WO2021191980A1 - Workpiece insertion device - Google Patents

Workpiece insertion device Download PDF

Info

Publication number
WO2021191980A1
WO2021191980A1 PCT/JP2020/012771 JP2020012771W WO2021191980A1 WO 2021191980 A1 WO2021191980 A1 WO 2021191980A1 JP 2020012771 W JP2020012771 W JP 2020012771W WO 2021191980 A1 WO2021191980 A1 WO 2021191980A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
pin
rotation angle
insertion device
corresponding hole
Prior art date
Application number
PCT/JP2020/012771
Other languages
French (fr)
Japanese (ja)
Inventor
祐一郎 菊川
信夫 大石
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2022509790A priority Critical patent/JP7397170B2/en
Priority to PCT/JP2020/012771 priority patent/WO2021191980A1/en
Priority to DE112020006953.2T priority patent/DE112020006953T5/en
Priority to CN202080097569.8A priority patent/CN115211250A/en
Publication of WO2021191980A1 publication Critical patent/WO2021191980A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0813Controlling of single components prior to mounting, e.g. orientation, component geometry

Definitions

  • This specification discloses the work insertion device.
  • a component mounting machine for inserting each lead of a lead component into a corresponding insertion hole at a mounting location
  • This component mounting machine measures the measured position of each lead of the lead component with a component recognition camera, and calculates the regression line of the measured position by the least squares method.
  • the component mounting machine measures the measured position of each insertion hole at the mounting location with a board recognition camera, and calculates by the least squares method of the regression line of the measured position.
  • the component mounting machine adjusts the rotation angle of the lead component when the head unit attaches the lead component to the attachment location based on the angle formed by the regression line calculated for the lead component and the regression line calculated for the attachment location.
  • the regression line is calculated so as to be strongly influenced by the measured positions of many other leads having no misalignment. Therefore, in the component mounting machine described in Patent Document 1, even if the rotation angle of the lead component is adjusted based on the regression line, the position of the lead having a misalignment is not sufficiently corrected and cannot be inserted into the corresponding insertion hole. There is a risk.
  • the main purpose is to provide a work insertion device capable of inserting each pin into a corresponding hole.
  • the workpiece insertion device of the present disclosure is A work insertion device that inserts each pin of a work having a plurality of arranged pins into a corresponding hole of an object to be inserted having a plurality of arranged holes.
  • the actual position of each pin of the work is measured, the amount of displacement of the actual position measured at each pin with respect to the ideal position is calculated, and the rotation angle range of the work relative to the object to be inserted is described as described above.
  • the rotation angle of the work is obtained so that the amount of misalignment of the pin having the maximum amount of misalignment is minimized, and the rotation angle of the work is obtained when each pin of the work is inserted into the corresponding hole of the object to be inserted.
  • a control device that controls the rotating device so that the rotation angle is different, The gist is to prepare.
  • the work insertion device of the present disclosure measures the actual position of each pin of the work, and calculates the amount of displacement of the measured actual position at each pin with respect to the ideal position. Subsequently, the work inserting device obtains a rotation angle of the work such that the amount of misalignment of the pin having the maximum amount of misalignment within the range of rotation angles of the work relative to the object to be inserted is minimized. Then, the work inserting device controls the rotating device so that the rotation angle of the work becomes the obtained rotation angle when inserting each pin of the work into the corresponding hole of the object to be inserted.
  • each pin of a work having a plurality of pins is inserted into a corresponding hole of an object to be inserted having a plurality of holes, even if only some of the pins of the plurality of pins are misaligned. , Each pin can be inserted into the corresponding hole.
  • FIG. 1 is a schematic configuration diagram of the work insertion device of the present embodiment.
  • FIG. 2 is a control block diagram of the work insertion device 10.
  • the left-right direction indicates the X-axis direction
  • the front-back direction indicates the Y-axis direction
  • the up-down direction indicates the Z-axis direction.
  • each pin P of the work W for example, a connector
  • having a plurality of pins P for example, pins having a quadrangular end face
  • the work insertion device 10 includes a work supply device 21, a transfer device 22, a head moving device 30, a head 40, a work camera 24, a mark camera 25, a disposal box 26, and a control device 60 (see FIG. 2). ) And. These are housed in the housing 12.
  • Examples of the work supply device 21 include a tray supply device that supplies a tray having a large number of storage pockets for accommodating the work W.
  • the transport device 22 has, for example, a pair of conveyor belts that are installed at predetermined intervals in the front-rear direction (Y-axis direction) and are bridged to the left and right (X-axis direction).
  • the transport device 22 transports the substrate S as an insert from left to right by driving a pair of conveyor belts.
  • the head moving device 30 moves the head 40 back and forth and left and right (in the XY axis direction), and includes an X-axis slider 32 and a Y-axis slider 34 as shown in FIG.
  • the X-axis slider 32 is supported by a pair of upper and lower X-axis guide rails 33 installed so as to extend in the left-right direction (X-axis direction) on the front surface of the Y-axis slider 34.
  • the X-axis slider 32 moves in the X-axis direction along the X-axis guide rail 33 by driving the X-axis actuator 36 (see FIG. 2).
  • the Y-axis slider 34 is supported by a pair of left and right Y-axis guide rails 35 installed so as to extend in the front-rear direction (Y-axis direction) at the upper stage of the housing 12.
  • the Y-axis slider 34 moves in the Y-axis direction along the Y-axis guide rail 35 by driving the Y-axis actuator 38 (see FIG. 2).
  • the position of the X-axis slider 32 in the X-axis direction is detected by the X-axis position sensor 37 (see FIG. 2).
  • the position of the Y-axis slider 34 in the Y-axis direction is detected by the Y-axis position sensor 39 (see FIG. 2).
  • a head 40 is attached to the X-axis slider 32. Therefore, the head 40 moves along the XY plane (horizontal plane) by driving and controlling the head moving device 30 (X-axis actuator 36 and Y-axis actuator 38).
  • the head 40 includes a suction nozzle 41 that picks up (sucks) and holds the work W.
  • a negative pressure source is connected to the suction nozzle 41 via an electromagnetic valve (opening / closing valve), and the suction nozzle 41 receives the supply of negative pressure from the negative pressure source and sucks the work W.
  • the suction nozzle 41 moves in the vertical direction (Z-axis direction) by driving the Z-axis actuator 42 (see FIG. 2), and rotates around the Z-axis by driving the ⁇ -axis actuator 44 (see FIG. 2).
  • the position of the suction nozzle 41 in the Z-axis direction is detected by the Z-axis position sensor 43 (see FIG. 2), and the position (rotation angle ⁇ ) in the ⁇ -axis direction is detected by the ⁇ -axis position sensor 45 (see FIG. 2). Will be done.
  • the work camera 24 is installed between the work supply device 21 and the transfer device 22.
  • the work camera 24 picks up the work W supplied by the work supply device 21 and mounts (inserts) it on the substrate S conveyed by the transfer device 22, the work camera 24 is concerned when the work W passes above the work camera 24.
  • the work W is imaged from below.
  • the image captured by the work camera 24 determines the amount of misalignment of the work W held in the suction nozzle 41 with respect to the suction nozzle 41, or inserts each pin P of the work W into the corresponding insertion hole H of the substrate S. It is used to determine the optimum posture of the work W for the work W and to determine the defect of the work W.
  • the mark camera 25 is attached to the X-axis slider 32 and moves in the XY-axis direction together with the head 40 by the head moving device 30.
  • the mark camera 25 takes an image of the reference mark attached to the substrate S carried in by the transport device 22 from above.
  • the image captured by the mark camera 25 is used for confirming the position of the substrate S and confirming the type of the substrate S.
  • the disposal box 26 is installed adjacent to the work camera 24 between the work supply device 21 and the transfer device 22.
  • the disposal box 26 is a box for discarding the work W in which a defect has occurred.
  • the control device 60 is configured as a microprocessor centered on a CPU 61, and includes a ROM 62, an HDD 63, a RAM 64, and an input / output interface 65 in addition to the CPU 61. These are electrically connected via the bus 66. Position signals from the X-axis position sensor 37, the Y-axis position sensor 39, the Z-axis position sensor 43, and the ⁇ -axis position sensor 45 are input to the control device 60. Further, image signals from the work camera 24 and the mark camera 25 are also input to the control device 60.
  • control device 60 outputs a drive signal to the work supply device 21, the transfer device 22, the X-axis actuator 36, the Y-axis actuator 38, the Z-axis actuator 42, and the ⁇ -axis actuator 44. Further, the control device 60 also outputs a control signal to the work camera 24 and the mark camera 25.
  • FIG. 3 is a flowchart showing an example of the work insertion process executed by the CPU 61 of the control device 60. This process is executed when a production instruction is received from a higher-level management computer (not shown).
  • the CPU 61 of the control device 60 first performs a suction operation of sucking the upper surface of the work W supplied from the work supply device 21 to the suction nozzle 41 (step S100).
  • the head moving device 30 X-axis actuator 36 and Y-axis actuator 38
  • the suction nozzle 41 moves above the supply position of the work W by the work supply device 21, and then the suction nozzle 41 descends. This is performed by controlling the Z-axis actuator 42 and controlling the solenoid valve so that a negative pressure is supplied to the suction nozzle 41.
  • the CPU 61 controls the head moving device 30 so that the suction nozzle 41 sucking the work W moves upward of the work camera 24 (step S110), and the work camera 24 takes an image of the work W (step S120). ). Then, the CPU 61 performs image processing on the obtained captured image (step S130).
  • the optimum insertion posture (insertion position and insertion angle) of the work W for inserting all the pins P of the work W into the corresponding insertion holes H of the substrate S is determined. Further, in the image processing, it is determined whether or not all the pins P of the work W can be inserted into the corresponding insertion holes H of the substrate S by optimizing the insertion posture of the work W. Details of such image processing will be described later.
  • step S140 When the CPU 61 determines as a result of image processing that all the pins P of the work W can be inserted into the corresponding insertion holes H of the substrate S (“YES” in step S140), the insertion position and insertion angle of the work W are determined. The insertion position and insertion angle optimized by image processing are corrected (step S150). Then, the CPU 61 performs an insertion operation of inserting each pin P of the work W into the corresponding insertion hole H of the substrate S at the corrected insertion position and insertion angle (step S160), and ends the work insertion process.
  • the head moving device 30 and the ⁇ -axis actuator 44 are controlled so that the work W sucked by the suction nozzle 41 moves above the insertion position and rotates to the insertion angle, and then the suction nozzle 41 descends. This is performed by controlling the Z-axis actuator 42 and controlling the solenoid valve so that the supply of negative pressure to the suction nozzle 41 is released.
  • step S140 when the CPU 61 determines as a result of image processing that any pin P of the work W cannot be inserted into the corresponding insertion hole H of the substrate S (“NO” in step S140), a defect occurs in the work W. It is determined that the work W is being discarded, and a disposal operation of discarding the work W to the disposal box 26 is performed (step S170), and the work insertion process is completed.
  • the disposal operation after controlling the head moving device 30 so that the work W adsorbed on the suction nozzle 41 moves above the disposal box 26, the solenoid valve is set so that the supply of negative pressure to the suction nozzle 41 is released. It is done by controlling.
  • step S130 the details of the image processing in step S130 will be described.
  • 4 and 5 are flowcharts showing an example of image processing.
  • image processing will be described with reference to FIGS. 6 to 15 as appropriate.
  • the CPU 61 first searches all the pins P of the work W and recognizes the center position O of the work W (step S200).
  • all pins P are recognized by pattern matching using pre-registered shape data, a rectangular area including all recognized pins P is set, and the center coordinates of the set rectangular area are set as work W. This is done by setting the center position O of (see FIG. 6).
  • each pin P of the work W individually searches each pin P of the work W and recognizes the actual position of each pin P (step S210).
  • each pin P is individually recognized by pattern matching using shape data, and the center coordinates (coordinates of intersections of cross marks in FIG. 7) of the outer shape (quadrangle) of each recognized pin P are respectively recognized. This is done by setting it as the actual position.
  • the CPU 61 estimates the ideal position of each pin P from the center position O of the work W recognized in step S200 (step S220).
  • the ideal position of each pin P indicates the center coordinates of the outer shape of each pin P (the coordinates of the intersection of the crosses in FIG. 8) in a state where there is no misalignment.
  • the relationship between the center position O of the work W and the ideal position of each pin P is obtained and registered in advance, and when the center position O of the work W is recognized, the recognized center position O is registered. This is done by deriving the ideal position of each pin P from the relationship.
  • the CPU 61 When the CPU 61 recognizes the actual position of each pin P and estimates the ideal position in this way, it calculates the amount of positional deviation ⁇ x, ⁇ y between the actual position of each pin P and the ideal position (step S230). This process is performed by calculating the distance between the actual position and the ideal position in each of the X-axis direction and the Y-axis direction (see FIG. 9).
  • the CPU 61 plots points separated by the amount of positional deviation ⁇ x, ⁇ y from the same reference point in the XY coordinate system at each pin P (see step S240, FIG. 10), and includes all the plotted points.
  • Set the minimum circle step S250, see FIG. 11.
  • the CPU 61 rotates the ideal position of each pin P around the center position O of the work W to derive the optimum angle ⁇ that minimizes the radius of the minimum circle (step S260).
  • This process can be performed, for example, as follows. That is, the CPU 61 first recognizes the new ideal position of each pin P for each rotation angle in step S210 while rotating the ideal position of each pin P about the center position O in both forward and reverse rotation directions by a predetermined angle.
  • the actual position of each pin P and the amount of misalignment ⁇ x and ⁇ y are calculated and plotted in the XY coordinate system (see FIGS. 12 and 13). Subsequently, the CPU 61 sets a minimum circle including all the plotted points, and calculates the radius of the set minimum circle. Then, the CPU 61 sets the rotation angle in which the minimum circle having the minimum radius is set to the optimum angle ⁇ .
  • This process is a process of finding the rotation angle (insertion posture) of the work W such that the amount of misalignment of the pin P having the largest amount of misalignment is minimized in the range of rotation angles of the work W by the ⁇ -axis actuator 44. It can be said that there is. As a result, even if some of the pins P of the work W are misaligned, all the pins P can be inserted into the corresponding insertion holes H of the substrate S.
  • the CPU 61 When the CPU 61 derives the optimum angle ⁇ that minimizes the radius of the minimum circle in this way, the CPU 61 sets the derived optimum angle ⁇ as the angle correction value (step S270), and sets the center point and the reference point of the minimum circle that minimizes the radius.
  • the amount of deviation in the X-axis direction and the Y-axis direction is set as the position correction value (step S280).
  • the insertion posture of the work W is optimized by correcting the work insertion position by the position correction value and correcting the work insertion angle by the angle correction value in step S150 of the work insertion process. Become.
  • the CPU 61 sets the position and outer shape (see the broken line in FIG. 14) of each insertion hole H of the substrate S to be inserted (step). S290). This process is performed by setting the ideal position of each pin P at the optimum angle ⁇ derived in step S260 at the position of each insertion hole H and setting the outer shape (circle) of the radius r centered on the ideal position. It is done.
  • the position and outer shape of each insertion hole H may be estimated (recognized) by applying pattern matching to the image obtained by imaging the substrate S with the mark camera 25.
  • the CPU 61 sets the outer shape of each pin P centered on the actual position (step S300). This process is performed by setting the positions of the four corners based on the actual position of each pin P and the size (length and width) of each pin P. Then, the CPU 61 determines whether or not the outer shape of each set pin P is completely included in the outer shape of the corresponding insertion hole H set in step S290 (step S310). This process is performed by determining whether or not the positions of the four corners of each pin P are included in the outer shape of the corresponding insertion hole H (see FIG. 15).
  • the CUP 61 may set circumscribed circles circumscribed at the four corners of each pin P as the outer shape of each pin P, and determine whether or not the set circumscribed circle is included in the outer shape of the corresponding insertion hole H. .. If the determination in step S310 is affirmative (“YES”), the CPU 61 determines that all the pins P of the work W can be inserted into the corresponding insertion holes H in the substrate S (step S330). , End the image processing. In this case, as described above, a positive determination (“YES”) is made in step S140 of the work insertion process, and the work W is inserted into the substrate S at the insertion position and insertion posture optimized by the image processing. It will be.
  • step S310 determines that the work W cannot be inserted into the substrate S regardless of the posture in which the work W is inserted.
  • Step S340 the image processing is completed. In this case, as described above, a negative determination (“NO”) is made in step S140 of the work insertion process, and the work W is discarded in the discard box 26.
  • the suction nozzle 41 of the present embodiment corresponds to the "holding member”
  • the ⁇ -axis actuator 44 corresponds to the "rotating device”
  • the head moving device 30 corresponds to the "moving device”
  • the control device 60 controls. Corresponds to "device”.
  • the work inserting device 10 moves the work W held by the head 40 by the head moving device 30 in the XY axis directions (front-back and left-right directions).
  • the work insertion device 10 may move the substrate S (object to be inserted) in the XY axis direction. That is, the work W may be moved in the XY axis direction relative to the object to be inserted.
  • the work inserting device 10 uses the Z-axis actuator 42 to move the work W in the Z-axis direction, and the ⁇ -axis actuator 44 to rotate the work W around the Z-axis.
  • the work insertion device 10 may move the substrate S (object to be inserted) in the Z-axis direction and rotate it around the Z-axis. That is, the work W may be moved in the Z-axis direction relative to the object to be inserted and may be rotated around the Z-axis.
  • the work insertion device of the present disclosure is a work insertion device that inserts each pin of a work having a plurality of arranged pins into a corresponding hole of an object to be inserted having a plurality of arranged holes.
  • a moving device that moves relative to the inserted object and the actual position of each pin of the work are measured, the amount of displacement of the actual position measured at each pin with respect to the ideal position is calculated, and the relative to the inserted object is calculated.
  • the rotation angle of the work is obtained so that the amount of misalignment of the pin having the largest amount of misalignment is minimized within the range of the rotation angle of the work, and each pin of the work corresponds to the object to be inserted. It is a gist to include a control device that controls the rotation device so that the rotation angle of the work becomes the obtained rotation angle when the work is inserted into the hole.
  • the work insertion device of the present disclosure measures the actual position of each pin of the work, and calculates the amount of displacement of the measured actual position at each pin with respect to the ideal position. Subsequently, the work inserting device obtains a rotation angle of the work such that the amount of misalignment of the pin having the maximum amount of misalignment within the range of rotation angles of the work relative to the object to be inserted is minimized. Then, the work inserting device controls the rotating device so that the rotation angle of the work becomes the obtained rotation angle when inserting each pin of the work into the corresponding hole of the object to be inserted.
  • each pin of a work having a plurality of pins is inserted into a corresponding hole of an object to be inserted having a plurality of holes, even if only some of the pins of the plurality of pins are misaligned. , Each pin can be inserted into the corresponding hole.
  • the control device plots the positions of each pin with respect to the same reference point based on the amount of misalignment, and draws a minimum circle including the plotted positions of each pin. It may be set to obtain the rotation angle of the work that minimizes the radius of the minimum circle.
  • the control device is based on the position of the center point of the minimum circle when the radius of the minimum circle is minimized when each pin of the work is inserted into the corresponding hole of the object to be inserted.
  • the moving device may be controlled so that the position of the work along the orthogonal plane relative to the insert is corrected.
  • the control device obtains the rotation angle of the work when the radius of the minimum circle becomes the minimum, and then sets the rotation angle of the work as the rotation angle of the center point of the minimum circle. Insert each pin of the work into the corresponding hole of the object to be inserted based on the position of each pin and the position of the corresponding hole when the position of the work along the orthogonal plane is corrected based on the position. It may be used to determine whether or not it can be done. Further, in this case, the end faces of the pins of the work are formed in a quadrangular shape, and the control device estimates the positions of the four corners of the pins from the positions of the pins of the work, and the positions of the four corners of the pins are determined. By determining whether or not it fits within the region of the corresponding hole of the object to be inserted, it may be determined whether or not each pin of the work can be inserted into the corresponding hole of the object to be inserted.
  • This disclosure can be used in the manufacturing industry of work insertion devices and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

A workpiece insertion device inserts individual pins of a workpiece having a plurality of arrayed pins in the corresponding hole of an object to be inserted that has a plurality of arrayed holes, the workpiece insertion device comprising: a holding member that holds the workpiece; a rotation device that rotates the holding member relatively with respect to the object to be inserted; a moving device that moves the holding member relatively with respect to the object to be inserted, along an orthogonal plane that is orthogonal to the rotation axis of the rotation device; and a control device. The control device: measures the actual position of each pin of the workpiece; calculates the positional offset of the actual position measured for each pin with respect to the ideal position for each pin; derives the rotation angle of the workpiece for which the positional offset of the pin having the greatest positional offset is smallest, within the rotation angle range of the workpiece relative to the object to be inserted; and controls the rotation device so that the rotation angle of the workpiece reaches the derived rotation angle when each pin of the workpiece is inserted in the corresponding hole of the object to be inserted.

Description

ワーク挿入装置Work insertion device
 本明細書は、ワーク挿入装置について開示する。 This specification discloses the work insertion device.
 従来、リード部品の各リードを取付箇所の対応する挿入穴に挿入する部品実装機(ワーク挿入装置)が提案されている(例えば、特許文献1参照)。この部品実装機は、部品認識カメラによりリード部品の各リードの実測位置を測定すると共に測定した実測位置の回帰直線を最小二乗法によって算出する。続いて、部品実装機は、基板認識カメラにより取付箇所の各挿入穴の実測位置を測定すると共に測定した実測位置の回帰直線の最小二乗法によって算出する。そして、部品実装機は、リード部品について算出した回帰直線と取付箇所について算出した回帰直線とがなす角度に基づいてヘッドユニットがリード部品を取付箇所に取り付ける際のリード部品の回転角度を調整する。 Conventionally, a component mounting machine (work insertion device) for inserting each lead of a lead component into a corresponding insertion hole at a mounting location has been proposed (see, for example, Patent Document 1). This component mounting machine measures the measured position of each lead of the lead component with a component recognition camera, and calculates the regression line of the measured position by the least squares method. Subsequently, the component mounting machine measures the measured position of each insertion hole at the mounting location with a board recognition camera, and calculates by the least squares method of the regression line of the measured position. Then, the component mounting machine adjusts the rotation angle of the lead component when the head unit attaches the lead component to the attachment location based on the angle formed by the regression line calculated for the lead component and the regression line calculated for the attachment location.
特開2016-207729号公報Japanese Unexamined Patent Publication No. 2016-207729
 例えばリード部品が備える多数のリードのうち1つにのみ位置ずれがある場合、回帰直線は、位置ずれのない多数の他のリードの実測位置の影響を強く受けるように算出される。このため、特許文献1記載の部品実装機では、回帰直線に基づいてリード部品の回転角度を調整しても、位置ずれのあるリードの位置が十分に補正されず、対応する挿入穴に挿入できないおそれがある。 For example, when only one of a large number of leads included in a lead component has a misalignment, the regression line is calculated so as to be strongly influenced by the measured positions of many other leads having no misalignment. Therefore, in the component mounting machine described in Patent Document 1, even if the rotation angle of the lead component is adjusted based on the regression line, the position of the lead having a misalignment is not sufficiently corrected and cannot be inserted into the corresponding insertion hole. There is a risk.
 本開示は、複数のピンを有するワークの各ピンを、複数の穴を有する被挿入物の対応する穴に挿入するものにおいて、複数のピンのうち一部のピンにのみ位置ずれが生じていても、各ピンを対応する穴に挿入することができるワーク挿入装置を提供することを主目的とする。 In the present disclosure, in a work in which each pin of a work having a plurality of pins is inserted into a corresponding hole of an object to be inserted having a plurality of holes, only some of the pins of the plurality of pins are misaligned. Also, the main purpose is to provide a work insertion device capable of inserting each pin into a corresponding hole.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following steps to achieve the above-mentioned main objectives.
 本開示のワーク挿入装置は、
 配列された複数のピンを有するワークの各ピンを、配列された複数の穴を有する被挿入物の対応する穴に挿入するワーク挿入装置であって、
 前記ワークを保持する保持部材と、
 前記保持部材を前記被挿入物に対して相対回転させる回転装置と、
 前記回転装置の回転軸に直交する直交平面に沿って前記保持部材を前記被挿入物に対して相対移動させる移動装置と、
 前記ワークの各ピンの実位置を測定し、各ピンにおいて測定した実位置の理想的な位置に対する位置ずれ量を算出し、前記被挿入物に対する相対的な前記ワークの回転角範囲のうちで前記位置ずれ量が最大のピンの位置ずれ量が最小となるような前記ワークの回転角度を求め、前記ワークの各ピンを前記被挿入物の対応する穴に挿入するに際して前記ワークの回転角度が求めた回転角度となるように前記回転装置を制御する制御装置と、
 を備えることを要旨とする。
The workpiece insertion device of the present disclosure is
A work insertion device that inserts each pin of a work having a plurality of arranged pins into a corresponding hole of an object to be inserted having a plurality of arranged holes.
A holding member that holds the work and
A rotating device that rotates the holding member relative to the inserted object, and
A moving device that moves the holding member relative to the inserted object along an orthogonal plane orthogonal to the rotation axis of the rotating device.
The actual position of each pin of the work is measured, the amount of displacement of the actual position measured at each pin with respect to the ideal position is calculated, and the rotation angle range of the work relative to the object to be inserted is described as described above. The rotation angle of the work is obtained so that the amount of misalignment of the pin having the maximum amount of misalignment is minimized, and the rotation angle of the work is obtained when each pin of the work is inserted into the corresponding hole of the object to be inserted. A control device that controls the rotating device so that the rotation angle is different,
The gist is to prepare.
 この本開示のワーク挿入装置は、ワークの各ピンの実位置を測定し、各ピンにおいて測定した実位置の理想的な位置に対する位置ずれ量を算出する。続いて、ワーク挿入装置は、被挿入物に対する相対的なワークの回転角範囲のうちで位置ずれ量が最大のピンの位置ずれ量が最小となるようなワークの回転角度を求める。そして、ワーク挿入装置は、ワークの各ピンを被挿入物の対応する穴に挿入するに際してワークの回転角度が求めた回転角度となるように回転装置を制御する。これにより、複数のピンを有するワークの各ピンを、複数の穴を有する被挿入物の対応する穴に挿入するものにおいて、複数のピンのうち一部のピンにのみ位置ずれが生じていても、各ピンを対応する穴に挿入することが可能となる。 The work insertion device of the present disclosure measures the actual position of each pin of the work, and calculates the amount of displacement of the measured actual position at each pin with respect to the ideal position. Subsequently, the work inserting device obtains a rotation angle of the work such that the amount of misalignment of the pin having the maximum amount of misalignment within the range of rotation angles of the work relative to the object to be inserted is minimized. Then, the work inserting device controls the rotating device so that the rotation angle of the work becomes the obtained rotation angle when inserting each pin of the work into the corresponding hole of the object to be inserted. As a result, in a work in which each pin of a work having a plurality of pins is inserted into a corresponding hole of an object to be inserted having a plurality of holes, even if only some of the pins of the plurality of pins are misaligned. , Each pin can be inserted into the corresponding hole.
本実施形態のワーク挿入装置の概略構成図である。It is a schematic block diagram of the work insertion apparatus of this embodiment. ワーク挿入装置10の制御ブロック図である。It is a control block diagram of the work insertion apparatus 10. ワーク挿入処理の一例を示すフローチャートである。It is a flowchart which shows an example of a work insertion process. 画像処理の一例を示すフローチャートである。It is a flowchart which shows an example of image processing. 画像処理の一例を示すフローチャートである。It is a flowchart which shows an example of image processing. ワークの中心位置を認識する様子を示す説明図である。It is explanatory drawing which shows the state of recognizing the center position of a work. 各ピンの実位置を認識する様子を示す説明図である。It is explanatory drawing which shows the state of recognizing the actual position of each pin. 各ピンの理想位置を推定する様子を示す説明図である。It is explanatory drawing which shows the mode of estimating the ideal position of each pin. 各ピンの理想位置に対する実位置の位置ずれ量を算出する様子を示す説明図である。It is explanatory drawing which shows the mode of calculating the misalignment amount of the actual position with respect to the ideal position of each pin. 各ピンの位置ずれ量のプロットの様子を示す説明図である。It is explanatory drawing which shows the state of the plot of the misalignment amount of each pin. 最小円を設定する様子を示す説明図である。It is explanatory drawing which shows the state of setting the minimum circle. 角度調整の様子を示す説明図である。It is explanatory drawing which shows the state of the angle adjustment. 角度調整の様子を示す説明図である。It is explanatory drawing which shows the state of the angle adjustment. 挿入穴を推定する様子を示す説明図である。It is explanatory drawing which shows the state of estimating the insertion hole. 各ピンの外形を認識する様子を示す説明図である。It is explanatory drawing which shows the state of recognizing the outer shape of each pin.
 次に、本開示を実施するための形態について図面を参照しながら説明する。 Next, a mode for carrying out the present disclosure will be described with reference to the drawings.
 図1は、本実施形態のワーク挿入装置の概略構成図である。図2は、ワーク挿入装置10の制御ブロック図である。なお、図1中、左右方向はX軸方向示し、前後方向はY軸方向を示し、上下方向はZ軸方向を示す。本実施形態のワーク挿入装置10は、所定の間隔をおいて配列された複数のピンP(例えば端面が四角形のピン)を裏面に有するワークW(例えばコネクタ)の各ピンPを、所定の間隔をおいて配列された複数の挿入穴Hを表面に有する被挿入物(例えば基板やソケット)の対応する挿入穴Hに挿入するものとして構成される。このワーク挿入装置10は、図1に示すように、ワーク供給装置21と搬送装置22とヘッド移動装置30とヘッド40とワークカメラ24とマークカメラ25と廃棄ボックス26と制御装置60(図2参照)とを備える。これらは、筐体12に収容されている。 FIG. 1 is a schematic configuration diagram of the work insertion device of the present embodiment. FIG. 2 is a control block diagram of the work insertion device 10. In FIG. 1, the left-right direction indicates the X-axis direction, the front-back direction indicates the Y-axis direction, and the up-down direction indicates the Z-axis direction. In the work inserting device 10 of the present embodiment, each pin P of the work W (for example, a connector) having a plurality of pins P (for example, pins having a quadrangular end face) arranged at a predetermined interval is arranged at a predetermined interval. It is configured to be inserted into the corresponding insertion hole H of an object to be inserted (for example, a substrate or a socket) having a plurality of insertion holes H arranged at the same time. As shown in FIG. 1, the work insertion device 10 includes a work supply device 21, a transfer device 22, a head moving device 30, a head 40, a work camera 24, a mark camera 25, a disposal box 26, and a control device 60 (see FIG. 2). ) And. These are housed in the housing 12.
 ワーク供給装置21としては、例えば、ワークWを収容する収容ポケットを多数有するトレイを供給するトレイ供給装置などを挙げることができる。 Examples of the work supply device 21 include a tray supply device that supplies a tray having a large number of storage pockets for accommodating the work W.
 搬送装置22は、例えば、前後(Y軸方向)に所定の間隔をおいて設置され、左右(X軸方向)に架け渡された一対のコンベアベルトを有する。搬送装置22は、一対のコンベアベルトを駆動することにより、被挿入物としての基板Sを左から右へと搬送する。 The transport device 22 has, for example, a pair of conveyor belts that are installed at predetermined intervals in the front-rear direction (Y-axis direction) and are bridged to the left and right (X-axis direction). The transport device 22 transports the substrate S as an insert from left to right by driving a pair of conveyor belts.
 ヘッド移動装置30は、ヘッド40を前後左右(XY軸方向)に移動させるものであり、図1に示すように、X軸スライダ32とY軸スライダ34とを備える。X軸スライダ32は、Y軸スライダ34の前面に左右方向(X軸方向)に延在するように設置された上下一対のX軸ガイドレール33に支持されている。X軸スライダ32は、X軸アクチュエータ36(図2参照)の駆動によってX軸ガイドレール33に沿ってX軸方向に移動する。Y軸スライダ34は、筐体12の上段部に前後方向(Y軸方向)に延在するように設置された左右一対のY軸ガイドレール35に支持されている。Y軸スライダ34は、Y軸アクチュエータ38(図2参照)の駆動によってY軸ガイドレール35に沿ってY軸方向に移動する。なお、X軸スライダ32は、X軸位置センサ37(図2参照)によりX軸方向における位置が検知される。また、Y軸スライダ34は、Y軸位置センサ39(図2参照)によりY軸方向における位置が検知される。X軸スライダ32にはヘッド40が取り付けられている。このため、ヘッド40は、ヘッド移動装置30(X軸アクチュエータ36およびY軸アクチュエータ38)を駆動制御することにより、XY平面(水平面)に沿って移動する。 The head moving device 30 moves the head 40 back and forth and left and right (in the XY axis direction), and includes an X-axis slider 32 and a Y-axis slider 34 as shown in FIG. The X-axis slider 32 is supported by a pair of upper and lower X-axis guide rails 33 installed so as to extend in the left-right direction (X-axis direction) on the front surface of the Y-axis slider 34. The X-axis slider 32 moves in the X-axis direction along the X-axis guide rail 33 by driving the X-axis actuator 36 (see FIG. 2). The Y-axis slider 34 is supported by a pair of left and right Y-axis guide rails 35 installed so as to extend in the front-rear direction (Y-axis direction) at the upper stage of the housing 12. The Y-axis slider 34 moves in the Y-axis direction along the Y-axis guide rail 35 by driving the Y-axis actuator 38 (see FIG. 2). The position of the X-axis slider 32 in the X-axis direction is detected by the X-axis position sensor 37 (see FIG. 2). Further, the position of the Y-axis slider 34 in the Y-axis direction is detected by the Y-axis position sensor 39 (see FIG. 2). A head 40 is attached to the X-axis slider 32. Therefore, the head 40 moves along the XY plane (horizontal plane) by driving and controlling the head moving device 30 (X-axis actuator 36 and Y-axis actuator 38).
 ヘッド40は、ワークWをピックアップ(吸着)して保持する吸着ノズル41を備える。吸着ノズル41には、図示しないが、電磁弁(開閉弁)を介して負圧源が接続され、吸着ノズル41は、負圧源からの負圧の供給を受けてワークWを吸着する。また、吸着ノズル41は、Z軸アクチュエータ42(図2参照)の駆動によって上下方向(Z軸方向)に移動し、Θ軸アクチュエータ44(図2参照)の駆動によってZ軸回りに回転する。なお、吸着ノズル41は、Z軸位置センサ43(図2参照)によりZ軸方向における位置が検知され、Θ軸位置センサ45(図2参照)によりΘ軸方向における位置(回転角度Θ)が検知される。 The head 40 includes a suction nozzle 41 that picks up (sucks) and holds the work W. Although not shown, a negative pressure source is connected to the suction nozzle 41 via an electromagnetic valve (opening / closing valve), and the suction nozzle 41 receives the supply of negative pressure from the negative pressure source and sucks the work W. Further, the suction nozzle 41 moves in the vertical direction (Z-axis direction) by driving the Z-axis actuator 42 (see FIG. 2), and rotates around the Z-axis by driving the Θ-axis actuator 44 (see FIG. 2). The position of the suction nozzle 41 in the Z-axis direction is detected by the Z-axis position sensor 43 (see FIG. 2), and the position (rotation angle Θ) in the Θ-axis direction is detected by the Θ-axis position sensor 45 (see FIG. 2). Will be done.
 ワークカメラ24は、図1に示すように、ワーク供給装置21と搬送装置22との間に設置されている。ワークカメラ24は、ワーク供給装置21により供給されたワークWをピックアップして搬送装置22により搬送された基板Sに装着(挿入)するに際して、ワークカメラ24の上方をワークWが通過するときに当該ワークWを下方から撮像する。ワークカメラ24で撮像された画像は、吸着ノズル41に保持されているワークWの吸着ノズル41に対する位置ずれ量を判定したり、ワークWの各ピンPを基板Sの対応する挿入穴Hに挿入するための当該ワークWの最適な姿勢を決定したり、ワークWの不良を判定したりするのに用いられる。 As shown in FIG. 1, the work camera 24 is installed between the work supply device 21 and the transfer device 22. When the work camera 24 picks up the work W supplied by the work supply device 21 and mounts (inserts) it on the substrate S conveyed by the transfer device 22, the work camera 24 is concerned when the work W passes above the work camera 24. The work W is imaged from below. The image captured by the work camera 24 determines the amount of misalignment of the work W held in the suction nozzle 41 with respect to the suction nozzle 41, or inserts each pin P of the work W into the corresponding insertion hole H of the substrate S. It is used to determine the optimum posture of the work W for the work W and to determine the defect of the work W.
 マークカメラ25は、図1に示すように、X軸スライダ32に取り付けられ、ヘッド移動装置30によりヘッド40と共にXY軸方向に移動する。マークカメラ25は、搬送装置22により搬入された基板Sに付された基準マークを上方から撮像する。マークカメラ25で撮像された画像は、基板Sの位置を確認したり、基板Sの種類を確認したりするのに用いられる。 As shown in FIG. 1, the mark camera 25 is attached to the X-axis slider 32 and moves in the XY-axis direction together with the head 40 by the head moving device 30. The mark camera 25 takes an image of the reference mark attached to the substrate S carried in by the transport device 22 from above. The image captured by the mark camera 25 is used for confirming the position of the substrate S and confirming the type of the substrate S.
 廃棄ボックス26は、ワーク供給装置21と搬送装置22との間に、ワークカメラ24に隣接して設置されている。廃棄ボックス26は、不良が発生しているワークWを廃棄するためのボックスである。 The disposal box 26 is installed adjacent to the work camera 24 between the work supply device 21 and the transfer device 22. The disposal box 26 is a box for discarding the work W in which a defect has occurred.
 制御装置60は、図2に示すように、CPU61を中心としたマイクロプロセッサとて構成されており、CPU61の他に、ROM62と、HDD63と、RAM64と、入出力インタフェース65とを備える。これらは、バス66を介して電気的に接続されている。制御装置60には、X軸位置センサ37やY軸位置センサ39、Z軸位置センサ43、Θ軸位置センサ45からの位置信号が入力される。また、制御装置60には、ワークカメラ24やマークカメラ25からの画像信号なども入力される。一方、制御装置60からは、ワーク供給装置21や搬送装置22、X軸アクチュエータ36、Y軸アクチュエータ38、Z軸アクチュエータ42、Θ軸アクチュエータ44への駆動信号が出力される。また、制御装置60からは、ワークカメラ24やマークカメラ25への制御信号も出力される。 As shown in FIG. 2, the control device 60 is configured as a microprocessor centered on a CPU 61, and includes a ROM 62, an HDD 63, a RAM 64, and an input / output interface 65 in addition to the CPU 61. These are electrically connected via the bus 66. Position signals from the X-axis position sensor 37, the Y-axis position sensor 39, the Z-axis position sensor 43, and the Θ-axis position sensor 45 are input to the control device 60. Further, image signals from the work camera 24 and the mark camera 25 are also input to the control device 60. On the other hand, the control device 60 outputs a drive signal to the work supply device 21, the transfer device 22, the X-axis actuator 36, the Y-axis actuator 38, the Z-axis actuator 42, and the Θ-axis actuator 44. Further, the control device 60 also outputs a control signal to the work camera 24 and the mark camera 25.
 次に、こうして構成されたワーク挿入装置10の動作について説明する。図3は、制御装置60のCPU61により実行されるワーク挿入処理の一例を示すフローチャートである。この処理は、上位の管理コンピュータ(図示せず)から生産の指示を受信したときに実行される。 Next, the operation of the work insertion device 10 configured in this way will be described. FIG. 3 is a flowchart showing an example of the work insertion process executed by the CPU 61 of the control device 60. This process is executed when a production instruction is received from a higher-level management computer (not shown).
 ワーク挿入処理が実行されると、制御装置60のCPU61は、まず、ワーク供給装置21から供給されるワークWの上面を吸着ノズル41に吸着させる吸着動作を行なう(ステップS100)。吸着動作は、ワーク供給装置21によるワークWの供給位置の上方へ吸着ノズル41が移動するようヘッド移動装置30(X軸アクチュエータ36およびY軸アクチュエータ38)を制御した後、吸着ノズル41が下降するようZ軸アクチュエータ42を制御すると共に当該吸着ノズル41に負圧が供給されるよう電磁弁を制御することにより行なわれる。 When the work insertion process is executed, the CPU 61 of the control device 60 first performs a suction operation of sucking the upper surface of the work W supplied from the work supply device 21 to the suction nozzle 41 (step S100). In the suction operation, the head moving device 30 (X-axis actuator 36 and Y-axis actuator 38) is controlled so that the suction nozzle 41 moves above the supply position of the work W by the work supply device 21, and then the suction nozzle 41 descends. This is performed by controlling the Z-axis actuator 42 and controlling the solenoid valve so that a negative pressure is supplied to the suction nozzle 41.
 続いて、CPU61は、ワークWを吸着した吸着ノズル41がワークカメラ24の上方へ移動するようヘッド移動装置30を制御して(ステップS110)、ワークカメラ24でワークWの撮像を行なう(ステップS120)。そして、CPU61は、得られた撮像画像に画像処理を施す(ステップS130)。ここで、画像処理では、ワークWの全てのピンPを基板Sの対応する挿入穴Hに挿入させるためのワークWの最適な挿入姿勢(挿入位置および挿入角度)が決定される。更に、画像処理では、ワークWの挿入姿勢の最適化によってワークWの全てのピンPを基板Sの対応する挿入穴Hに挿入させることができるか否かが判定される。こうした画像処理の詳細については後述する。 Subsequently, the CPU 61 controls the head moving device 30 so that the suction nozzle 41 sucking the work W moves upward of the work camera 24 (step S110), and the work camera 24 takes an image of the work W (step S120). ). Then, the CPU 61 performs image processing on the obtained captured image (step S130). Here, in the image processing, the optimum insertion posture (insertion position and insertion angle) of the work W for inserting all the pins P of the work W into the corresponding insertion holes H of the substrate S is determined. Further, in the image processing, it is determined whether or not all the pins P of the work W can be inserted into the corresponding insertion holes H of the substrate S by optimizing the insertion posture of the work W. Details of such image processing will be described later.
 CPU61は、画像処理の結果、ワークWの全てのピンPが基板Sの対応する挿入穴Hに挿入可能であると判定すると(ステップS140の「YES」)、ワークWの挿入位置および挿入角度を画像処理で最適化した挿入位置および挿入角度に補正する(ステップS150)。そして、CPU61は、補正した挿入位置および挿入角度でワークWの各ピンPを基板Sの対応する挿入穴Hに挿入させる挿入動作を行なって(ステップS160)、ワーク挿入処理を終了する。挿入動作は、吸着ノズル41に吸着されているワークWが挿入位置の上方へ移動すると共に挿入角度へ回転するようヘッド移動装置30とΘ軸アクチュエータ44を制御した後、吸着ノズル41が下降するようZ軸アクチュエータ42を制御すると共に当該吸着ノズル41への負圧の供給が解除されるよう電磁弁を制御することにより行なわれる。 When the CPU 61 determines as a result of image processing that all the pins P of the work W can be inserted into the corresponding insertion holes H of the substrate S (“YES” in step S140), the insertion position and insertion angle of the work W are determined. The insertion position and insertion angle optimized by image processing are corrected (step S150). Then, the CPU 61 performs an insertion operation of inserting each pin P of the work W into the corresponding insertion hole H of the substrate S at the corrected insertion position and insertion angle (step S160), and ends the work insertion process. In the insertion operation, the head moving device 30 and the Θ-axis actuator 44 are controlled so that the work W sucked by the suction nozzle 41 moves above the insertion position and rotates to the insertion angle, and then the suction nozzle 41 descends. This is performed by controlling the Z-axis actuator 42 and controlling the solenoid valve so that the supply of negative pressure to the suction nozzle 41 is released.
 一方、CPU61は、画像処理の結果、ワークWのいずれかのピンPが基板Sの対応する挿入穴Hに挿入不能であると判定すると(ステップS140の「NO」)、ワークWに不良が発生していると判断し、当該ワークWを廃棄ボックス26へ廃棄する廃棄動作を行なって(ステップS170)、ワーク挿入処理を終了する。廃棄動作は、吸着ノズル41に吸着されているワークWが廃棄ボックス26の上方へ移動するようヘッド移動装置30を制御した後、吸着ノズル41への負圧の供給が解除されるよう電磁弁を制御することにより行なわれる。 On the other hand, when the CPU 61 determines as a result of image processing that any pin P of the work W cannot be inserted into the corresponding insertion hole H of the substrate S (“NO” in step S140), a defect occurs in the work W. It is determined that the work W is being discarded, and a disposal operation of discarding the work W to the disposal box 26 is performed (step S170), and the work insertion process is completed. In the disposal operation, after controlling the head moving device 30 so that the work W adsorbed on the suction nozzle 41 moves above the disposal box 26, the solenoid valve is set so that the supply of negative pressure to the suction nozzle 41 is released. It is done by controlling.
 次に、ステップS130の画像処理の詳細について説明する。図4および図5は、画像処理の一例を示すフローチャートである。以下、画像処理について、図6~図15を適宜参照しながら説明する。 Next, the details of the image processing in step S130 will be described. 4 and 5 are flowcharts showing an example of image processing. Hereinafter, image processing will be described with reference to FIGS. 6 to 15 as appropriate.
 画像処理では、CPU61は、まず、ワークWの全てのピンPをサーチし、ワークWの中心位置Oを認識する(ステップS200)。この処理は、例えば、予め登録したシェイプデータを用いたパターンマッチングにより全てのピンPを認識し、認識した全てのピンPを包含する矩形領域を設定し、設定した矩形領域の中心座標をワークWの中心位置Oとして設定することにより行なわれる(図6参照)。 In the image processing, the CPU 61 first searches all the pins P of the work W and recognizes the center position O of the work W (step S200). In this process, for example, all pins P are recognized by pattern matching using pre-registered shape data, a rectangular area including all recognized pins P is set, and the center coordinates of the set rectangular area are set as work W. This is done by setting the center position O of (see FIG. 6).
 続いて、CPU61は、ワークWの各ピンPを個別にサーチし、各ピンPの実位置を認識する(ステップS210)。この処理は、例えば、シェイプデータを用いたパターンマッチングにより各ピンPを個別に認識し、認識した各ピンPの外形(四角形)の中心座標(図7中、バツ印の交点の座標)をそれぞれ実位置として設定することにより行なわれる。 Subsequently, the CPU 61 individually searches each pin P of the work W and recognizes the actual position of each pin P (step S210). In this process, for example, each pin P is individually recognized by pattern matching using shape data, and the center coordinates (coordinates of intersections of cross marks in FIG. 7) of the outer shape (quadrangle) of each recognized pin P are respectively recognized. This is done by setting it as the actual position.
 そして、CPU61は、ステップS200で認識したワークWの中心位置Oから各ピンPの理想的な位置を推定する(ステップS220)。ここで、各ピンPの理想的な位置は、位置ずれがない状態での各ピンPの外形の中心座標(図8中、十字の交点の座標)を示す。ステップS220の処理は、ワークWの中心位置Oと各ピンPの理想位置との関係をそれぞれ予め求めて登録しておき、ワークWの中心位置Oを認識すると、認識した中心位置Oと登録した関係とから各ピンPの理想位置をそれぞれ導出することにより行なわれる。 Then, the CPU 61 estimates the ideal position of each pin P from the center position O of the work W recognized in step S200 (step S220). Here, the ideal position of each pin P indicates the center coordinates of the outer shape of each pin P (the coordinates of the intersection of the crosses in FIG. 8) in a state where there is no misalignment. In the process of step S220, the relationship between the center position O of the work W and the ideal position of each pin P is obtained and registered in advance, and when the center position O of the work W is recognized, the recognized center position O is registered. This is done by deriving the ideal position of each pin P from the relationship.
 CPU61は、こうして各ピンPの実位置を認識すると共に理想位置を推定すると、各ピンPの実位置と理想位置との位置ずれ量Δx,Δyを算出する(ステップS230)。この処理は、X軸方向およびY軸方向のそれぞれにおいて、実位置と理想位置との距離を算出することにより行なわれる(図9参照)。 When the CPU 61 recognizes the actual position of each pin P and estimates the ideal position in this way, it calculates the amount of positional deviation Δx, Δy between the actual position of each pin P and the ideal position (step S230). This process is performed by calculating the distance between the actual position and the ideal position in each of the X-axis direction and the Y-axis direction (see FIG. 9).
 次に、CPU61は、各ピンPにおいて、XY座標系における同じ基準点から位置ずれ量Δx,Δyだけ離れた点をそれぞれプロットし(ステップS240、図10参照)、プロットした全ての点を包含する最小円を設定する(ステップS250、図11参照)。続いて、CPU61は、ワークWの中心位置Oを中心として各ピンPの理想位置を回転させ、最小円の半径が最小になる最適角度θを導出する(ステップS260)。この処理は、例えば、以下のようにして行なうことができる。すなわち、CPU61は、まず、中心位置Oを中心として各ピンPの理想位置を所定角ずつ正逆両回転方向に回転させながら、回転角度ごとの各ピンPの新たな理想位置とステップS210で認識した各ピンPの実位置と位置ずれ量Δx,Δyを算出してXY座標系にプロットする(図12および図13参照)。続いて、CPU61は、プロットした全ての点を包含する最小円を設定し、設定した最小円の半径を算出する。そして、CPU61は、半径が最小の最小円が設定された回転角度を最適角度θに設定する。この処理は、Θ軸アクチュエータ44によるワークWの回転角度範囲のうちで、位置ずれ量が最も大きいピンPの位置ずれ量が最小となるようなワークWの回転角度(挿入姿勢)を見つけ出す処理であると言える。これにより、ワークWの各ピンPのうち一部のピンPに位置ずれが生じていても、全てのピンPを基板Sの対応する挿入穴Hに挿入することが可能となる。 Next, the CPU 61 plots points separated by the amount of positional deviation Δx, Δy from the same reference point in the XY coordinate system at each pin P (see step S240, FIG. 10), and includes all the plotted points. Set the minimum circle (step S250, see FIG. 11). Subsequently, the CPU 61 rotates the ideal position of each pin P around the center position O of the work W to derive the optimum angle θ that minimizes the radius of the minimum circle (step S260). This process can be performed, for example, as follows. That is, the CPU 61 first recognizes the new ideal position of each pin P for each rotation angle in step S210 while rotating the ideal position of each pin P about the center position O in both forward and reverse rotation directions by a predetermined angle. The actual position of each pin P and the amount of misalignment Δx and Δy are calculated and plotted in the XY coordinate system (see FIGS. 12 and 13). Subsequently, the CPU 61 sets a minimum circle including all the plotted points, and calculates the radius of the set minimum circle. Then, the CPU 61 sets the rotation angle in which the minimum circle having the minimum radius is set to the optimum angle θ. This process is a process of finding the rotation angle (insertion posture) of the work W such that the amount of misalignment of the pin P having the largest amount of misalignment is minimized in the range of rotation angles of the work W by the Θ-axis actuator 44. It can be said that there is. As a result, even if some of the pins P of the work W are misaligned, all the pins P can be inserted into the corresponding insertion holes H of the substrate S.
 CPU61は、こうして最小円の半径が最小となる最適角度θを導出すると、導出した最適角度θを角度補正値に設定すると共に(ステップS270)、半径が最小となる最小円の中心点と基準点とのX軸方向およびY軸方向におけるずれ量を位置補正値に設定する(ステップS280)。これにより、ワークWの挿入姿勢は、ワーク挿入処理のステップS150において、位置補正値によりワーク挿入位置が補正されると共に、角度補正値によりワーク挿入角度が補正されることで最適化されることになる。 When the CPU 61 derives the optimum angle θ that minimizes the radius of the minimum circle in this way, the CPU 61 sets the derived optimum angle θ as the angle correction value (step S270), and sets the center point and the reference point of the minimum circle that minimizes the radius. The amount of deviation in the X-axis direction and the Y-axis direction is set as the position correction value (step S280). As a result, the insertion posture of the work W is optimized by correcting the work insertion position by the position correction value and correcting the work insertion angle by the angle correction value in step S150 of the work insertion process. Become.
 CPU61は、こうしてワークWの挿入姿勢(挿入位置および挿入角度)を最適化すると、被挿入物である基板Sの各挿入穴Hの位置および外形(図14中、破線参照)を設定する(ステップS290)。この処理は、ステップS260で導出した最適角度θでの各ピンPの理想位置を各挿入穴Hの位置に設定すると共に当該理想位置を中心とした半径rの外形(円)を設定することにより行なわれる。なお、各挿入穴Hの位置および外形は、マークカメラ25で基板Sを撮像して得られた画像にパターンマッチングを適用することにより推定(認識)されてもよい。 When the insertion posture (insertion position and insertion angle) of the work W is optimized in this way, the CPU 61 sets the position and outer shape (see the broken line in FIG. 14) of each insertion hole H of the substrate S to be inserted (step). S290). This process is performed by setting the ideal position of each pin P at the optimum angle θ derived in step S260 at the position of each insertion hole H and setting the outer shape (circle) of the radius r centered on the ideal position. It is done. The position and outer shape of each insertion hole H may be estimated (recognized) by applying pattern matching to the image obtained by imaging the substrate S with the mark camera 25.
 続いて、CPU61は、実位置を中心とした各ピンPの外形を設定する(ステップS300)。この処理は、各ピンPの実位置と各ピンPのサイズ(縦横長さ)とに基づいて四隅の位置を設定することにより行なわれる。そして、CPU61は、設定した各ピンPの外形がステップS290で設定した対応する挿入穴Hの外形に完全に包含されるか否かを判定する(ステップS310)。この処理は、各ピンPの四隅の位置がいずれも、対応する挿入穴Hの外形に含まれるか否かを判定することにより行なわれる(図15参照)。なお、CUP61は、各ピンPの外形として、各ピンPの四隅に外接する外接円を設定し、設定した外接円が対応する挿入穴Hの外形に包含するか否かを判定してもよい。CPU61は、ステップS310の判定が肯定的な判定(「YES」)であれば、ワークWの全てのピンPを基板Sの対応する挿入穴Hに挿入可能であると判定して(ステップS330)、画像処理を終了する。この場合、上述したように、ワーク挿入処理のステップS140において肯定的な判定(「YES」)がなされ、ワークWは、画像処理で最適化された挿入位置および挿入姿勢で基板Sに挿入されることになる。 Subsequently, the CPU 61 sets the outer shape of each pin P centered on the actual position (step S300). This process is performed by setting the positions of the four corners based on the actual position of each pin P and the size (length and width) of each pin P. Then, the CPU 61 determines whether or not the outer shape of each set pin P is completely included in the outer shape of the corresponding insertion hole H set in step S290 (step S310). This process is performed by determining whether or not the positions of the four corners of each pin P are included in the outer shape of the corresponding insertion hole H (see FIG. 15). The CUP 61 may set circumscribed circles circumscribed at the four corners of each pin P as the outer shape of each pin P, and determine whether or not the set circumscribed circle is included in the outer shape of the corresponding insertion hole H. .. If the determination in step S310 is affirmative (“YES”), the CPU 61 determines that all the pins P of the work W can be inserted into the corresponding insertion holes H in the substrate S (step S330). , End the image processing. In this case, as described above, a positive determination (“YES”) is made in step S140 of the work insertion process, and the work W is inserted into the substrate S at the insertion position and insertion posture optimized by the image processing. It will be.
 一方、CPU61は、ステップS310の判定が否定的な判定(「NO」)であれば、ワークWをどのような姿勢で挿入しようとしても、ワークWを基板Sに挿入不能であると判定して(ステップS340)、画像処理を終了する。この場合、上述したように、ワーク挿入処理のステップS140において否定的な判定(「NO」)がなされ、ワークWは、廃棄ボックス26へ廃棄されることになる。 On the other hand, if the determination in step S310 is negative (“NO”), the CPU 61 determines that the work W cannot be inserted into the substrate S regardless of the posture in which the work W is inserted. (Step S340), the image processing is completed. In this case, as described above, a negative determination (“NO”) is made in step S140 of the work insertion process, and the work W is discarded in the discard box 26.
 ここで、実施形態の主要な要素と請求の範囲の欄に記載した主要な要素との対応関係について説明する。即ち、本実施形態の吸着ノズル41が「保持部材」に相当し、Θ軸アクチュエータ44が「回転装置」に相当し、ヘッド移動装置30が「移動装置」に相当し、制御装置60が「制御装置」に相当する。 Here, the correspondence between the main elements of the embodiment and the main elements described in the claims column will be described. That is, the suction nozzle 41 of the present embodiment corresponds to the "holding member", the Θ-axis actuator 44 corresponds to the "rotating device", the head moving device 30 corresponds to the "moving device", and the control device 60 "controls". Corresponds to "device".
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It is needless to say that the present disclosure is not limited to the above-described embodiment, and can be implemented in various aspects as long as it belongs to the technical scope of the present disclosure.
 例えば、上述した実施形態では、ワークWの挿入位置および挿入角度を最適化した後、ワークWの全てのピンPが基板S(被挿入物)の対応する挿入穴Hに挿入可能であるか否かを判定するものとした。しかし、こうした判定を省略してもよい。 For example, in the above-described embodiment, after optimizing the insertion position and insertion angle of the work W, whether or not all the pins P of the work W can be inserted into the corresponding insertion holes H of the substrate S (object to be inserted). It was decided to judge. However, such a determination may be omitted.
 上述した実施形態では、ワーク挿入装置10は、ヘッド移動装置30によりヘッド40に保持されたワークWをXY軸方向(前後左右方向)に移動させるものとした。しかし、ワーク挿入装置10は、基板S(被挿入物)をXY軸方向に移動させるものとしてもよい。すなわち、ワークWは、被挿入物に対して相対的にXY軸方向に移動させられるものであればよい。 In the above-described embodiment, the work inserting device 10 moves the work W held by the head 40 by the head moving device 30 in the XY axis directions (front-back and left-right directions). However, the work insertion device 10 may move the substrate S (object to be inserted) in the XY axis direction. That is, the work W may be moved in the XY axis direction relative to the object to be inserted.
 上述した実施形態では、ワーク挿入装置10は、Z軸アクチュエータ42によりワークWをZ軸方向に移動させるものとし、Θ軸アクチュエータ44によりワークWをZ軸回りに回転させるものとした。しかし、ワーク挿入装置10は、基板S(被挿入物)をZ軸方向に移動させると共にZ軸回りに回転させるものとしてもよい。すなわち、ワークWは、被挿入物に対して相対的にZ軸方向に移動させられ、Z軸回りに回転させられるものであればよい。 In the above-described embodiment, the work inserting device 10 uses the Z-axis actuator 42 to move the work W in the Z-axis direction, and the Θ-axis actuator 44 to rotate the work W around the Z-axis. However, the work insertion device 10 may move the substrate S (object to be inserted) in the Z-axis direction and rotate it around the Z-axis. That is, the work W may be moved in the Z-axis direction relative to the object to be inserted and may be rotated around the Z-axis.
 以上説明したように、本開示のワーク挿入装置は、配列された複数のピンを有するワークの各ピンを、配列された複数の穴を有する被挿入物の対応する穴に挿入するワーク挿入装置であって、前記ワークを保持する保持部材と、前記保持部材を前記被挿入物に対して相対回転させる回転装置と、前記回転装置の回転軸に直交する直交平面に沿って前記保持部材を前記被挿入物に対して相対移動させる移動装置と、前記ワークの各ピンの実位置を測定し、各ピンにおいて測定した実位置の理想的な位置に対する位置ずれ量を算出し、前記被挿入物に対する相対的な前記ワークの回転角範囲のうちで前記位置ずれ量が最大のピンの位置ずれ量が最小となるような前記ワークの回転角度を求め、前記ワークの各ピンを前記被挿入物の対応する穴に挿入するに際して前記ワークの回転角度が求めた回転角度となるように前記回転装置を制御する制御装置と、を備えることを要旨とする。 As described above, the work insertion device of the present disclosure is a work insertion device that inserts each pin of a work having a plurality of arranged pins into a corresponding hole of an object to be inserted having a plurality of arranged holes. The holding member that holds the work, the rotating device that rotates the holding member relative to the object to be inserted, and the holding member along an orthogonal plane orthogonal to the rotation axis of the rotating device. A moving device that moves relative to the inserted object and the actual position of each pin of the work are measured, the amount of displacement of the actual position measured at each pin with respect to the ideal position is calculated, and the relative to the inserted object is calculated. The rotation angle of the work is obtained so that the amount of misalignment of the pin having the largest amount of misalignment is minimized within the range of the rotation angle of the work, and each pin of the work corresponds to the object to be inserted. It is a gist to include a control device that controls the rotation device so that the rotation angle of the work becomes the obtained rotation angle when the work is inserted into the hole.
 この本開示のワーク挿入装置は、ワークの各ピンの実位置を測定し、各ピンにおいて測定した実位置の理想的な位置に対する位置ずれ量を算出する。続いて、ワーク挿入装置は、被挿入物に対する相対的なワークの回転角範囲のうちで位置ずれ量が最大のピンの位置ずれ量が最小となるようなワークの回転角度を求める。そして、ワーク挿入装置は、ワークの各ピンを被挿入物の対応する穴に挿入するに際してワークの回転角度が求めた回転角度となるように回転装置を制御する。これにより、複数のピンを有するワークの各ピンを、複数の穴を有する被挿入物の対応する穴に挿入するものにおいて、複数のピンのうち一部のピンにのみ位置ずれが生じていても、各ピンを対応する穴に挿入することが可能となる。 The work insertion device of the present disclosure measures the actual position of each pin of the work, and calculates the amount of displacement of the measured actual position at each pin with respect to the ideal position. Subsequently, the work inserting device obtains a rotation angle of the work such that the amount of misalignment of the pin having the maximum amount of misalignment within the range of rotation angles of the work relative to the object to be inserted is minimized. Then, the work inserting device controls the rotating device so that the rotation angle of the work becomes the obtained rotation angle when inserting each pin of the work into the corresponding hole of the object to be inserted. As a result, in a work in which each pin of a work having a plurality of pins is inserted into a corresponding hole of an object to be inserted having a plurality of holes, even if only some of the pins of the plurality of pins are misaligned. , Each pin can be inserted into the corresponding hole.
 こうした本開示のワーク挿入装置において、前記制御装置は、前記位置ずれ量に基づいて同一の基準点を基準とした各ピンの位置をそれぞれプロットし、プロットした各ピンの位置を包含する最小円を設定し、前記最小円の半径が最小になる前記ワークの回転角度を求めるものとしてもよい。この場合、前記制御装置は、前記ワークの各ピンを前記被挿入物の対応する穴に挿入するに際して前記最小円の半径が最小になるときの前記最小円の中心点の位置に基づいて前記被挿入物に対する相対的な前記ワークの前記直交平面に沿った位置が補正されるよう前記移動装置を制御するものとしてもよい。またこの場合、前記制御装置は、前記最小円の半径が最小になるときの前記ワークの回転角度を求めた後、前記ワークの回転角度を求めた回転角度とすると共に前記最小円の中心点の位置に基づいて前記ワークの前記直交平面に沿った位置を補正したときの各ピンの位置と対応する穴の位置とに基づいて、前記ワークの各ピンを前記被挿入物の対応する孔に挿入できるか否かを判定するものとしてもよい。さらにこの場合、前記ワークの各ピンの端面は、四角形状に形成され、前記制御装置は、前記ワークの各ピンの位置から該各ピンの四隅の位置を推定し、各ピンの四隅の位置が前記被挿入物の対応する穴の領域内に収まるか否かを判定することにより、前記ワークの各ピンを前記被挿入物の対応する孔に挿入できるか否かを判定するものとしてもよい。 In such a work insertion device of the present disclosure, the control device plots the positions of each pin with respect to the same reference point based on the amount of misalignment, and draws a minimum circle including the plotted positions of each pin. It may be set to obtain the rotation angle of the work that minimizes the radius of the minimum circle. In this case, the control device is based on the position of the center point of the minimum circle when the radius of the minimum circle is minimized when each pin of the work is inserted into the corresponding hole of the object to be inserted. The moving device may be controlled so that the position of the work along the orthogonal plane relative to the insert is corrected. Further, in this case, the control device obtains the rotation angle of the work when the radius of the minimum circle becomes the minimum, and then sets the rotation angle of the work as the rotation angle of the center point of the minimum circle. Insert each pin of the work into the corresponding hole of the object to be inserted based on the position of each pin and the position of the corresponding hole when the position of the work along the orthogonal plane is corrected based on the position. It may be used to determine whether or not it can be done. Further, in this case, the end faces of the pins of the work are formed in a quadrangular shape, and the control device estimates the positions of the four corners of the pins from the positions of the pins of the work, and the positions of the four corners of the pins are determined. By determining whether or not it fits within the region of the corresponding hole of the object to be inserted, it may be determined whether or not each pin of the work can be inserted into the corresponding hole of the object to be inserted.
 本開示は、ワーク挿入装置の製造産業などに利用可能である。 This disclosure can be used in the manufacturing industry of work insertion devices and the like.
 10 ワーク挿入装置、12 筐体、21 ワーク供給装置、22 搬送装置、24 ワークカメラ、25 マークカメラ、26 廃棄ボックス、30 ヘッド移動装置、32 X軸スライダ、33 X軸ガイドレール、34 Y軸スライダ、35 Y軸ガイドレール、36 X軸アクチュエータ、37 X軸位置センサ、38 Y軸アクチュエータ、39 Y軸位置センサ、40 ヘッド、41 吸着ノズル、42 Z軸アクチュエータ、43 Z軸位置センサ、44 Θ軸アクチュエータ、45 Θ軸位置センサ、60 制御装置、61 CPU、62 ROM、63 HDD、64 RAM、65 入出力インタフェース、66 バス、H 挿入穴、S 基板、W ワーク、P ピン。 10 work insertion device, 12 housing, 21 work supply device, 22 transfer device, 24 work camera, 25 mark camera, 26 disposal box, 30 head moving device, 32 X-axis slider, 33 X-axis guide rail, 34 Y-axis slider , 35 Y-axis guide rail, 36 X-axis actuator, 37 X-axis position sensor, 38 Y-axis actuator, 39 Y-axis position sensor, 40 head, 41 suction nozzle, 42 Z-axis actuator, 43 Z-axis position sensor, 44 Θ-axis Actuator, 45 Θ-axis position sensor, 60 control device, 61 CPU, 62 ROM, 63 HDD, 64 RAM, 65 input / output interface, 66 bus, H insertion hole, S board, W work, P pin.

Claims (5)

  1.  配列された複数のピンを有するワークの各ピンを、配列された複数の穴を有する被挿入物の対応する穴に挿入するワーク挿入装置であって、
     前記ワークを保持する保持部材と、
     前記保持部材を前記被挿入物に対して相対回転させる回転装置と、
     前記回転装置の回転軸に直交する直交平面に沿って前記保持部材を前記被挿入物に対して相対移動させる移動装置と、
     前記ワークの各ピンの実位置を測定し、各ピンにおいて測定した実位置の理想的な位置に対する位置ずれ量を算出し、前記被挿入物に対する相対的な前記ワークの回転角範囲のうちで前記位置ずれ量が最大のピンの位置ずれ量が最小となるような前記ワークの回転角度を求め、前記ワークの各ピンを前記被挿入物の対応する穴に挿入するに際して前記ワークの回転角度が求めた回転角度となるように前記回転装置を制御する制御装置と、
     を備えるワーク挿入装置。
    A work insertion device that inserts each pin of a work having a plurality of arranged pins into a corresponding hole of an object to be inserted having a plurality of arranged holes.
    A holding member that holds the work and
    A rotating device that rotates the holding member relative to the inserted object, and
    A moving device that moves the holding member relative to the inserted object along an orthogonal plane orthogonal to the rotation axis of the rotating device.
    The actual position of each pin of the work is measured, the amount of displacement of the actual position measured at each pin with respect to the ideal position is calculated, and the rotation angle range of the work relative to the object to be inserted is described as described above. The rotation angle of the work is obtained so that the amount of misalignment of the pin having the maximum amount of misalignment is minimized, and the rotation angle of the work is obtained when each pin of the work is inserted into the corresponding hole of the object to be inserted. A control device that controls the rotating device so that the rotation angle is different,
    A work insertion device equipped with.
  2.  請求項1に記載のワーク挿入装置であって、
     前記制御装置は、前記位置ずれ量に基づいて同一の基準点を基準とした各ピンの位置をそれぞれプロットし、プロットした各ピンの位置を包含する最小円を設定し、前記最小円の半径が最小になる前記ワークの回転角度を求める、
     ワーク挿入装置。
    The work insertion device according to claim 1.
    The control device plots the position of each pin with respect to the same reference point based on the amount of misalignment, sets a minimum circle including the plotted positions of each pin, and the radius of the minimum circle is Find the minimum rotation angle of the work,
    Work insertion device.
  3.  請求項2に記載のワーク挿入装置であって、
     前記制御装置は、前記ワークの各ピンを前記被挿入物の対応する穴に挿入するに際して前記最小円の半径が最小になるときの前記最小円の中心点の位置に基づいて前記被挿入物に対する相対的な前記ワークの前記直交平面に沿った位置が補正されるよう前記移動装置を制御する、
     ワーク挿入装置。
    The work insertion device according to claim 2.
    The control device with respect to the object to be inserted is based on the position of the center point of the minimum circle when the radius of the minimum circle is minimized when each pin of the work is inserted into the corresponding hole of the object to be inserted. The moving device is controlled so that the relative position of the work along the orthogonal plane is corrected.
    Work insertion device.
  4.  請求項3に記載のワーク挿入装置であって、
     前記制御装置は、前記最小円の半径が最小になるときの前記ワークの回転角度を求めた後、前記ワークの回転角度を求めた回転角度とすると共に前記最小円の中心点の位置に基づいて前記ワークの前記直交平面に沿った位置を補正したときの各ピンの位置と対応する穴の位置とに基づいて、前記ワークの各ピンを前記被挿入物の対応する孔に挿入できるか否かを判定する、
     ワーク挿入装置。
    The work insertion device according to claim 3.
    The control device determines the rotation angle of the work when the radius of the minimum circle becomes the minimum, and then sets the rotation angle of the work as the rotation angle, and based on the position of the center point of the minimum circle. Whether or not each pin of the work can be inserted into the corresponding hole of the object to be inserted based on the position of each pin and the position of the corresponding hole when the position of the work along the orthogonal plane is corrected. To judge,
    Work insertion device.
  5.  請求項4に記載のワーク挿入装置であって、
     前記ワークの各ピンの端面は、四角形状に形成され、
     前記制御装置は、前記ワークの各ピンの位置から該各ピンの四隅の位置を推定し、各ピンの四隅の位置が前記被挿入物の対応する穴の領域内に収まるか否かを判定することにより、前記ワークの各ピンを前記被挿入物の対応する孔に挿入できるか否かを判定する、
     ワーク挿入装置。
    The work insertion device according to claim 4.
    The end face of each pin of the work is formed in a quadrangular shape.
    The control device estimates the positions of the four corners of each pin from the position of each pin of the work, and determines whether or not the positions of the four corners of each pin fit within the area of the corresponding hole of the insert. Thereby, it is determined whether or not each pin of the work can be inserted into the corresponding hole of the object to be inserted.
    Work insertion device.
PCT/JP2020/012771 2020-03-23 2020-03-23 Workpiece insertion device WO2021191980A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022509790A JP7397170B2 (en) 2020-03-23 2020-03-23 Workpiece insertion device
PCT/JP2020/012771 WO2021191980A1 (en) 2020-03-23 2020-03-23 Workpiece insertion device
DE112020006953.2T DE112020006953T5 (en) 2020-03-23 2020-03-23 Workpiece insertion device
CN202080097569.8A CN115211250A (en) 2020-03-23 2020-03-23 Workpiece insertion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012771 WO2021191980A1 (en) 2020-03-23 2020-03-23 Workpiece insertion device

Publications (1)

Publication Number Publication Date
WO2021191980A1 true WO2021191980A1 (en) 2021-09-30

Family

ID=77891095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012771 WO2021191980A1 (en) 2020-03-23 2020-03-23 Workpiece insertion device

Country Status (4)

Country Link
JP (1) JP7397170B2 (en)
CN (1) CN115211250A (en)
DE (1) DE112020006953T5 (en)
WO (1) WO2021191980A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134900A (en) * 1988-11-16 1990-05-23 Hitachi Ltd Device for inserting multipin component
JPH0568879B2 (en) * 1984-06-08 1993-09-29 Hitachi Ltd
JP2003209396A (en) * 2002-01-11 2003-07-25 Fuji Mach Mfg Co Ltd Rotating position and rotating position error detecting method
JP6368275B2 (en) * 2015-04-17 2018-08-01 ヤマハ発動機株式会社 Component mounting machine, component mounting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576062B2 (en) * 2001-03-21 2010-11-04 富士機械製造株式会社 Lead position detection method, electrical component mounting method, and lead position detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568879B2 (en) * 1984-06-08 1993-09-29 Hitachi Ltd
JPH02134900A (en) * 1988-11-16 1990-05-23 Hitachi Ltd Device for inserting multipin component
JP2003209396A (en) * 2002-01-11 2003-07-25 Fuji Mach Mfg Co Ltd Rotating position and rotating position error detecting method
JP6368275B2 (en) * 2015-04-17 2018-08-01 ヤマハ発動機株式会社 Component mounting machine, component mounting method

Also Published As

Publication number Publication date
JPWO2021191980A1 (en) 2021-09-30
JP7397170B2 (en) 2023-12-12
DE112020006953T5 (en) 2023-01-26
CN115211250A (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US6681468B1 (en) Device and method for mounting parts
JP6619019B2 (en) Anti-substrate working system and insertion method
JP6484335B2 (en) Component mounting apparatus and suction position setting method
JP5152147B2 (en) Component mounting machine, component mounting system, and component mounting method
JP4860270B2 (en) Judgment Method for Simultaneous Adsorption of Electronic Components in Mounting Equipment
CN106255402B (en) Component mounting system and component mounting method for component mounting system
JP6663430B2 (en) Component mounting machine
WO2021191980A1 (en) Workpiece insertion device
JP3709800B2 (en) Mounting machine and component mounting method
CN112205096B (en) Component mounting system
JP5838302B2 (en) Suction nozzle mounting method, component mounting method, and component mounting apparatus
JP7167252B2 (en) Work system and information processing equipment
JP6738898B2 (en) Board-to-board working machine
JP5787397B2 (en) Electronic component mounting apparatus and electronic component mounting method
WO2022113241A1 (en) Mounting apparatus, mounting method, and method for measuring height of substrate
JP5861036B2 (en) Adsorption nozzle orientation determination method and component mounting apparatus
WO2023148957A1 (en) Substrate work machine and component mounting method
JP5860688B2 (en) Board work machine
JP6556200B2 (en) Electronic component mounting apparatus and substrate manufacturing method
JP4437607B2 (en) Surface mount machine
US11924976B2 (en) Work machine
JPWO2018016025A1 (en) Board work machine
JP6435241B2 (en) Electronic component mounting apparatus and substrate manufacturing method
JP4243745B2 (en) Head and workpiece positioning device and positioning method
JP2024001769A (en) Substrate work machine and substrate work method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509790

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20926825

Country of ref document: EP

Kind code of ref document: A1