrifugal pump (not shown). Stirring is performed in the raw material tank 9, and then the aqueous waste liquid is quantitatively charged into the primary molding machine 10 via a measuring tank (not shown) as desired. The primary molding machine 10 has a structure as illustrated in FIG. In the primary forming machine 10, the upper press plate 11 has a front wall 12 with a large number of through grooves 13, and a wire mesh 14 is stretched over the surface of the front wall. The pressure plate 11 squeezes water in the direction of arrow V by a vacuum pump (not shown). Also, the front wall 1 of the receiving plate 15
6 are also provided with a large number of through grooves 17, a wire mesh 18 is stretched over the surface of the front wall, and a formwork 19 with an inner diameter approximately equal to the outer diameter of the pressure plate 11 is placed on the receiving plate 15, and the through grooves are The liquid falling from 17 is discharged in the direction of arrow F. The aqueous waste liquid enters the formwork 19 from the inlet 20 as indicated by arrow L. The aqueous waste liquid 21 in the formwork 19 is squeezed in two stages, and in the first stage, the pressure platen 11 is moved in the direction of arrow D to dehydrate it, for example, at a surface pressure of about 5 to 10 kg/cm 2 . Then, in the second step, using a flat pressure plate (not shown), the mold 19 is removed, and water is dehydrated under high pressure of about 10 to 30 kg/cm 2 to form a flat plate. As a result, the moisture content of the obtained primary formed plate is approximately 50% or less, preferably 40 to 45%.
The thickness is about 40-45% of the inflow.
The liquid discharged from the primary molding machine 10 is sent to a liquid tank 22 (FIG. 2), from which it is returned to the mixing tank 6 via a transfer pump (not shown), and a portion thereof is discharged as waste water. Also, primary molding machine 1
The washing water used in step 0 is sent to the overtank 23 and returned from the overtank to the crushing tank 2 via a transfer pump (not shown). Since the primary molded plate still has a high moisture content, it needs to be subjected to moisture evaporation treatment, and for this purpose it is passed through a heating furnace 24. This moisture evaporation method may be carried out by heating to 200 to 250°C using a dark infrared device (for example, Infrastein, manufactured by Nippon Insulators), or by heating with hot air using a steam heat source. , dark infrared equipment is superior in terms of production efficiency and equipment space. After passing through the heating furnace 24,
The moisture content of the primary formed plate is reduced to about 22-25%. The primary molded plate after the moisture evaporation treatment is further secondary molded to a specified thickness by a secondary molding machine 25. As the secondary forming machine 25, for example, a known hot multistage press is used, and the temperature of the hot plate of the press is
Adjust the temperature to around 170-180℃ and the surface pressure to about 20-30Kg/ cm2 . Due to secondary forming, the moisture content of the fiberboard is approximately
It will be less than 10%. The edges of the obtained single-layer fiberboard are sequentially cut using a slitter 26, loaded on an auto stocker 27, and stored in a warehouse. It can be stored in a warehouse for 10 to 15 days, and then shipped after adjusting the humidity appropriately. The single-layer fiberboard according to this invention is inexpensive because it uses paper manufacturing waste, which cannot be reused or is considerably uneconomical to recycle, as a raw material, and can save resources and contribute to the prevention of pollution. The fiberboard of this invention can be made into a single layer with a thickness of 2 to 15 mm, so it can be used as is for various purposes, and when it is made into a laminated material, the manufacturing process becomes complicated, which increases costs and reduces the peel strength of the board. can be avoided. Applications for this fiberboard include wall materials for prefabricated houses and wooden houses, insulation materials, flooring materials, architectural panels such as ceiling panels, boards for concrete formwork, core material for furniture and fittings, and interior decoration for automobiles, ships, and vehicles. Examples include materials, parts for electrical equipment, etc. In addition, for applications that are mainly subject to pressure resistance, such as pallet girders, the bending strength does not need to be very high, so a single layer can have a
It can be formed up to a thickness of mm or less. Example 1 To experimentally manufacture a fiberboard with a thickness of 2.5 mm,
5 kg of pulper dregs (absolutely dry weight, the same applies hereinafter) generated in the paperboard manufacturing process and 5 kg of Janson screen are used. These are put into a crushing tank containing 340 ml of water.
When crushed for about 10 minutes using a crusher (trade name: Suluzer Pump), it becomes small pieces about 5 mm in length. This aqueous waste liquid was placed in a mixing tank, and 5% by weight of the absolute dry amount of thermosetting phenolic resin (product name: SK agent) was added thereto, stirred for 10 minutes, and then paraffin-based emulsion (product name: WR+N liquid) was added. After stirring for 5 minutes, 3% by weight of sulfuric acid salt was added and stirred. The obtained aqueous waste liquid 68 was fed into the formwork (width 975 x length 975 x height 200 mm) of a pressure press, which is a primary molding machine, and the surface pressure was 5 kg/cm2 for about 25 seconds, and then the surface pressure was 15 kg/ cm2 . cm2
Pressurize for about 25 seconds. The obtained primary formed plate has a thickness of
It is 3.9mm, weighs 3.7Kg, and has a moisture content of 45%. This primary molded plate is passed through a heating furnace of a dark infrared device (trade name: Infrastein) to evaporate 1.1% of the moisture using 1KW/min of electricity. Next, secondary molding is performed, and the hot press of the secondary molding machine uses a steam heat source, a hot plate temperature of 180°C, and heat presses for about 2 minutes at a surface pressure of 20 kg/cm 2 . The final product has a moisture content of around 8%, and its dimensions are width 975 x height 975 x thickness 2.5 ± 0.5
mm. The physical properties of this fiberboard were measured according to JIS A5905-5907 and are as follows.

【表】 JIS A5907に規定する硬質繊維板S200では、規
準が比重0.8.以上、含水率5〜13%、曲げ強さ
200Kg/cm2以上、吸水率30%以下であることを要
し、この実施例の繊維板はすべての規準に合格し
ている。 実施例 2 厚さ12mmの繊維板を試験的に製造するために、
実施例1と同様の製造装置を用い、かつ実施例1
で得た水性廃液300を加圧プレスの型枠に送入
する。加圧プレスでは、面圧10Kg/cm2で約30秒間
ついで面圧20Kg/cm2で約30秒間加圧すると、厚さ
16mm、重さ15Kg、含水率45%の1次成形板とな
る。この1次成形板は、加熱炉を通して水分5
を使用電気量4.5KW/分で蒸発させ、次にホツ
トプレスによつて面圧20Kg/cm2で約10分間熱加圧
すると、最終製品の含水率は8%前後になる。 得た繊維板は、JIS A5907の規準にすべて合格
する。 実施例 3 厚さ3mmの繊維板を月産100000枚製造するため
に、月当りパルパーかす70トン(絶乾重量、以下
同じ)、ノツトかす75トン、終末スラツジ240ト
ン、調整スラツジ18トンを用いる。パルパーかす
だけは、あらかじめ解砕槽において1m3/分の割
合で解砕する。 これらの原料760Kg/時を実容積22m3の混合槽
に投入し、薬品槽から熱硬化性フエノール系樹脂
(商品名SK剤)(月間使用量20トン)ついでパラ
フイン系エマルジヨン(商品名WR+N液)(月
間使用量10トン)を添加し、さらに硫酸ばん土を
加えて水性廃液をPH4.5〜5.0に調整する。得た水
性廃液の水分は96.5%である。この水性廃液は、
実容積22m3の原料タンクに送つて撹拌し、さらに
計量タンクで1枚分113Kgを計量する。 1次成形機としては、油圧加圧方式のダブルワ
イヤおよび高圧プレス(第1段階出力120トン、
第2段階出力350トン)(山本鉄工所製)を用い、
型枠の形状は横920×縦1830×高さ68mmであり、
第1段階の面圧7Kg/cm2で水性廃液の含水率が60
%、そして第2段階の面圧20Kg/cm2で含水率が45
%に低下する。得た1次成形板は重さ10Kg/枚、
厚さ4.4mmであり、生産能率は4〜10m/分であ
る。この1次成形板は、350KWの暗赤外線装置
(商品名インフラスタイン)を用いた加熱炉で水
分蒸発処理を行い、該炉の使用電気量は
260KW/時、処理能力190枚/時である。この加
熱炉によつて、1次成形板の水分蒸発量は1.5
/枚であり、その厚みは4.0mmになる。 2次成形機としては、出力350トンで段数が10
段であるホツト多段プレス(山本鉄工所製)を用
い、面圧20Kg/cm2、熱板温度170℃でサイクル20
回/時で2次成形すると、横930×縦1840×厚さ
3mmの繊維板となる。次にスリツタで8秒/枚の
速度で耳切りを行い、横910×縦1820×厚さ3mm
の繊維板を得る。この繊維板は、積載枚数420枚
のオートストツカに積載して、倉庫に保管する。 得た繊維板は、JIS A5907の規準にすべて合格
する。
[Table] For hard fiberboard S200 specified in JIS A5907, the criteria are specific gravity of 0.8 or more, moisture content of 5 to 13%, and bending strength.
The fiberboard of this example passed all of the standards, with a water absorption rate of 200 kg/cm 2 or more and a water absorption rate of 30% or less. Example 2 To experimentally manufacture a fiberboard with a thickness of 12 mm,
Using the same manufacturing equipment as in Example 1, and in Example 1
The aqueous waste liquid obtained in step 300 is sent into the formwork of a pressure press. With a pressure press, press with a surface pressure of 10 kg/cm 2 for about 30 seconds, then press with a surface pressure of 20 kg/cm 2 for about 30 seconds, and the thickness
The primary formed plate is 16 mm long, weighs 15 kg, and has a moisture content of 45%. This primary formed plate is passed through a heating furnace to reduce moisture content.
is evaporated at an electricity consumption of 4.5 KW/min, and then heated and pressed using a hot press at a surface pressure of 20 Kg/cm 2 for about 10 minutes, resulting in a final product with a moisture content of around 8%. The obtained fiberboard passes all the standards of JIS A5907. Example 3 In order to produce 100,000 sheets of fiberboard with a thickness of 3 mm per month, 70 tons of pulper sludge (absolute dry weight, the same applies hereinafter), 75 tons of knot sludge, 240 tons of final sludge, and 18 tons of adjusted sludge are used per month. . Only the pulper residue is crushed in advance in a crushing tank at a rate of 1 m 3 /min. 760 kg/hour of these raw materials are put into a mixing tank with an actual volume of 22 m 3 , and from the chemical tank thermosetting phenolic resin (product name: SK agent) (monthly usage amount: 20 tons) is then mixed with paraffin emulsion (product name: WR+N liquid). (monthly usage amount: 10 tons) and further add sulfuric acid chloride to adjust the pH of the aqueous waste liquid to 4.5 to 5.0. The water content of the aqueous waste liquid obtained is 96.5%. This aqueous waste liquid is
The material is sent to a raw material tank with an actual volume of 22 m 3 and stirred, and then weighed out in a measuring tank to yield 113 kg per sheet. The primary forming machine is a hydraulic press type double wire and high pressure press (1st stage output: 120 tons,
2nd stage output 350 tons) (manufactured by Yamamoto Iron Works),
The shape of the formwork is 920 mm wide x 1830 mm long x 68 mm high.
The water content of the aqueous waste liquid is 60 at the surface pressure of 7Kg/ cm2 in the first stage.
%, and the moisture content is 45 at a surface pressure of 20 Kg/ cm2 in the second stage.
%. The obtained primary formed plate weighs 10 kg/sheet,
The thickness is 4.4 mm, and the production efficiency is 4 to 10 m/min. This primary formed plate undergoes moisture evaporation treatment in a heating furnace using a 350KW dark infrared device (trade name Infrastein), and the amount of electricity used in the furnace is
It has a processing capacity of 260KW/hour and a processing capacity of 190 sheets/hour. With this heating furnace, the amount of moisture evaporated from the primary formed plate is 1.5
/ sheet, and its thickness is 4.0 mm. As a secondary forming machine, the output is 350 tons and the number of stages is 10.
Using a hot multi-stage press (manufactured by Yamamoto Iron Works), a surface pressure of 20 kg/cm 2 and a hot plate temperature of 170°C were used for 20 cycles.
After secondary forming at a rate of 930 mm x 184 mm x 3 mm thick. Next, use a suritsuta to cut the edges at a speed of 8 seconds/sheet, and cut the edges to a width of 910mm x height of 1820mm x thickness of 3mm.
of fiberboard. This fiberboard will be loaded into an auto stocker with a capacity of 420 sheets and stored in a warehouse. The obtained fiberboard passes all the standards of JIS A5907.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る単層繊維板を例示する
斜視図、第2図は単層繊維板の製造工程を例示す
るフローシート、第3図は第2図の製造工程で用
いる1次成形機の要部を示す概略断面図である。 1…単層繊維板、A…融着物、B…繊維質固形
物。
Figure 1 is a perspective view illustrating the single-layer fiberboard according to this invention, Figure 2 is a flow sheet illustrating the manufacturing process of the single-layer fiberboard, and Figure 3 is the primary forming used in the manufacturing process of Figure 2. FIG. 2 is a schematic cross-sectional view showing the main parts of the machine. 1...Single layer fiberboard, A...fused material, B...fibrous solid material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 主として使用済みの板紙や古紙を離解する際に
生じるパルパーかす、スクリーンかす、クリーナ
かす、終末スラツジなどを原料とする平板であつ
て、小片状に解砕された繊維質固形物と、ガムテ
ープ、ビニルテープ、接着剤、フイルムなどのプ
ラスチツク小片からなり、更に結合剤として熱硬
化性フエノール系樹脂及び耐水剤を含有し、比重
0.8以上、曲げ強さ200Kg/cm2以上及び厚さ2〜15
mmの硬質繊維板にすることを特徴とする単層繊維
板。
It is a flat plate mainly made from pulper sludge, screen sludge, cleaner sludge, terminal sludge, etc. produced when disintegrating used paperboard and waste paper, and consists of fibrous solids crushed into small pieces, gummed tape, It consists of small pieces of plastic such as vinyl tape, adhesive, and film, and further contains a thermosetting phenolic resin and a water-resistant agent as a binder.
0.8 or more, bending strength 200Kg/cm 2 or more, and thickness 2 to 15
A single-layer fiberboard characterized by being made of mm hard fiberboard.
JP10585884U 1984-07-12 1984-07-12 single layer fiberboard Granted JPS6120600U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10585884U JPS6120600U (en) 1984-07-12 1984-07-12 single layer fiberboard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10585884U JPS6120600U (en) 1984-07-12 1984-07-12 single layer fiberboard

Publications (2)

Publication Number Publication Date
JPS6120600U JPS6120600U (en) 1986-02-06
JPH0213520Y2 true JPH0213520Y2 (en) 1990-04-13

Family

ID=30665163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10585884U Granted JPS6120600U (en) 1984-07-12 1984-07-12 single layer fiberboard

Country Status (1)

Country Link
JP (1) JPS6120600U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039371A (en) * 1973-08-13 1975-04-11

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593061Y2 (en) * 1979-02-09 1984-01-27 トキワケミコン株式会社 Formwork material for concrete foundation piles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039371A (en) * 1973-08-13 1975-04-11

Also Published As

Publication number Publication date
JPS6120600U (en) 1986-02-06

Similar Documents

Publication Publication Date Title
US4311554A (en) Incombustible material
Ihnát et al. Waste agglomerated wood materials as a secondary raw material for chipboards and fibreboards Part I. Preparation and characterization of wood chips in terms of their reuse
CN102085677A (en) New process for producing wooden composite material by using waste and used plywood cement templates
CN113201973A (en) Environment-friendly high-strength printing packaging paper and production process thereof
FI69161C (en) FOERFARANDE FOER FRAMSTAELLNING AV SVAORTAENDLIGA ELLER OBRAENNBARA PRODUKTER AV FIBROEST MATERIAL
JPH0213520Y2 (en)
KR20100112299A (en) Recycling process of papermaking sludge
JPH0643680B2 (en) Method for manufacturing single-layer fiberboard
JP2582052B2 (en) Primary molding method for aqueous waste liquid
JP2593139B2 (en) Aqueous waste liquid primary molding equipment
JP3673588B2 (en) Manufacturing method of hard fiber board
JP2720366B2 (en) Method for manufacturing single-layer fiberboard
KR910007581B1 (en) Method of manufacturing board
GB2395162A (en) A method of producing moulded products from waste paper`
Katlan Early wood-fiber panels: Masonite, hardboard, and lower-density boards
KR0163576B1 (en) Water registance board for construction and manufacturing method thereof
US2537101A (en) Process for manufacture of wallboard from lignocellulosic material
KR0143172B1 (en) Methodof recycling sludge and apparatus thereof
KR0163575B1 (en) Fire retardant board for construction and manufacturing method thereof
TW499330B (en) Method for preparing material for plasticized fiber board from pulp sludge and method for producing plasticized fiber board
KR101135812B1 (en) Interior Finish Building Materials For Using Waste Solid Manufacturing Method
RU2010702C1 (en) Compound for manufacturing soft wood filament tiles or like articles
CA1141514A (en) Incombustible material
JP2001073300A (en) Production of regenerated wood using waste paper
CN101100089A (en) Decorative board and its producing method