JPH02134900A - Device for inserting multipin component - Google Patents

Device for inserting multipin component

Info

Publication number
JPH02134900A
JPH02134900A JP63287647A JP28764788A JPH02134900A JP H02134900 A JPH02134900 A JP H02134900A JP 63287647 A JP63287647 A JP 63287647A JP 28764788 A JP28764788 A JP 28764788A JP H02134900 A JPH02134900 A JP H02134900A
Authority
JP
Japan
Prior art keywords
terminal pins
pins
pin
board
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287647A
Other languages
Japanese (ja)
Inventor
Kaoru Miyoshi
薫 三好
Masaichi Baba
馬場 政一
Yoichi Fukuoka
洋一 福岡
Masato Ueno
正人 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63287647A priority Critical patent/JPH02134900A/en
Publication of JPH02134900A publication Critical patent/JPH02134900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

PURPOSE:To cause the breakage of pins due to an inserting failure to be nipped in the bud and improve the safety of an inserting process by performing optimum positioning with respect to all of the terminal pins while coping with deviation of the through hole positions on a board. CONSTITUTION:When electronic components 1 are located just above the positions in which the electronic components 1 are inserted, a light projecting part 14 and a photodetector 13 of a measuring apparatus are set to each height in such a way that laser light is applied to pointed ends 2 of terminal pins and the measurement of the size of overlapping images as well as their center positions of the lined terminal pins is performed. A printed board 7 in which through holes 8 for inserting components 1 are provided is fixed to a moving stage 17 and positioning is performing by making the stage 17 move in two directions X and Y by means of two drive motors and guide mechanisms 15 and 16. A camera 31 is installed just above the moving stage 17 and all of the through holes on the board come into the field of vision of this camera and then their expanded images are taken in a monitor device. A personal computer 18 calculates the correction for alignment between the components and the board on the basis of measurement data of the terminal pins by means of a laser measuring apparatus 19 as well as measurement results of the hole positions by means of counting two directions X and Y.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多数の端子ピンを有するピングリッドアレイ
型の電子部品をプリント基板に挿入する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for inserting a pin grid array type electronic component having a large number of terminal pins into a printed circuit board.

〔従来の技術〕[Conventional technology]

電子部品の実装の分野では、高密度化を図る上で有利な
ため、X子部品の基板接続用の端子の数が増大する傾向
がある。特にピングリッドアレイ型といわれる部品は第
9図に示すように、裏面に数百本から数千率の端子ピン
2を有し、これら端子ピンを基板に設けたスルーホール
に一括して挿入、はんだ付をして接続する構造となって
いる。
In the field of electronic component mounting, there is a tendency for the number of terminals for connecting X-element components to boards to increase because it is advantageous for achieving higher density. In particular, a component called a pin grid array type has several hundred to several thousand terminal pins 2 on the back side, as shown in Figure 9, and these terminal pins are inserted all at once into through holes provided on the board. The structure is connected by soldering.

端子ピン2は一定のピッチで規則的に設けられて格子状
の配列となっておシ、挿入される基板側のスルーホール
もピンに対応して同様の配列となっている。
The terminal pins 2 are arranged regularly at a constant pitch to form a grid-like arrangement, and the through-holes on the board side into which they are inserted are also arranged in a similar manner corresponding to the pins.

このような多ピン部品を基板に挿入する際、全ての潮干
ピンが対応するスルーホールに挿入可能となるためには
、高精度の位置合せが必要となシ、人手による挿入は困
難である。また、機械による挿入を行なう時も、チャッ
クで把持する部品外周面の寸法誤差、部品外形に対する
端子ピンの植付は位置のはらつき、ならびに基板穴位置
のずれ等よシ基板や部品の設計寸法をもとにした定位置
の挿入では失敗する場合がある。さらに、一般にこれら
の部品は高額であるため、挿入失敗による端子ピンの破
損は避けなければならず、信頼性の高い挿入が要求され
る。
When inserting such a multi-pin component into a board, highly accurate positioning is required so that all the pins can be inserted into the corresponding through holes, and manual insertion is difficult. In addition, when inserting with a machine, there may be dimensional errors in the outer circumferential surface of the part gripped by the chuck, variations in the position of the terminal pins relative to the part outline, and deviations in board hole positions, etc., due to the design dimensions of the board and parts. In-place inserts based on may fail. Furthermore, since these components are generally expensive, damage to the terminal pins due to insertion failure must be avoided, and highly reliable insertion is required.

上記した部品や基板の寸法ばらつきのうち、特に端子ピ
ンは部品の製造工程やその後のノ・ノドリンク時に変形
が生じる可能性が高いので、これに対処してピン先端位
置を計測し基準からのずれを位置合わせ時の補正量とす
れば、挿入の確度は大幅に向上する。
Among the above-mentioned dimensional variations in parts and boards, there is a high possibility that terminal pins in particular will be deformed during the manufacturing process of the parts or during the subsequent no-no-linking process. If the deviation is used as the amount of correction during alignment, the accuracy of insertion will be greatly improved.

第10図にこの方法による従来例を示す(特開昭6l−
56000)。部品1の下面にある多数の端子ピン2の
うち、対角線位置にある3を基準ピンとし、これに光ガ
イド4で照明を与え、その反射光を同一面上にそれぞれ
2個ずつ設けである第1のセンサ5と第2のセンサ6で
検出し、部品1を正しい位置に補正する。センサ5,6
は、それぞれの光軸上に基準ピン3がある時、受光量最
大となるから、予めセンサ5,6を所定の位置に設置す
れば、部品を微動してそれぞれのセンサの出力が最大と
なる位置を捜すことで部品を前後、左右。
Figure 10 shows a conventional example using this method (Japanese Patent Application Laid-open No. 6-1-
56000). Among the many terminal pins 2 on the lower surface of the component 1, the diagonally located terminal pin 3 is used as a reference pin, and a light guide 4 illuminates this pin, and the reflected light is reflected from the terminal pins, two of which are provided on the same surface. The part 1 is detected by the first sensor 5 and the second sensor 6, and the part 1 is corrected to the correct position. Sensors 5, 6
Since the amount of light received is maximum when the reference pin 3 is on each optical axis, if the sensors 5 and 6 are installed in the predetermined positions in advance, the output of each sensor will be maximized by slightly moving the parts. Move parts forward, backward, left and right by searching for their position.

回転方向に位置決めすることができる。前述したように
部品位置決め時に最大の障害となるピン位置のずれに対
処して、部品外形ではなくピンによる位置決めを実現す
るこの方法は簡便で良い方式〔発明が解決しようとする
課題〕 しかしながら、上記従来技術は、特定の2本の端子ピン
を基準として位置合わせを行なうため、この2本のピン
の位置が本来の位置からずれている場合、大多数の他の
ピンが正しい位置にあっても、結果的に基準ピンの位置
に左右されて最適な位置合わせができ々いという問題が
あった。
It can be positioned in the rotational direction. As mentioned above, this method of realizing positioning using pins instead of the external shape of the component is a simple and good method that deals with the misalignment of the pin position, which is the biggest obstacle when positioning the component. Conventional technology performs alignment based on two specific terminal pins, so if the positions of these two pins deviate from their original positions, even if the majority of other pins are in the correct position. However, as a result, there was a problem in that it was difficult to achieve optimal positioning depending on the position of the reference pin.

格子状に配列された端子ピンのうち外周部や四隅にある
ものは変形を受は易い事実を考慮すると、格子配列の内
部も含めた多数のピン位置を参照して位置合わせを行な
う必要がある。また、端子ピンはど変形し易いものでは
ないが、基板のスルーホールもやはシ高い位置精度を保
つことが難しく、特に1個の部品に対応する穴同士は所
定の位置関係を満足しながらも、基板全体の伸縮等によ
り設計時の基準位置からずれを生じることがよく見られ
る。したがって、基板のスルーホールが形造る仮想的な
格子の位置も挿入時に測定して、そのずれを補正する必
要がある。
Considering the fact that among the terminal pins arranged in a lattice pattern, those located on the outer periphery or in the four corners are easily deformed, it is necessary to perform alignment by referring to a large number of pin positions, including those inside the lattice arrangement. . In addition, although terminal pins are not easily deformed, it is difficult to maintain high positional accuracy with through-holes on the board, especially when holes corresponding to one component are required to maintain a predetermined positional relationship. However, it is often seen that deviations from the reference position at the time of design occur due to expansion and contraction of the entire board. Therefore, it is necessary to measure the position of the virtual lattice formed by the through-holes in the substrate at the time of insertion, and to correct the deviation.

本発明の目的は、基板上のスルーホール位置のずれに対
処しつつ全ての端子ピンに最適な位置合わせが可能なピ
ングリッドアレイ型部品の挿入装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pin grid array type component insertion device that can optimally align all terminal pins while dealing with deviations in the positions of through holes on a board.

〔lW組を解決するための手段〕[Means for solving the lW set]

上記目的は、部品を把持したまま水平面内で回転し、か
つ任意の向きで停止可能なチャックを有する挿入ヘッド
機構と、チャックに把持された部品の列状に並んだ端子
ピンを横から見て重なり合うピンの像をとらえ、その太
さと中心位置を列ごとに一括して測定する手段と、プリ
ント基板を載せて直角2方向に移動し、位置決め可能な
テーブル機構と、当該テーブル上のプリント基板のスル
ーホールをカメラでとらえ、その位置を測定する手段と
、上記各測定手段による端子ピンおよびスルーホールの
位置測定結果から両者の位置合わせに必要な基準位置か
らの補正量を算出する計算手段とを備えた構成とするこ
とにより達成される。
The above purpose is to provide an insertion head mechanism that has a chuck that rotates in a horizontal plane while gripping a component and can be stopped in any direction, and a side view of the terminal pins arranged in a row on the component gripped by the chuck. A means for capturing images of overlapping pins and measuring their thickness and center position for each row at once, a table mechanism that can place a printed circuit board on it and move it in two directions at right angles to position it, and a table mechanism that can position the printed circuit board on the table. A means for capturing the through hole with a camera and measuring its position, and a calculating means for calculating the amount of correction from the reference position necessary for alignment of both from the position measurement results of the terminal pin and the through hole by each of the above measuring means. This is achieved by having a configuration with the following features.

〔作用〕[Effect]

端子ピン位置の測定は、部品を把持し次状態で行ない、
挿入を完了するまでつかみ替えはしないため、部品の外
形寸法誤差は位置合わせに影響を与えない、そして、列
状に並んだ端子ピンを横から見て重なり合うピンの像を
とらえ、その太さと中心位置を列ごとに一括して測定す
る次め、全端子ピンの位置情報を短時間に明らかにする
ことができる。すなわち、挿入ヘッドの回転機構で部品
を微小回転させ、−列に並んだピン列の幅を最小にする
ことでピン列の並びの向きが明らかとなり、さらに部品
を90″回転させ、直角2方向でそれぞれ各ピン列の中
心位置を求めることにより、把持した状態でのピン列の
位置が明らかとなる。
To measure the terminal pin position, grasp the component and perform it in the following state.
Since the grip is not changed until the insertion is complete, errors in external dimensions of the parts do not affect alignment. Also, when looking at the terminal pins lined up in a row from the side, you can capture the images of the overlapping pins and check their thickness and center. By measuring the position of each row at once, the position information of all terminal pins can be revealed in a short time. In other words, by slightly rotating the component using the rotation mechanism of the insertion head and minimizing the width of the rows of pins, the orientation of the rows of pins becomes clear, and then by rotating the component by 90'', the width of the rows of pins is minimized. By determining the center position of each pin row, the position of the pin row in the gripped state becomes clear.

基板のスルーホール位置の測定は、プリント基板を載せ
て直角2方向に移動し、位置決め可能なテーブル機構を
用いて、格子状に並んだスルーホールの代表穴を一つず
カメラでとらえて画面中心に入れ、その時のテーブル移
動量を検出して行なう、スルーホール位置のずれは、前
述した通り1個の部品に対応する穴同士は所定の位置関
係を満足しながらも基板全体の基準位置からのずれによ
り生じる誤差であるから、このような方法で少数の代表
穴に対して測定を行なうだけで十分である。
To measure the position of the through-holes on a board, place the printed circuit board, move it in two directions at right angles, use a table mechanism that allows positioning, and use a camera to capture each representative hole of the through-holes arranged in a grid pattern until the center of the screen is measured. The displacement of the through-hole position is determined by detecting the amount of table movement at that time.As mentioned above, although the holes corresponding to one component satisfy a predetermined positional relationship, the deviation of the through-hole position from the reference position of the entire board Since the error is caused by misalignment, it is sufficient to measure a small number of representative holes using this method.

最後に、端子ピンおよびスルーホールの位置測定結果を
もとに基準位置からのX、Y、6方向への補正量を計算
手段を用いて算出する。そして、この補正量に基づいて
基板を載せたテーブルをX。
Finally, based on the position measurement results of the terminal pins and through holes, correction amounts in the X, Y, and six directions from the reference position are calculated using a calculation means. Then, based on this correction amount, the table on which the board is placed is X.

Y方向に、部品を把持し九挿入ヘッド機構をθ方向にそ
れぞれ移動させることにより、所期の位置合わせを達成
できる。
By gripping the component in the Y direction and moving the nine insertion head mechanisms in the θ direction, the desired alignment can be achieved.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第8図によシ説明する
Embodiments of the present invention will be described below with reference to FIGS. 1 to 8.

第1因に示すように、多数の端子ピン2を有する電子部
品1はチャック9に把持され、チャック9は挿入ヘッド
10に取付けられて、モータ11によ)水平面内で回転
し、かつ任意の向きで停止可能となっている。挿入ヘッ
ド10は、ここには図示しない駆動モータとガイド機構
12により上下に挿入動作が可能で任意の位置に停止す
ることができる。
As shown in the first factor, an electronic component 1 having a large number of terminal pins 2 is gripped by a chuck 9, and the chuck 9 is attached to an insertion head 10, rotated in a horizontal plane (by a motor 11), and rotated in an arbitrary It can be stopped in any direction. The insertion head 10 can be inserted up and down by a drive motor and a guide mechanism 12 (not shown) and can be stopped at any position.

レーザを用いた測定機の投光部14と受光部13は、i
子部品1が挿入位置の直上にある時。
The light emitting part 14 and the light receiving part 13 of the measuring machine using a laser are i
When child part 1 is directly above the insertion position.

その端子ピン2の先端にレーザ光が照射される高さにセ
ットされ、後で詳述する列状に並んだ端子ピンの重なシ
合う像の太さと中心位置の測定が可能となっている。
It is set at a height such that the tip of the terminal pin 2 is irradiated with a laser beam, and it is possible to measure the thickness and center position of the overlapping image of the terminal pins arranged in a row, which will be described in detail later. .

部品1が挿入されるスルーホール8が設けられたプリン
ト基板7は移動ステージ17に図示されない手段によっ
て固定され、移動ステージ17は〜fはり図示されない
駆動モータ2台とガイド機構15.16によってX、Y
2方向に移動し位置決めが行なえる。
A printed circuit board 7 provided with a through hole 8 into which the component 1 is inserted is fixed to a moving stage 17 by means not shown, and the moving stage 17 is moved by two drive motors (not shown) and a guide mechanism 15, 16. Y
Can move in two directions for positioning.

カメラ31は移動ステージ17の直上に取付けられ、プ
リント基板7の全てのスルーホール8を視野に取り入れ
ることができ、図示されないモニタ装置にその拡大像を
写し出すようになっている。
The camera 31 is mounted directly above the moving stage 17, and can take in all the through holes 8 of the printed circuit board 7 into its field of view, and displays an enlarged image thereof on a monitor device (not shown).

つぎに、本実施例の制御部構成を第2図により説明する
。パーソナルコンピュータ(以下パソコンと称す)18
は、レーザ測定機フン)o−ル部19と接続され、端子
ピンの測定に関するデータの取り込みを行なう。また、
パソコン18はシーケンサ20を介して下記のモータに
移動指令を与えて各機構に所定の動作を行なわせる。2
1,22は移動ステージ17のモータ用ドライバ、23
゜24はX、Y各軸のモータを示し、移動ステージ17
の各方向の移動量はカウンタ25.26によって計α]
されパソコン18にフィードバックされる。28.27
はそれぞれ挿入ヘッド10のθ軸回転用モータとそのド
ライバを示し、30.29はそれぞれ挿入ヘッド10を
上下動させる挿入動作用の2軸モータとそのドライバを
示す、カメラ51がとらえた画像はモニタ装置32に写
し出される0点線で囲まれた部分33は作業者を表わし
、作業者33はモニタ装置32に写し出されたスルーホ
ール像が画面の中央に位置するまでジョイスティック6
4を使用して移動ステージ17上のプリント基板7の位
置を調節する。そして、スルーホール像が画面の中央に
一致した時に穴データ取込み用のボタン55を押して、
その時点の移動ステージ位置をパソコン18に取り込ま
せる。
Next, the configuration of the control section of this embodiment will be explained with reference to FIG. Personal computer (hereinafter referred to as a personal computer) 18
is connected to the laser measuring machine part 19, and takes in data related to the measurement of terminal pins. Also,
The personal computer 18 gives movement commands to the following motors via the sequencer 20 to cause each mechanism to perform a predetermined operation. 2
1 and 22 are motor drivers for the moving stage 17; 23;
゜24 indicates a motor for each of the X and Y axes, and the moving stage 17
The amount of movement in each direction is calculated by counters 25 and 26 and calculated by α]
and is fed back to the personal computer 18. 28.27
30 and 29 respectively indicate the θ-axis rotation motor and its driver of the insertion head 10, and 30 and 29 respectively indicate the two-axis motor and its driver for the insertion operation that moves the insertion head 10 up and down.The images captured by the camera 51 are shown on the monitor. A portion 33 surrounded by a zero-dot line projected on the device 32 represents the worker, and the worker 33 moves the joystick 6 until the through-hole image projected on the monitor device 32 is located at the center of the screen.
4 to adjust the position of the printed circuit board 7 on the moving stage 17. Then, when the through-hole image matches the center of the screen, press the hole data import button 55,
The moving stage position at that time is imported into the personal computer 18.

パソコン18は、レーザ測定機19による端子ピンの測
定データおよびX 、Y2方向のカウンタ25.26に
よる穴位置の測定結果をもとに部品と基板の位置合わせ
のための補正量算出を行なう。
The personal computer 18 calculates a correction amount for aligning the component and the board based on the terminal pin measurement data by the laser measuring device 19 and the hole position measurement results by the counters 25 and 26 in the X and Y directions.

また、後に記述するアルゴリズムに従って、挿入を行な
うための一連の動作指令もこのパソコン18により行な
われる。
The personal computer 18 also issues a series of operation commands for insertion according to an algorithm to be described later.

第6図は、本装置による1個の電子部品の挿入工程を示
すフローチャートである。挿入ヘッドに電子部品が把持
された状態から始まり、まず端子ピンの測定を行ない、
つぎに端子ピンが挿入される基板スルーホールのうち代
表として四隅穴の測定を行なう。端子ピン測定と基板穴
測定は平行して行なっても差支えない、また、端子ピン
測定において曲がりピンが検出された場合は、挿入を中
止してピンの破損を防止する。つぎに、端子ピンと基板
穴の測定結果をもとく位置合わせ補正量ΔX、ΔY、Δ
θを算出し、これに基づいて各軸のモータに移動指令を
与える。最後に、電子部品を基板に挿入して1個の電子
部品の挿入を終了する。
FIG. 6 is a flowchart showing the process of inserting one electronic component using this apparatus. Starting with the electronic component gripped by the insertion head, we first measure the terminal pins.
Next, among the board through-holes into which the terminal pins are inserted, the four corner holes are representatively measured. There is no problem even if the terminal pin measurement and board hole measurement are performed in parallel.If a bent pin is detected in the terminal pin measurement, insertion is stopped to prevent damage to the pin. Next, calculate the positioning correction amounts ΔX, ΔY, Δ based on the measurement results of the terminal pins and board holes.
θ is calculated, and based on this, a movement command is given to the motor of each axis. Finally, the electronic component is inserted into the board to complete the insertion of one electronic component.

この工程を繰9返すことによシ、複数個の電子部品の挿
入を行なう。
By repeating this process nine times, a plurality of electronic components are inserted.

つぎに、第3図により、端子ピンの測定を行なうために
本実施例で行なったレーザによる測定の原理を説明する
。36は測定機投光部14から照射されたレーザスキャ
ニング元を表わし、本来は微小な径のレーザスポット元
を測定機内部の回転鏡によシ走査元に変え、さらにレン
ズによシ平行に直したもので、走査方向の幅は電子部品
の端子ピン配列の長さと同等程度とすることができる。
Next, with reference to FIG. 3, the principle of laser measurement performed in this embodiment to measure terminal pins will be explained. Reference numeral 36 represents a laser scanning source irradiated from the measuring machine light projector 14. The laser spot source, which originally has a minute diameter, is converted into a scanning source by a rotating mirror inside the measuring machine, and is further converted into a scanning source in parallel with the lens. As a result, the width in the scanning direction can be made approximately equal to the length of the terminal pin array of the electronic component.

レーザ走査光の幅が端子ピン配列の長さより小さく、−
度に全列の測定ができない時は、部品を移動して数回に
分けて行なう対策が必要である。上記した測定機内部に
存在する回転鏡やレンズ等に関しては、同図への記載を
省略する0列状に並んだ端子ピン2をその先端部がレー
ザ走査光にかかるように置くと、レーザ光はピンにさえ
ぎられて影を生じる。そして、ピン列によって断続した
レーザ光を測定機受光部13にて再び一点に集光し、そ
の強度を検出する。この時、明あるいは暗の部分が持続
する時間を測定することによシ、図に示す寸法a、b、
oの測定が可能になる。
The width of the laser scanning beam is smaller than the length of the terminal pin arrangement, −
If it is not possible to measure all rows at once, it is necessary to move the parts and perform the measurement in several batches. Regarding the rotating mirror, lens, etc. inside the measuring machine described above, if the terminal pins 2 arranged in a row (not shown in the figure) are placed so that their tips are exposed to the laser scanning light, the laser beam will be emitted. is blocked by the pin, creating a shadow. Then, the laser light intermittent by the pin array is again focused on one point by the measuring device light receiving section 13, and its intensity is detected. At this time, by measuring the time that the bright or dark areas last, the dimensions a, b shown in the figure,
It becomes possible to measure o.

第4図は電子部品1上の端子ピン2に図の上方向からレ
ーザ走査光をあてた状態を示す模式図で。
FIG. 4 is a schematic diagram showing a state in which the terminal pin 2 on the electronic component 1 is irradiated with laser scanning light from the top of the figure.

レーザ測定機は図に示す影の部分の寸法B、〜85、お
よび隙間の部分の寸法t、〜t6 を測定する。
The laser measuring machine measures the dimensions B of the shaded portion shown in the figure, ~85, and the dimensions t, ~t6 of the gap portion.

影の部分の寸法S、〜85はピン列の幅であり、ピン列
の中心位置は列の幅の中央にあるとすれば、隙間の部分
の寸法t、〜t6と組み合わせて求めることができる。
The dimension S of the shaded part, ~85, is the width of the pin row, and if the center position of the pin row is at the center of the width of the row, it can be found by combining it with the dimension t, ~t6 of the gap part. .

各ピン列の中に大きな曲がりが生じたピンが含まれる場
合、ピン列の幅の測定値は変形量に応じて大きくなる。
If each pin row includes a pin that is significantly bent, the measured width of the pin row increases in accordance with the amount of deformation.

そこで、挿入不可能なピンが含まれる場合のピンの列の
幅の測定値を判定基準として各列の幅測定値8.〜B5
との大小を比較することで挿入の可否の判定が可能であ
る。この挿入可否の判定を行なって、もし挿入不可能な
端子ピンが存在することがわかった場合は、挿入を中止
すれば、さらに挿入失敗に対する安全性が高まる。
Therefore, the measured width of each row is 8.0, using the measured width of the row of pins when a pin that cannot be inserted is included as a criterion. ~B5
It is possible to determine whether insertion is possible by comparing the size with . If it is determined that there is a terminal pin that cannot be inserted, the insertion is stopped, thereby further increasing the safety against insertion failure.

レーザ走査光に対しピン列の並びが平行でない場合、挿
入へラド10の回転機構を用いて電子部品1を微小量回
転させることによ)、ピン列の幅の値が増減する。この
ことを利用して各ピン列の幅が最小となる部品の向きを
求めることによシ、ピン先端の形造る仮想格子をレーザ
光の方向と平行にすることができる。後に説明する基板
との位置合わせの際、部品をこの状態にすれば、端子ピ
ンが原因となる回転補正を省略することができる。
If the pin rows are not aligned parallel to the laser scanning light, the width of the pin rows is increased or decreased by rotating the electronic component 1 by a minute amount using the rotation mechanism of the insertion rod 10. By utilizing this fact to find the orientation of the component where the width of each pin row is the minimum, it is possible to make the virtual grating formed by the pin tips parallel to the direction of the laser beam. If the component is placed in this state during alignment with the board, which will be described later, rotation correction caused by the terminal pin can be omitted.

一方向での測定が終了したら、部品を挿入ヘッド10の
回転機構によシ直角方向に回転して同様の測定を行表い
、X、Y両方向に関する端子ピンの位置を求める。各方
向での測定では全列に関するデータを得ることが望まし
いが、場合によっては列を分割して測定することも可能
である。これらの測定値の果状ならびに測定結果の計算
処理、挿入ヘッドの回転動作等はパソコン18により自
動で行なわれる。
After the measurement in one direction is completed, the component is rotated in the right angle direction by the rotation mechanism of the insertion head 10 and a similar measurement is made to determine the position of the terminal pin in both the X and Y directions. Although it is desirable to obtain data regarding all rows when measuring in each direction, it is also possible to measure the rows by dividing them depending on the case. The calculation of the results of these measurements, the calculation of the measurement results, the rotation of the insertion head, etc. are automatically performed by the personal computer 18.

第5図は、このようにして得た端子ピンの位置の測定結
果からピンの形造る仮想格子の基準位置からのずれを求
める方法を示す、前述した方法で求めた各列の中心が本
来あるべき位置から離れている量をd、〜d5 とする
と、求める仮想格子のずれ量はこれを平均してdxと算
出する。Y方向に関しても同様にずれ量dyを算出する
Figure 5 shows how to calculate the deviation from the reference position of the virtual grid formed by the pins from the measurement results of the terminal pin positions obtained in this way. Assuming that the amount of deviation from the desired position is d, ~d5, the amount of deviation of the virtual grid to be sought is calculated as dx by averaging this amount. The amount of deviation dy is calculated in the same way in the Y direction.

つぎに、第7図によシカメラ測定時の穴位置と電子部品
の位置関係を説明する。H1〜H4は代表穴とした四隅
穴を示し、その座標はカメラ31による測定によって得
られる。 C,e C2はカメラ31と挿入ヘッド10
の回転中心間の距離を示し、これは装置調整段階で一度
測定を行なう必要がある。−度測定すれば、その後は定
数としてそのまま使用できる。dx、d)’は前述し九
端子ピンの位置測定結果である。ピンが形成する格子の
基準位置からのずれ量である。Sは四隅ピンの目標位置
の寸法で、これは次に記す最小二乗法による補正量算出
において基板穴H5〜H4を近付ける目標の仮想的な四
隅ピンP、〜P4の位置を生成するための寸法である。
Next, the positional relationship between the hole position and the electronic component at the time of camera measurement will be explained with reference to FIG. H1 to H4 indicate four corner holes as representative holes, and the coordinates thereof are obtained by measurement with the camera 31. C, e C2 is the camera 31 and the insertion head 10
This indicates the distance between the centers of rotation of the device, which needs to be measured once during the device adjustment stage. - Once measured, it can be used as a constant. dx, d)' is the result of position measurement of the nine terminal pins described above. This is the amount of deviation from the reference position of the grid formed by the pins. S is the dimension of the target position of the four corner pins, and this is the dimension for generating the position of the target virtual four corner pins P, ~P4 to bring the substrate holes H5 to H4 closer together in the correction amount calculation using the least squares method described below. It is.

このSにより、P、〜P4は次のように算出する。Using this S, P and ~P4 are calculated as follows.

p、 =ニー< C4l C2)+(dx I a)’
 ) + (−8,5)P2 ”(C1+C2)+(d
x+d7)+(S+  S)p、=(C,+02)+(
ax、ay)+(s、−5)P4=CG、、C2)+(
dX、d7)+(SIS)第8図は最小二乗法による補
正移動量算出法の概念を示す図で、n本のピンのうち1
番目のピンをPl、それに対応する1番目の穴をHlと
し、それぞれのX+y座標をPit l pt21 h
il l h12とする。これら対応するピンと穴同士
の距離の全ての組み合わせについての二乗和が最小とな
るように、基板をΔX、ΔY1部品をΔθだけ補正移動
させる。この移動量ΔX、ΔY、Δθはピンと穴の位置
座標を与えるだけで算出できるので、その計算式を下記
する。
p, = knee < C4l C2) + (dx I a)'
) + (-8,5)P2 ”(C1+C2)+(d
x+d7)+(S+S)p,=(C,+02)+(
ax, ay)+(s,-5)P4=CG,,C2)+(
dX, d7) + (SIS) Figure 8 is a diagram showing the concept of the correction movement amount calculation method using the least squares method.
The th pin is Pl, the corresponding 1st hole is Hl, and the respective X+y coordinates are Pit l pt21 h
Let it be il l h12. The board is corrected by ΔX and ΔY1 components are moved by Δθ so that the sum of squares for all combinations of distances between corresponding pins and holes is minimized. The amounts of movement ΔX, ΔY, and Δθ can be calculated by simply giving the position coordinates of the pin and hole, so the calculation formula is shown below.

ΔXニー(■ΔθΣP1.−―ΔθΣP□2−Σh1.
)・・・(11ΔY=−(―ΔθΣPi1−μsΔθΣ
P12−Σh1□)・・・(2)ftl 、 tz1式
におけるΔθは、(3)式の結果を代入して計算する。
ΔX knee (■ΔθΣP1.--ΔθΣP□2-Σh1.
)...(11ΔY=-(-ΔθΣPi1-μsΔθΣ
P12-Σh1□) (2) Δθ in the ftl, tz1 formula is calculated by substituting the result of the formula (3).

この最小二乗法による位置合わせ補正を行なうことによ
り、計算対象とした全てのピンと穴に最適な位置を求め
ることができる。本実施例においては、全列測定結果に
基づく端子ビ/配列の位置情報と四隅大測定による四穴
の座標に本計算を適用して部品と基板の位置合わせを行
なう。
By performing alignment correction using this least squares method, it is possible to find optimal positions for all the pins and holes targeted for calculation. In this embodiment, the components and the board are aligned by applying this calculation to the terminal pin/array position information based on the measurement results of all columns and the coordinates of the four holes based on the four-corner measurements.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明してき九ように本発明によれば、基板上
のスルーホール位置のずれに対処しつつ全ての端子ピン
に最適な位置合わせが可能なので、挿入失敗によるピン
の破損を未然に防止でき、さらに挿入工程の安全性が高
まるため、回路接続の信頼性を向上する効果がある。
As explained in detail above, according to the present invention, it is possible to optimally align all the terminal pins while dealing with the misalignment of the through-hole positions on the board, so it is possible to prevent damage to the pins due to insertion failure. Furthermore, the safety of the insertion process is increased, which has the effect of improving the reliability of circuit connections.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す斜視図、第2図は実施例
の制御部構成を示す図、第5図はレーザによる端子ピン
の測定原理を示す図、第4図はレーザによる端子ピンの
測定状態を示す上面図、第5図はピン位置を求める方法
を示した上面図、第6図は挿入工程を示すフローチャー
ト、第7図は位置合わせ時のピンと穴の位置関係を示す
模式図、第8図は補正量算出法を示す斜視図、第9図(
a)。 (b)は対象製品を示す側面図および下面図、第10図
は従来技術を示す模式図である。 1・・・・・・電子部品、    2・・・・・・端子
ピン7・・・・・・プリント基板、 8・・・・・・ス
ルーホール9・・・・・・チャック、    10・・
・・・・挿入ヘッド12・・・・・・昇降ガイド、 13.14・・・・・・レーザ測定機 17・・・・・・移動ステージ 18・・・・・・パソコン 19・・・・・・レーザ測定機制御部 20・・・・・・シーケンス 25.24・旧・・移動ステージ用モータ25.26・
・・・・・カウンタ 51・・・・・・カメラ 32・・・・・・モニタ装置 33・・・・・・作業者。 jp11図 第2図 第6図 第4図 第5図 第6図 」7図 蔦8図 0〕 e 第9図
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of the control section of the embodiment, FIG. 5 is a diagram showing the principle of measuring terminal pins using a laser, and FIG. 4 is a diagram showing terminal pins using a laser. Fig. 5 is a top view showing the pin measurement state, Fig. 5 is a top view showing the method for determining the pin position, Fig. 6 is a flowchart showing the insertion process, and Fig. 7 is a schematic showing the positional relationship between the pin and hole during alignment. Figure 8 is a perspective view showing the correction amount calculation method, Figure 9 (
a). (b) is a side view and bottom view showing the target product, and FIG. 10 is a schematic diagram showing the prior art. 1...Electronic component, 2...Terminal pin 7...Printed circuit board, 8...Through hole 9...Chuck, 10...
... Insertion head 12 ... Lifting guide, 13.14 ... Laser measuring machine 17 ... Moving stage 18 ... Personal computer 19 ... ...Laser measuring machine control unit 20...Sequence 25.24.Old..Motor for moving stage 25.26.
... Counter 51 ... Camera 32 ... Monitor device 33 ... Operator. e Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1.ピングリッドアレイ型部品の端子ピンをプリント基
板に設けられたスルーホールに挿入する装置において、
部品を把持したまま水平面内で回転し、かつ任意の向き
で停止可能なチャックを有する挿入ヘッド機構と、チャ
ックに把持された上記部品の列状に並んだ端子ピンを横
から見て重なり合うピンの像をとらえ、その太さと中心
位置を列ごとに一括して測定する手段と、プリント基板
を載て直角2方向に移動し、位置決め可能なテーブル機
構と、当該テーブル上のプリント基板のスルーホールを
カメラでとらえ、その位置を測定する手段と、上記各測
定手段による端子ピンおよびスルーホールの位置測定結
果から両者の位置合せに必要な基準位置からの補正量を
算出する計算手段とを備えたことを特徴とする多ピン部
品の挿入装置。
1. In a device that inserts terminal pins of pin grid array type components into through holes provided on a printed circuit board,
An insertion head mechanism has a chuck that rotates in a horizontal plane while gripping a component and can be stopped in any direction, and terminal pins arranged in a row on the component gripped by the chuck are arranged in a row, and when viewed from the side, pins overlap each other. A means for capturing an image and measuring its thickness and center position for each row at once, a table mechanism that can place a printed circuit board and move it in two directions at right angles to position it, and a through hole in the printed circuit board on the table. It is equipped with a means for capturing the position with a camera and measuring its position, and a calculation means for calculating the amount of correction from the reference position necessary for alignment of both terminal pins and through holes from the position measurement results of the terminal pins and through holes by each of the above measuring means. A device for inserting multi-pin components.
JP63287647A 1988-11-16 1988-11-16 Device for inserting multipin component Pending JPH02134900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287647A JPH02134900A (en) 1988-11-16 1988-11-16 Device for inserting multipin component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287647A JPH02134900A (en) 1988-11-16 1988-11-16 Device for inserting multipin component

Publications (1)

Publication Number Publication Date
JPH02134900A true JPH02134900A (en) 1990-05-23

Family

ID=17719919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287647A Pending JPH02134900A (en) 1988-11-16 1988-11-16 Device for inserting multipin component

Country Status (1)

Country Link
JP (1) JPH02134900A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354198A (en) * 1991-05-31 1992-12-08 Matsushita Electric Ind Co Ltd Component inserting apparatus
JP2001230597A (en) * 1999-12-08 2001-08-24 Fuji Mach Mfg Co Ltd Detection method for electrical component position
JP2007086023A (en) * 2005-09-26 2007-04-05 Fujitsu Ltd Detector, method and program for detecting reference point of printed board via
WO2021191980A1 (en) * 2020-03-23 2021-09-30 株式会社Fuji Workpiece insertion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354198A (en) * 1991-05-31 1992-12-08 Matsushita Electric Ind Co Ltd Component inserting apparatus
JP2001230597A (en) * 1999-12-08 2001-08-24 Fuji Mach Mfg Co Ltd Detection method for electrical component position
JP2007086023A (en) * 2005-09-26 2007-04-05 Fujitsu Ltd Detector, method and program for detecting reference point of printed board via
JP4548291B2 (en) * 2005-09-26 2010-09-22 富士通株式会社 Reference point detection apparatus, detection method, and detection program for printed board via
WO2021191980A1 (en) * 2020-03-23 2021-09-30 株式会社Fuji Workpiece insertion device

Similar Documents

Publication Publication Date Title
US4738025A (en) Automated apparatus and method for positioning multicontact component
US6640002B1 (en) Image processing apparatus
US7181089B2 (en) Method and apparatus for searching for fiducial marks, and method of detecting positions of the fiducial marks
US7746481B2 (en) Method for measuring center of rotation of a nozzle of a pick and place machine using a collimated laser beam
US20010000904A1 (en) Solder bump measuring method and apparatus
US6563530B1 (en) Camera position-correcting method and system and dummy component for use in camera position correction
JP5457665B2 (en) Electronic component mounting device
JP2617378B2 (en) Component mounting equipment
JP3644846B2 (en) Moving error detection apparatus and method for drawing apparatus
JP2000035676A (en) Division successive proximity aligner
JPH02134900A (en) Device for inserting multipin component
JP3644848B2 (en) Position calibration apparatus and method for alignment scope
JP5572247B2 (en) Image distortion correction method
JPH06140799A (en) Component mounting method
JP3265143B2 (en) Component mounting method and device
JPH0645796A (en) Part mounting method
JP4077228B2 (en) Electronic component mounting device
JP3774320B2 (en) Wafer position grasping method, exposure method, and exposure apparatus
JP3697948B2 (en) Electronic component mounting method
JP2533375B2 (en) Lead and bump position detection method in tape bonding
JP5113657B2 (en) Surface mounting method and apparatus
EP1282350B1 (en) Electronic component mounting apparatus
JP2510695B2 (en) Method and device for inserting multi-pin component
JP3310752B2 (en) Electronic component recognition device
JP7142092B2 (en) Template making device and component mounting machine