JPH02134576A - High speed voltage measuring apparatus - Google Patents

High speed voltage measuring apparatus

Info

Publication number
JPH02134576A
JPH02134576A JP28832988A JP28832988A JPH02134576A JP H02134576 A JPH02134576 A JP H02134576A JP 28832988 A JP28832988 A JP 28832988A JP 28832988 A JP28832988 A JP 28832988A JP H02134576 A JPH02134576 A JP H02134576A
Authority
JP
Japan
Prior art keywords
light
optical
delay means
measured
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28832988A
Other languages
Japanese (ja)
Inventor
Masahiro Seyama
雅裕 瀬山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP28832988A priority Critical patent/JPH02134576A/en
Publication of JPH02134576A publication Critical patent/JPH02134576A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/247Details of the circuitry or construction of devices covered by G01R15/241 - G01R15/246
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/20Cathode-ray oscilloscopes
    • G01R13/22Circuits therefor
    • G01R13/34Circuits for representing a single waveform by sampling, e.g. for very high frequencies
    • G01R13/347Circuits for representing a single waveform by sampling, e.g. for very high frequencies using electro-optic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To sample a plurality of voltages to be measured within one cycle by recombining the light pulse passing through a variable delay means and the light pulse passing through both of the variable delay means and an auxiliary delay means to allow both of them to be incident to an electro-optical modulator. CONSTITUTION:A light branch device 207A is provided to the post stage of a variable delay means 202 and an auxiliary delay means 209 is provided on the auxiliary light path 208B branched from said branch device 207A. Further, a discrimination function adding means 203B is provided to the auxiliary light path 208B. This means 203B adds discrimination function to the light pulse passing through the circuit 209 in the same way as the discrimination function adding means 203A provided to a main light path 208A. Both light pulses to which discrimination function added are combined by a light coupler 212 to be sent into an electro-optical modulator 100. The light pulse PM1 passing through the means 209 is delayed by a delay time tau1 from the original light pulse LP and the light pulse branched to the auxiliary light path 208B becomes a light pulse PM2 further delayed by a delay time tau2. As a result, two light pulses PM1, PM2 are obtained from the light pulse coupler 212 within one cycle T.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えば光−電気変換素子のように高速応答が
求められる素子の応答特性を測定することに用いること
ができる高速電圧測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a high-speed voltage measuring device that can be used to measure the response characteristics of an element that requires a high-speed response, such as a photo-electrical conversion element.

「従来の技術」 急峻に立ち上がるパルスの波形成は光−電気変換素子の
応答特性等を測定するには高速応答型の波形観測器が要
求される。
``Prior Art'' The waveform of a steeply rising pulse requires a high-speed response waveform observation device to measure the response characteristics of a photo-electrical conversion element.

波形観測器としてはブラウン管オシロスコープが広く用
いられているが、この種の波形観測器は被測定点からケ
ーブルを通じて被測定電圧を取込む構造のため、ケーブ
ルの浮遊容量によって高速信号に含まれる高周波成分が
減衰されてしまい、真の波形を観測し難い欠点がある。
Cathode ray tube oscilloscopes are widely used as waveform observation instruments, but because this type of waveform observation instrument has a structure in which the voltage to be measured is taken from the measurement point through a cable, high-frequency components contained in high-speed signals may be absorbed by the stray capacitance of the cable. The problem is that the waveform is attenuated, making it difficult to observe the true waveform.

このため電気光学変調器を利用した高速波形観測装置が
考えられている。
For this reason, high-speed waveform observation devices using electro-optic modulators are being considered.

第7図を用いて電気光学変調器の構造及びその動作につ
いて説明する。
The structure and operation of the electro-optic modulator will be explained using FIG. 7.

図中100は電気光学変調器の全体を指すものとする。In the figure, 100 indicates the entire electro-optic modulator.

電気光学変調器100は光透過性の結晶体101と、こ
の結晶体101の光入射側に配置した偏光子102と、
結晶体101の光出射側に配置した検光子103と、結
晶体101に取付けた一対の電1104A、104Bと
によって構成される。尚105は補償用波長板を示す。
The electro-optic modulator 100 includes a light-transmitting crystal 101, a polarizer 102 disposed on the light incident side of the crystal 101,
It is composed of an analyzer 103 placed on the light output side of the crystal body 101 and a pair of electrodes 1104A and 104B attached to the crystal body 101. Note that 105 indicates a compensation wave plate.

電極104Aと104Bは結晶体101の光軸と直交す
る向に互に対向して配置され、この電極104 Aト1
04 B(7)間ニ被測定信号a106から被測定電圧
信号■を与える。
The electrodes 104A and 104B are arranged facing each other in a direction perpendicular to the optical axis of the crystal body 101.
During 04B(7), the voltage signal to be measured (■) is given from the signal to be measured a106.

結晶体lotには被測定電圧信号■の電圧値に対応した
電界が光軸と直交する向に発生し、この電界によって結
晶体101を通過する光の偏波面の向が回転され、この
偏波面の回転によって検光子103を通過し得る光量が
変化し出射光Iの光量が変わる。
In the crystal body lot, an electric field corresponding to the voltage value of the voltage signal to be measured (■) is generated in a direction perpendicular to the optical axis, and this electric field rotates the direction of the polarization plane of the light passing through the crystal body 101. The rotation of the analyzer 103 changes the amount of light that can pass through the analyzer 103, and the amount of output light I changes.

例えば偏光子102の偏光軸と検光子103の偏光軸を
互に直交する関係に配置した場合、被測定電圧信号■が
ゼロのときは通過光量はOとなる。
For example, when the polarization axis of the polarizer 102 and the polarization axis of the analyzer 103 are arranged in a relationship that is perpendicular to each other, the amount of transmitted light is O when the voltage signal to be measured (2) is zero.

これに対し被測定電圧■を漸次高めていくと結晶体10
1における偏波面が回転し、検光子103を通過し得る
光量は漸次増加する。
On the other hand, when the voltage to be measured (■) is gradually increased, the crystal body 10
1 rotates, and the amount of light that can pass through the analyzer 103 gradually increases.

結晶体101における偏波面の回転が90°に達すると
検光子103はほぼ100%入射光I。
When the rotation of the polarization plane in the crystal body 101 reaches 90°, the analyzer 103 detects almost 100% of the incident light I.

を透過させ、最大出射光量となる。The maximum amount of light is transmitted.

結晶体101に印加する電圧を更に増加させると、結晶
体101を通過する光の偏波面は90゜を越るため今度
は出射光量が漸次低下する。
When the voltage applied to the crystal body 101 is further increased, the polarization plane of the light passing through the crystal body 101 exceeds 90°, so that the amount of emitted light gradually decreases.

この様子を第8図に示す、この図から解るように結晶体
101に印加する電圧値に応じて出射光Iの光量はOと
入射光量!、との間を往復する変化を呈する。この出射
光量の変化は 1−1osin”αVテ与えラレル。
This situation is shown in FIG. 8. As can be seen from this figure, the amount of output light I changes from O to the amount of incident light depending on the voltage value applied to the crystal body 101! It exhibits changes that go back and forth between . This change in the amount of emitted light is 1-1 osin'' αV-teleral.

通常の測定では出射光illが0〜1.の間の範囲を利
用する。出射光量!が1.に達するまでの電圧を半波長
電圧■、と呼んでいる。半波長電圧■、は結晶体101
を挟む電極104Aと104Bの対向間隔d等によって
決まるが高いものでは約100ボルトから約1000ボ
ルトに達するものを作ることができる。
In normal measurements, the output light ill is 0 to 1. Use a range between. Output light amount! is 1. The voltage until it reaches is called the half-wave voltage ■. Half-wave voltage ■, is crystal 101
Although it is determined by the distance d between the electrodes 104A and 104B sandwiching the electrodes 104A and 104B, it is possible to make a high voltage voltage of about 100 volts to about 1000 volts.

尚、補償用波長板105は被測定電圧Vが0のとき出射
光量Iも0となるように調整するために設けられている
Note that the compensating wave plate 105 is provided to adjust the output light amount I to be 0 when the voltage to be measured V is 0.

第9図はこの電気光学変調器100を利用した従来の高
速波形観測装置を示す。
FIG. 9 shows a conventional high-speed waveform observation device using this electro-optic modulator 100.

電気光学変調器100は先に説明したように結晶体10
1と、入射側に設けた偏光子102と、出射側に設けた
検光子103と、結晶体101に取付けた一対の電極1
04A、104Bと、検光子103及び結晶体101と
の間に設けた補償用波長板105とによって構成される
点は先の説明と同じである0面この例では偏光子102
と結晶体101の間及び結晶体101と検光子103と
の間にレンズ107を設けた例を示している。
The electro-optic modulator 100 includes a crystal body 10 as described above.
1, a polarizer 102 provided on the incident side, an analyzer 103 provided on the output side, and a pair of electrodes 1 attached to the crystal body 101.
04A, 104B and the compensating wavelength plate 105 provided between the analyzer 103 and the crystal body 101, which is the same as the previous explanation.
An example is shown in which a lens 107 is provided between the crystal body 101 and the crystal body 101 and the analyzer 103.

電気光学変調器100に入射する光パルスは短パルスレ
ーザ発振器200から与えられる。短パルスレーザ発振
器200から出射された短パルス状のレーザ光は光分岐
器201で2分割される。
A light pulse incident on the electro-optic modulator 100 is provided by a short pulse laser oscillator 200. A short-pulse laser beam emitted from the short-pulse laser oscillator 200 is split into two by an optical splitter 201 .

2分割された光の一方は電気光学変調器100に入射さ
れる主光路に導びかれ、他方の光は被測定体300にト
リガ信号を与えるトリガパルス生成回路301に与えら
れる。
One of the two divided lights is guided to the main optical path that enters the electro-optic modulator 100, and the other light is given to a trigger pulse generation circuit 301 that gives a trigger signal to the object to be measured 300.

電気光学変調器100の入射光路に分岐された光パルス
は、可変遅延手段202と、光パルスに識別機能を与え
る識別機能付加手段203を通過して電気光学変!11
1100に入射される。
The optical pulse branched into the incident optical path of the electro-optic modulator 100 passes through the variable delay means 202 and the identification function adding means 203 which gives an identification function to the optical pulse, and is electro-optically modified! 11
1100.

可変遅延手段202はこの例では光路長を変化させて光
パルスの遅延量を変化させるようにした構造の可変遅延
手段を用いた場合を示す。
In this example, the variable delay means 202 uses a variable delay means having a structure in which the amount of delay of the optical pulse is changed by changing the optical path length.

つまり90′の角度を持って配置した反射鏡202Aを
駆動袋!202Bによって移動させ、反射m202Aの
移動によって光量長を変化させて光パルスの遅延量を制
御するように構成した場合を示す。
In other words, the reflector 202A placed at an angle of 90' is the driving bag! 202B, and the light amount length is changed by the movement of the reflection m202A to control the delay amount of the light pulse.

一方、識別機能付加手段203は光パルスに測定用光で
あることを識別する機能を付加する。このためには例え
ば音響光学変調器によって光パルス列LPを第10図に
示すように所定の周波6r。
On the other hand, the identification function adding means 203 adds a function to the optical pulse to identify that it is measurement light. For this purpose, for example, the optical pulse train LP is set at a predetermined frequency 6r as shown in FIG. 10 using an acousto-optic modulator.

を持つパルス変調波PMに変調することによって実現す
ることができる。MPは音響光学変調器に与える変調信
号を示す。
This can be realized by modulating into a pulse modulated wave PM having the following values. MP indicates a modulation signal given to the acousto-optic modulator.

このように光パルス列LPを周波数f、を持つパルス変
調波PMに変調することによって取出側において、周波
数r、を持つ電気信号を増幅すればよく、このようにし
てSN比よく測定信号を取込むことができる。
In this way, by modulating the optical pulse train LP into a pulse modulated wave PM having a frequency f, it is sufficient to amplify the electrical signal having a frequency r on the extraction side, and in this way, the measurement signal is acquired with a good S/N ratio. be able to.

電気光学変調器100から出射される光は光検出器20
4で電気信号に変換され弁別器205に入力される。
The light emitted from the electro-optic modulator 100 is transmitted to the photodetector 20.
4, it is converted into an electrical signal and input to the discriminator 205.

弁別器205は例えばロックインアンプを用いることが
できる。この弁別器205によって周波数r、を持つ信
号だけを増幅するし、その周波数f、を持つ信号の振幅
値に対応した直流電圧を出力する。識別機能付加手段2
03に供給する変調信号MPはこの弁別器205から送
られる。
For example, a lock-in amplifier can be used as the discriminator 205. This discriminator 205 amplifies only the signal having the frequency r, and outputs a DC voltage corresponding to the amplitude value of the signal having the frequency f. Identification function addition means 2
The modulated signal MP to be supplied to the discriminator 205 is sent from the discriminator 205.

つまり第11図に示すように短パルスレーザ発振器20
0から出力された光パルス列LPが可変遅延手段202
で第11図Bに示すようにτだけ遅延されて電気光学変
調器100に入射されたとすると、この入射タイミング
における被測定電圧信号■の値に対応した直流電圧■。
In other words, as shown in FIG.
The optical pulse train LP output from the variable delay means 202
As shown in FIG. 11B, if the input is delayed by τ and is input to the electro-optic modulator 100, then the DC voltage ■ corresponds to the value of the measured voltage signal ■ at this input timing.

、が弁別器205から出力される。, is output from the discriminator 205.

従って電気光学変調器100に入射する光パルスPMの
遅延量を漸次遅らせることによって弁別器205から出
力される直流電圧■。、は漸次被測定電圧■に対応して
変化する。
Therefore, by gradually delaying the amount of delay of the optical pulse PM incident on the electro-optic modulator 100, the DC voltage (2) is output from the discriminator 205. , gradually changes in response to the measured voltage ■.

よって弁別器205から出力される直流電圧の変化を表
示器206に与えて表示させることによって被測定電圧
信号■を遅い信号に変換して観測することができる。
Therefore, by applying and displaying the change in the DC voltage output from the discriminator 205 on the display 206, the measured voltage signal (2) can be converted into a slow signal and observed.

このようにして高速度で変化する信号を電気光学変調器
100によってサンプリングし、そのサンプリングのタ
イミングを順次ずらすことによって高速で変化する信号
を遅く変化する信号に変換するから、表示器206は普
通に用いられるブラウン管オシロスコープでもよく高速
信号をブラウン管オシロスコープで観測することができ
る。
In this way, a signal that changes at a high speed is sampled by the electro-optic modulator 100, and by sequentially shifting the timing of the sampling, a signal that changes at a high speed is converted into a signal that changes slowly, so that the display 206 is normally used. High-speed signals can be observed using a cathode ray tube oscilloscope.

「発明が解決しようとする課題」 上述した高速波形観測装置は被測定電圧信号■の1周期
に1回の割合で光パルスを与えてサンプリングしている
``Problem to be Solved by the Invention'' The high-speed waveform observation device described above samples the voltage signal to be measured by applying a light pulse once per cycle.

このため被測定電圧信号の1周期の全てに対応するデー
タをサンプリングするには被測定電圧信号を時間をかけ
てサンプリングしなければならない、このため被測定電
圧信号の波形データが得られるまでに時間がかかる欠点
がある。
Therefore, in order to sample the data corresponding to the entire period of the voltage signal under test, the voltage signal under test must be sampled over time, so it takes time to obtain the waveform data of the voltage signal under test. There is a drawback that it takes

この発明の目的は短時間に被測定信号の波形データを得
ることができる高速電圧測定装置を提供するにある。
An object of the present invention is to provide a high-speed voltage measuring device that can obtain waveform data of a signal under test in a short time.

「課題を解決するための手段」 この発明では可変遅延手段を通った光パルスを光分岐器
によって分岐し、その分岐した光路上に副遅延手段を設
け、この副遅延手段を通った光パルスを先に分岐した元
の光パルスと再結合させる。
"Means for Solving the Problem" In this invention, the optical pulse that has passed through the variable delay means is branched by an optical splitter, and a sub-delay means is provided on the branched optical path, and the optical pulse that has passed through the sub-delay means is split by an optical splitter. It is recombined with the original light pulse that was split earlier.

この再結合した光パルスは可変遅延手段だけを通った光
パルスと、可変遅延手段と副遅延手段の双方を通った光
パルスである。よって可変遅延手段と副遅延手段の双方
を通った光パルスの遅延量は可変遅延手段だけを通った
光パルスの遅延量より副遅延手段の遅延時間だけ長い。
The recombined optical pulses include an optical pulse that has passed through only the variable delay means and an optical pulse that has passed through both the variable delay means and the sub-delay means. Therefore, the delay amount of the optical pulse that has passed through both the variable delay means and the sub-delay means is longer by the delay time of the sub-delay means than the delay amount of the optical pulse that has passed only the variable delay means.

この遅延量が異なる光パルスを電気光学変調器に入射す
ることによって被測定電圧信号のIJillJI内を2
回ずつサンプリングすることができる。
By inputting optical pulses with different delay amounts into the electro-optic modulator, the IJillJI of the voltage signal to be measured is
Can be sampled once.

この結果取込むことができるデータの量を2倍にするこ
とができるため被測定電圧信号の波形データを従来の1
72の時間で取込むことができる。
As a result, the amount of data that can be captured can be doubled, so the waveform data of the voltage signal to be measured can be
It can be captured in 72 hours.

また光パルスを2より多い複数N個に分岐し、各分岐路
に副遅延手段を設けることによって被測定電圧信号の1
周期内にN個のサンプリングパルスを得ることができる
Furthermore, by branching the optical pulse into a plurality of N pieces, which is more than 2, and providing a sub-delay means in each branch path, one part of the voltage signal to be measured is
N sampling pulses can be obtained within a period.

この複数の光パルスには各分岐路に設けた識別機能付加
手段で識別機能を付加すれば、データ取込側で識別して
取込むことができる。
If an identification function is added to the plurality of optical pulses by an identification function adding means provided in each branch path, the data can be identified and imported on the data acquisition side.

よって被測定電圧信号の1周期内にN個の光パルスを得
るように構成すればデータの取込時間を1/Nに短縮す
ることができる。
Therefore, if N optical pulses are obtained within one cycle of the voltage signal to be measured, the data acquisition time can be reduced to 1/N.

「実施例」 第1図にこの発明の一実施例を示す、第1図の実施例は
この出願の第1発明に対応した実施例を示す。この出願
の第1発明では可変遅延手段202の後段側に光分岐器
207Aを設け、この光分岐器207Aで分岐した副光
路208B上に副遅延手段209を設ける。図示の例で
は副遅延手段209を可変遅延手段202と同じ構成の
可変遅延回路を用いた場合を示すが特に遅延時間が可変
できる構造でなくてもよい。
"Embodiment" FIG. 1 shows an embodiment of the present invention, and the embodiment in FIG. 1 shows an embodiment corresponding to the first invention of this application. In the first invention of this application, an optical splitter 207A is provided on the downstream side of the variable delay means 202, and a sub-delay means 209 is provided on the sub-optical path 208B branched by the optical splitter 207A. In the illustrated example, a variable delay circuit having the same configuration as the variable delay means 202 is used as the sub-delay means 209, but the structure does not have to be such that the delay time can be varied.

光分岐器207Aで分岐した副光路208Bには副遅延
手段209の他に、識別機能付加手段203Bを設ける
。この識別機能付加手段203Bは主光路208Aに設
けられている識別機能付加手段203Aと同様に副遅延
手段209を通った光パルスに識別機能を付加する。
In addition to the sub delay means 209, an identification function addition means 203B is provided in the sub optical path 208B branched by the optical splitter 207A. This identification function addition means 203B adds an identification function to the optical pulse that has passed through the sub-delay means 209, similar to the identification function addition means 203A provided in the main optical path 208A.

識別機能は先に説明したと同様に音響光学変調器によっ
て光パルス列を変調周波数f1と11によって変調した
パルス変調波とすることによって付加される。
The identification function is added by converting the optical pulse train into a pulse modulated wave modulated by the modulation frequencies f1 and 11 using an acousto-optic modulator as described above.

識別機能付加手段203Aと203Bにおいて識別機能
が付加された光パルスは光結合器212で結合され電気
光学変調器100に送り込まれる。
The optical pulses to which identification functions have been added by the identification function adding means 203A and 203B are combined by an optical coupler 212 and sent to the electro-optic modulator 100.

電気光学変調器100に送り込まれる光パルスを第2図
りに示す。第2図に示すように可変遅延手段202で遅
延され、主光路208Aを通る光パルスPM、は元の光
パルスLPより可変遅延手段202の遅延時間τ1だけ
遅れている。これに対し、副光路208Bに分岐された
光パルスは副遅延手段209の遅延時間τ8だけ遅れた
光パルスPMz となる。
The optical pulses fed into the electro-optic modulator 100 are shown in the second figure. As shown in FIG. 2, the optical pulse PM delayed by the variable delay means 202 and passing through the main optical path 208A is delayed by the delay time τ1 of the variable delay means 202 than the original optical pulse LP. On the other hand, the optical pulse branched to the sub optical path 208B becomes an optical pulse PMz delayed by the delay time τ8 of the sub delay means 209.

この結果光結合器212で光結合された光パルスは第2
図りに示すように1周期T内に2個の光パルスPM、と
PM、が得られる。
As a result, the optical pulse optically coupled by the optical coupler 212 is
As shown in the figure, two optical pulses PM and PM are obtained within one period T.

光パルスPM、とPM、は識別機能付加手段203A、
203Bで変調周波数r□とf□で変調される。この変
調波を第3図に示す。変調信号MP、とMPオを識別機
能付加手段203A。
Optical pulse PM and PM are identification function adding means 203A,
At 203B, the signals are modulated at modulation frequencies r□ and f□. This modulated wave is shown in FIG. Function adding means 203A for identifying modulated signals MP and MPo.

203Bに与えることによって識別機能付加手段203
A、203Bから変調波PM、とPM、が出力される。
203B, the identification function adding means 203
Modulated waves PM and PM are output from A and 203B.

電気光学変調器100の出射側に設けた光検出器204
で変換した電気信号は二つの弁別器205Aと205B
に入力され、弁別器205Aと205Bで各光パルスP
M、とPM、の通過タイミングにおける被測定電圧■の
値に対応した直流電圧El+E2 (第2図E、  F
)を出力する。
Photodetector 204 provided on the output side of electro-optic modulator 100
The electrical signal converted by is sent to two discriminators 205A and 205B.
and each optical pulse P is input to the discriminator 205A and 205B.
DC voltage El + E2 corresponding to the value of the measured voltage ■ at the timing of passage of M and PM (Fig. 2 E, F
) is output.

この直流電圧E、、E、は可変遅延手段202の遅延時
間τ、を順次大きくする方向に走査させることによって
被測定電圧■の波形に対応して変化し、被測定電圧■の
波形を表示器206に表示させることができる。
These DC voltages E, ,E change in accordance with the waveform of the voltage to be measured (■) by scanning in a direction that sequentially increases the delay time τ of the variable delay means 202, and the waveform of the voltage to be measured (■) is displayed on the display. 206 can be displayed.

尚この例では弁別器205Aと205Bの弁別出力をマ
イクロコンピュータ207に入力し、マイクロコンピュ
ータ207でデータ処理して表示器206に表示させる
ように構成した場合を示す。
In this example, the discrimination outputs of the discriminators 205A and 205B are input to the microcomputer 207, and the microcomputer 207 processes the data and displays it on the display 206.

また可変遅延手段202の遅延時間τ1もマイクロコン
ピュータ207で制御されて走査される。
Further, the delay time τ1 of the variable delay means 202 is also controlled by the microcomputer 207 and scanned.

副遅延手段209の遅延時間は測定中は固定であるが、
被測定電圧■の立上りの速度等によってその遅延時間τ
2を変化させることもある。
Although the delay time of the sub-delay means 209 is fixed during measurement,
The delay time τ depends on the rising speed of the measured voltage ■.
2 may be changed.

第4図はこの出願の第2発明に対応する実施例を示す。FIG. 4 shows an embodiment corresponding to the second invention of this application.

この例では可変遅延手段202の後段に3個の光分岐器
207A、207B、207Cを設け、この3個の光分
岐器207A、207B、207Cによって主光路20
8Aに対して3つの副光路208A〜208Dに分岐し
、各副光路208A〜208Dに副遅延手段209A、
  209B、209Cを挿入するように構成した場合
を示す。
In this example, three optical splitters 207A, 207B, and 207C are provided after the variable delay means 202, and these three optical splitters 207A, 207B, and 207C
8A is branched into three sub optical paths 208A to 208D, and each sub optical path 208A to 208D includes a sub delay means 209A,
209B and 209C are inserted.

各副遅延手段209A、209B、209Cの後段には
識別機能付加手段203B、203C1203Dを設け
、これら識別機能付加手段203B、203C,203
Dにおいて周波数f、t、f s3、flでパルス変調
し、そのパルス変調した光パルスを6個の光結合器21
2A、212B、212C,212D、212E、21
2Fで結合し、電気光学変調器100に入射する。
Identification function addition means 203B, 203C1203D are provided at the subsequent stage of each sub-delay means 209A, 209B, 209C, and these identification function addition means 203B, 203C, 203
At D, pulse modulation is performed at frequencies f, t, f s3, and fl, and the pulse-modulated optical pulses are sent to six optical couplers 21.
2A, 212B, 212C, 212D, 212E, 21
2F and enters the electro-optic modulator 100.

このように3個の副遅延手段203B、203C120
3Dを付加することにより被測定電圧信号■の1周期内
に4個のパルスを得ることができ、データの採取時間は
従来のものと比較してl/4にすることができる。
In this way, the three sub-delay means 203B, 203C120
By adding 3D, four pulses can be obtained within one period of the voltage signal to be measured (2), and the data acquisition time can be reduced to 1/4 compared to the conventional method.

第5図は弁別器205の他の実施例を示す、この例では
バンドパスフィルタBPFと、A/D変換器ADと、平
均化回路AVと、フーリエ変換器FLとによって構成し
た場合を示す。
FIG. 5 shows another embodiment of the discriminator 205. In this example, the discriminator 205 is constructed from a band pass filter BPF, an A/D converter AD, an averaging circuit AV, and a Fourier transformer FL.

このようにフーリエ変換器FLによってデータを弁別し
た場合、光パルスの送り側を第4図の実施例を適用した
ものとすると、第6図に示すように識別機能付加手段2
03A〜203Dで付加した機能別に、周波数スペクト
ラムSP+ 、SPz、SP、 、SP、が得られる。
When data is discriminated by the Fourier transformer FL in this way, if the embodiment of FIG. 4 is applied to the optical pulse sending side, the discrimination function addition means 2
Frequency spectra SP+, SPz, SP, , SP are obtained for each function added in 03A to 203D.

つまり変調周波数f0、f、3、fan、f 、、テ変
調される光パルスの遅延時間がτ3、τ2、τ8、τ4
とされ、これら遅延時間τ1、τ2、τ1、τ4がτ1
くτ工くτ3〈τ4に設定されているものとすると、各
周波数スペクトラムSP、。
In other words, the modulation frequency f0, f, 3, fan, f, the delay time of the modulated optical pulse τ3, τ2, τ8, τ4
and these delay times τ1, τ2, τ1, τ4 are τ1
Assuming that τ is set to τ3<τ4, each frequency spectrum SP.

SP! 、SP3 、SP4の各頂点は被測定電圧■の
波形に対応した位置を指示する。よって可変遅延手段2
02の遅延時間を時間軸上において走査させることによ
って被測定電圧■の波形データを得ることができる。
SP! , SP3, and SP4 each indicate a position corresponding to the waveform of the voltage to be measured (■). Therefore, variable delay means 2
By scanning the delay time of 02 on the time axis, waveform data of the voltage to be measured ■ can be obtained.

「発明の効果」 以上説明したように、この発明によれば被測定電圧■の
1周期内に複数の光パルスを電気光学変調器100に入
射させることができ、これによって被測定電圧■のl]
XJI内を複数サンプリングすることができる。
"Effects of the Invention" As explained above, according to the present invention, it is possible to make a plurality of optical pulses enter the electro-optic modulator 100 within one period of the voltage to be measured (2), thereby making it possible to ]
It is possible to sample multiple times within XJI.

よって短かい時間で被測定電圧■の波形データを得るこ
とができる。
Therefore, waveform data of the voltage to be measured (2) can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの出願の第1発明の実施例を示すブロック図
、第2図及び第3図はその動作を説明するための波形図
、第4図はこの出願の第2発明の実施例を示すブロック
図、第5図は弁別器の変形例を示すブロック図、第6図
は第5図の動作を説明するためのグラフ、第7図はこの
発明に用いた電気光学変調器の構造及び動作を説明する
ための分解斜視図、第8図は電気光学変調器の動作を説
明するためのグラフ、第9図は従来の高速波形観測装置
を説明するためのブロック図、第1O図及び第11図は
同様の波形図である。 100:電気光学変調器、101 :結晶体、200:
短パルスレーザ発振器、201,207A、207B、
207C:光分岐器、202:可変遅延手段、209A
、209B、209C:副遅延手段、203,203A
〜203D:識別機能付加手段、205:弁別器。
Fig. 1 is a block diagram showing an embodiment of the first invention of this application, Figs. 2 and 3 are waveform diagrams for explaining its operation, and Fig. 4 shows an embodiment of the second invention of this application. FIG. 5 is a block diagram showing a modified example of the discriminator, FIG. 6 is a graph for explaining the operation of FIG. 5, and FIG. 7 shows the structure and structure of the electro-optic modulator used in the present invention. FIG. 8 is an exploded perspective view to explain the operation, FIG. 8 is a graph to explain the operation of the electro-optic modulator, FIG. 9 is a block diagram to explain the conventional high-speed waveform observation device, and FIGS. FIG. 11 is a similar waveform diagram. 100: Electro-optic modulator, 101: Crystal, 200:
Short pulse laser oscillator, 201, 207A, 207B,
207C: Optical splitter, 202: Variable delay means, 209A
, 209B, 209C: Sub delay means, 203, 203A
~203D: Discrimination function addition means, 205: Discriminator.

Claims (2)

【特許請求の範囲】[Claims] (1)光軸上に配置された結晶体と、この結晶体の光入
射側に設けられた偏光子と、結晶体の光出射側に設けら
れた検光子と、結晶体の光軸と直交する向に電界を印加
する一対の電極とから成る電気光学変調器を具備し、 この電気光学変調器の上記電極間に被測定電圧信号を印
加し、被測定電圧信号の周期に同期してパルス状のレー
ザ光を入射し、その出射量を計測すると共に、電気光学
変調器に与える光のタイミングを可変遅延手段によって
順次遅延させて被測定電圧信号の周期に対する入射光の
入射タイミングを順次時間軸方向に走査させ、各出射光
の光量の変化から被測定電圧信号の波形をとらえるよう
にした高速電圧信号測定装置において、 上記可変遅延手段を通過した光の光路上に光分岐器を設
け、この光分岐器で分岐した光路上に副遅延手段を設け
、この副遅延手段で遅延させた光を光結合器で再び上記
可変遅延手段で遅延された光に再結合し、この再結合し
た光を上記電気光学変調器に入射し、被測定電圧信号の
周期内に複数の光パルスを入射させるようにした高速電
圧測定装置。
(1) A crystal placed on the optical axis, a polarizer provided on the light incidence side of the crystal, and an analyzer provided on the light output side of the crystal, perpendicular to the optical axis of the crystal. A voltage signal to be measured is applied between the electrodes of the electro-optic modulator, and a pulse is generated in synchronization with the period of the voltage signal to be measured. A laser beam of a shape is inputted, and its output amount is measured, and the timing of the light applied to the electro-optic modulator is sequentially delayed by a variable delay means, so that the timing of the incident light relative to the period of the voltage signal to be measured is sequentially adjusted on the time axis. In a high-speed voltage signal measuring device that captures the waveform of a voltage signal to be measured from changes in the light intensity of each emitted light by scanning in the direction, an optical splitter is provided on the optical path of the light that has passed through the variable delay means, and this A sub-delay means is provided on the optical path branched by the optical splitter, the light delayed by the sub-delay means is recombined with the light delayed by the variable delay means by the optical coupler, and the recombined light is A high-speed voltage measuring device, wherein a plurality of optical pulses are incident on the electro-optic modulator within a cycle of a voltage signal to be measured.
(2)上記可変遅延手段を通った光の光路上に複数の光
分岐器を設け、この複数の光分岐器で分岐した光路にそ
れぞれ副遅延手段を設け、各副遅延手段で遅延した光を
再結合して電気光変調器に入射させ、被測定電圧信号の
周期内に2個以上の光パルスを入射させるようにした高
速電圧測定装置。
(2) A plurality of optical splitters are provided on the optical path of the light that has passed through the variable delay means, sub-delay means are provided for each of the optical paths branched by the plurality of optical splitters, and the light delayed by each sub-delay means is A high-speed voltage measurement device in which two or more optical pulses are recombined and input into an electro-optic modulator, and two or more optical pulses are input within the period of a voltage signal to be measured.
JP28832988A 1988-11-14 1988-11-14 High speed voltage measuring apparatus Pending JPH02134576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28832988A JPH02134576A (en) 1988-11-14 1988-11-14 High speed voltage measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28832988A JPH02134576A (en) 1988-11-14 1988-11-14 High speed voltage measuring apparatus

Publications (1)

Publication Number Publication Date
JPH02134576A true JPH02134576A (en) 1990-05-23

Family

ID=17728776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28832988A Pending JPH02134576A (en) 1988-11-14 1988-11-14 High speed voltage measuring apparatus

Country Status (1)

Country Link
JP (1) JPH02134576A (en)

Similar Documents

Publication Publication Date Title
US5120961A (en) High sensitivity acousto-optic tunable filter spectrometer
JPS63308572A (en) Voltage detector
CN106289544B (en) The pulse measuring method and measuring device of high contrast
JPH1030965A (en) Apparatus and method for measurement of optical pulse characteristic
JPH05264609A (en) Method and system for measuring high frequency electric signal through electrooptic effect
JPS63300971A (en) Voltage detector
JPH0198973A (en) Voltage detecting device
US6108085A (en) Interferometric auto-correlator using third-order nonlinearity
US4790655A (en) System for measuring laser spectrum
EP0250917B1 (en) Method for signal transmission and optical communications
CN106338334B (en) A kind of dual-acousto-optic phase modulation conjugation heterodyne detection device
US7529481B1 (en) Linear optical sampling methods and apparatus
US6266145B1 (en) Apparatus for measurement of an optical pulse shape
JPH02134576A (en) High speed voltage measuring apparatus
JPH08160110A (en) Electric signal measuring instrument
JPH0427843A (en) Low noise pulse light source using laser diode and voltage detector using the light source
JP3154531B2 (en) Signal measurement device
CN113720484B (en) Attosecond precision timing detection device and method based on linear optical effect
JP2577582B2 (en) Voltage detector
JPH0574013B2 (en)
JP2582588B2 (en) Multi-channel voltage detector
JP2893921B2 (en) Optical sampling device
JP3063369B2 (en) Magnetic field detector
JPH0271160A (en) Electro-optic sampler and electric signal waveform measurement device using said sampler
JP2959152B2 (en) Optical sampling device