JPH0574013B2 - - Google Patents
Info
- Publication number
- JPH0574013B2 JPH0574013B2 JP4615589A JP4615589A JPH0574013B2 JP H0574013 B2 JPH0574013 B2 JP H0574013B2 JP 4615589 A JP4615589 A JP 4615589A JP 4615589 A JP4615589 A JP 4615589A JP H0574013 B2 JPH0574013 B2 JP H0574013B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- waveform
- optical
- observation device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims description 47
- 230000003111 delayed effect Effects 0.000 claims description 25
- 239000000523 sample Substances 0.000 claims description 25
- 238000005070 sampling Methods 0.000 claims description 7
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- QLILRKBRWXALIE-UHFFFAOYSA-N 3-nitropyridine Chemical compound [O-][N+](=O)C1=CC=CN=C1 QLILRKBRWXALIE-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光波形観測装置に関するもので、特に
高速過渡光現象を励起プローブ法により観測する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical waveform observation device, and in particular is used to observe fast transient optical phenomena using an excitation probe method.
高速過渡光現象を観測する手段として、アツ
プ・コンバージヨン(up−conversion)と命名
された励起プローブ法が知られている。アツプ・
コンバージヨンとは異方性結晶内で和(または
差)振動数を発生する非線形現象のことで、例え
ばBeddardらによる装置(Chem.Phys.61,17−
23(1981年))は次のように構成される。まず、レ
ーザ光源から出射された振動数ω1のレーザ光は
2つに分岐され、一方のレーザ光(励起光)のみ
が試料に照射されて振動数ω2の螢光が生成され
る。そこで、この螢光ω2と分岐された他方のレ
ーザ光ω1を非線形光学素子に入射すると、その
和(または差)周波光である振動数ω3の光が得
られる。このため、試料に入射されるレーザ光を
単パルス光とすることができるならば、試料から
の螢光を高い時間分解能で観測することができ
る。
An excitation probe method called up-conversion is known as a means for observing fast transient optical phenomena. Atsupu・
Convergence is a nonlinear phenomenon that generates a sum (or difference) frequency in an anisotropic crystal. For example, the device by Beddard et al.
23 (1981)) is structured as follows. First, a laser beam with a frequency ω 1 emitted from a laser light source is split into two, and only one of the laser beams (excitation light) is irradiated onto the sample to generate fluorescence with a frequency ω 2 . Therefore, when this fluorescent light ω 2 and the other branched laser light ω 1 are incident on a nonlinear optical element, light with a frequency ω 3 that is the sum (or difference) frequency light is obtained. Therefore, if the laser light incident on the sample can be made into a single pulse light, the fluorescence from the sample can be observed with high temporal resolution.
一方、このような過渡光現象を観測する他の手
法として、被測定光を高速ホトダイオードに入射
し、サンプリングオシロスコープ等で観測するも
のがある。この場合には、上記のような螢光だけ
でなく、光源からのレーザ光そのものについても
観測可能である。 On the other hand, as another method for observing such transient light phenomena, there is a method in which the light to be measured is incident on a high-speed photodiode and observed with a sampling oscilloscope or the like. In this case, not only the fluorescent light as described above but also the laser light itself from the light source can be observed.
しかしながら、上記の励起プローブ法によれ
ば、試料の螢光等は精度よく観測することはでき
るが、光源からのレーザ光そのものは観測するこ
とができない。これに対し、高速ホトダイオード
を用いるものでは、光源からのレーザ光そのもの
いついても観測可能であるが、高速現象を精度よ
く観測できない。なざなら、PINフオトダイオー
ドでは応答速度が30psec程度、アバランシエ・フ
オトダイオードでは応答速度が50〜100psec程度
に制限されてしまうからである。さらに、サンプ
リングオシロスコープなどを組み合せると、イン
ピーダンスの不整合等により観測波形が歪んでし
まうという欠点があつた。
However, according to the above-mentioned excitation probe method, although fluorescence etc. of the sample can be observed with high precision, the laser light itself from the light source cannot be observed. On the other hand, when using a high-speed photodiode, it is possible to observe the laser beam itself from the light source, but high-speed phenomena cannot be observed accurately. This is because the response speed of a PIN photodiode is limited to about 30 psec, and the response speed of an avalanche photodiode is limited to about 50 to 100 psec. Furthermore, when a sampling oscilloscope or the like is used in combination, the observed waveform is distorted due to impedance mismatch, etc., which is a drawback.
そこで本発明は、波形が高速で繰り返される被
測定光の波形を、精度よく観測することのできる
光波形観測装置を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an optical waveform observation device that can accurately observe the waveform of light to be measured whose waveform is repeated at high speed.
本発明に係る光波形観測装置は、被測定光を一
定時間遅延させて遅延被測定光を出射する光学的
遅延手段と、被測定光の波形の繰り返しに同期し
たトリガ信号を得るトリガ手段と、トリガ信号に
もとづき被測定光の波形よりも時間幅が十分に短
く波長が異なるプローブパルス光を出射するパル
ス光源と、遅延被測定光とプローブパルス光を和
または差周波混合させる混合手段と、プローバパ
ルス光が混合手段に入射するタイミングを遅延被
測定光が混合手段に入射するタイミングに合わせ
ると共に、遅延被測定光の波形の繰り返しごとに
順次に入射タイミングをシフトさせて遅延被測定
光をサンプリングする遅延手段と、サンプリング
された混合手段による和または差周波光成分を抽
出して記録、解析することにより、被測定光より
も低速で波形が繰り返される光観測波形を求める
記録解析手段とを備えることを特徴とする。
The optical waveform observation device according to the present invention includes: an optical delay means for delaying the light to be measured for a certain period of time and emitting the delayed light to be measured; a trigger means for obtaining a trigger signal synchronized with the repetition of the waveform of the light to be measured; A pulse light source that emits probe pulse light having a sufficiently shorter time width and a different wavelength than the waveform of the light to be measured based on a trigger signal, a mixing means for sum or difference frequency mixing of the delayed light to be measured and the probe pulse light, and a prober. The timing at which the pulsed light enters the mixing means is matched with the timing at which the delayed light to be measured enters the mixing means, and the delayed light to be measured is sampled by sequentially shifting the input timing each time the waveform of the delayed light to be measured is repeated. It comprises a delay means and a recording analysis means for extracting, recording and analyzing the sum or difference frequency optical component sampled by the mixing means to obtain an optical observation waveform in which the waveform is repeated at a slower speed than the light to be measured. It is characterized by
ここで、記録解析手段の出力にもとづき光観測
波形を表示する表示手段を更に設けてもよい。ま
た、トリガ手段は被測定光を検出してトリガ信号
を出力する光検出器で構成してもよく、被測定光
の光源の駆動信号からトリガ信号を出力するよう
にしてもよい。 Here, a display means for displaying the optically observed waveform based on the output of the recording analysis means may be further provided. Further, the trigger means may be constituted by a photodetector that detects the light to be measured and outputs a trigger signal, or may output the trigger signal from a drive signal of a light source of the light to be measured.
本発明によれば、被測定光から得られるトリガ
信号に基づいて出射されるプローブパルス光と、
被測定光が一定時間遅延された遅延被測定光が、
和または差周波混合される。プローブパルス光が
混合手段に入射するタイミングは、遅延被測定光
が混合手段に入射するタイミングに合わせると共
に、遅延被測定光の波形の繰り返しごとに順次に
入射タイミングをシフトさせているので、プロー
ブ光で遅延被測定光をサンプリングすることがで
きる。
According to the present invention, a probe pulse light emitted based on a trigger signal obtained from the light to be measured;
The delayed light to be measured is the light to be measured that is delayed for a certain period of time.
Sum or difference frequency mixed. The timing at which the probe pulse light enters the mixing means is matched with the timing at which the delayed light to be measured enters the mixing means, and the input timing is sequentially shifted each time the waveform of the delayed light to be measured is repeated. The delayed measured light can be sampled.
以下、添付図面を参照して本発明の実施例を説
明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図は実施例に係る光波形観測装置の構成図
である。被測定光源1は例えば半導体レーザなど
で構成され、光強度波形が高速で繰り返される波
長λ1の被測定光Pλ1を出力する。この被測定光
Pλ1は光フイアバ2を介して光分岐器3に入射さ
れ、2つの光に分岐される。一方の分岐光は高速
ホトダイオードなどの光検出器4で検出され、他
方の分岐光は光学的遅延用の光フイアバ5を介し
て遅延被測定光Pλ′1として光結合器6に入射され
る。光検出器4は被測定光Pλ1の検出によるトリ
ガパルスTSを生成し、これを遅延回路7に送る。
遅延回路7はトリガパルスTSを所定の時間だけ
遅延させてパルス光源8に与え、これによつてパ
ルス光源8はプローブパルスを出力する。 FIG. 1 is a configuration diagram of an optical waveform observation device according to an embodiment. The light source 1 to be measured is constituted by, for example, a semiconductor laser, and outputs a light to be measured Pλ 1 having a wavelength λ 1 whose light intensity waveform is repeated at high speed. This light to be measured
Pλ 1 enters the optical splitter 3 via the optical fiber 2 and is split into two lights. One branched light is detected by a photodetector 4 such as a high-speed photodiode, and the other branched light is input to an optical coupler 6 as delayed measured light Pλ' 1 via an optical fiber 5 for optical delay. The photodetector 4 generates a trigger pulse T S by detecting the light to be measured Pλ 1 and sends it to the delay circuit 7 .
The delay circuit 7 delays the trigger pulse T S by a predetermined time and supplies it to the pulsed light source 8, so that the pulsed light source 8 outputs a probe pulse.
第2図a〜dはこの間の作用を示している。ま
ず、被測定光源1からの被測定光Pλ1が第2図a
ような波形になつているときは、その光強度Iλ1
が光検出器4の閾値ITHを越えたとき(時点t0)
に、第2図bのようなトリガパルスTSが出力さ
れる。一方、光分岐器3を通過した被測定光Pλ1
は、遅延用光フイアバ5を通過することにより、
第2図cのような波形の遅延被測定光Pλ′1とな
る。なお、この遅延量(時間T0)は一定である。
これに対し、遅延量が順次に変えられる(シフト
される)遅延回路7からの信号により制御される
パルス光源8は、第2図bの如き波形のプローブ
パルス光Pλ2を出力する。ここで、トリガパルス
TSとプローブパルス光Pλ2の間の時間差Δtは遅延
回路7により定められる。 Figures 2a to 2d show the operation during this period. First, the measured light Pλ 1 from the measured light source 1 is
When the waveform is as follows, the light intensity Iλ 1
exceeds the threshold value I TH of photodetector 4 (time t 0 )
Then, a trigger pulse T S as shown in FIG. 2b is output. On the other hand, the light to be measured Pλ 1 that has passed through the optical splitter 3
By passing through the delay optical fiber 5,
The delayed measured light Pλ' 1 has a waveform as shown in FIG. 2c. Note that this delay amount (time T 0 ) is constant.
On the other hand, the pulse light source 8, which is controlled by the signal from the delay circuit 7 whose delay amount is sequentially changed (shifted), outputs the probe pulse light Pλ 2 having a waveform as shown in FIG. 2b. Here, the trigger pulse
The time difference Δt between T S and the probe pulse light Pλ 2 is determined by the delay circuit 7.
このような遅延被測定光Pλ′1とプローブパルス
光Pλ2が光結合器6で一本のビーム光とされ、
LiNbO3などの異方性結晶からなる非線形光学素
子9に入射されると、いわゆる和周波(又は差周
波)混合が生じる。すなわち、遅延被測定光Pλ′1
の波長をλ1、プローブパルス光Pλ2の波長をλ2と
すると、非線形光学素子9からは波長λ1,λ2,λ3
の3つの光が得られる。ここで、波長λ3の和周波
混合光の強度をIλ3とすると、位相整合条件下で
は、
Iλ3∝Iλ′1・Iλ2
となり、各々の光の振動数をω1=2π・c/λ1・
ω2=2π・c/λ2、ω3=2π・c/λ3とすると
(c:光速)、
ω3=ω1+ω2
となる。そこで、非線形光学素子9からの光を分
光器10に通して波長λ3の光のみを光検出器11
で検出すると、第2図eに斜線で示す光強度Iλ3
に対応した信号出力が得られる。 The delayed measured light Pλ′ 1 and the probe pulse light Pλ 2 are combined into one light beam by an optical coupler 6,
When the light is incident on a nonlinear optical element 9 made of an anisotropic crystal such as LiNbO 3 , so-called sum frequency (or difference frequency) mixing occurs. In other words, the delayed measured light Pλ′ 1
When the wavelength of the probe pulse light Pλ 2 is λ 1 , and the wavelength of the probe pulse light Pλ 2 is λ 2 , the wavelengths λ 1 , λ 2 , λ 3 from the nonlinear optical element 9 are
Three types of light can be obtained. Here, if the intensity of the sum frequency mixed light with wavelength λ 3 is Iλ 3 , under phase matching conditions, Iλ 3 ∝Iλ' 1・Iλ 2 , and the frequency of each light is ω 1 = 2π・c/ λ 1・
If ω 2 =2π·c/λ 2 and ω 3 =2π·c/λ 3 (c: speed of light), then ω 3 =ω 1 +ω 2 . Therefore, the light from the nonlinear optical element 9 is passed through the spectroscope 10, and only the light with wavelength λ 3 is sent to the photodetector 11.
When detected by
A signal output corresponding to the above can be obtained.
光検出器11の出力はデータ記録解析装置12
に送られ、記録される。ここで、第2図に示すよ
うな処理は、被測定光Pλ1の波形の繰り返しごと
に、遅延時間Δtを順次に変えて実行される。従
つて、データ記録解析装置12にはサンプリング
された波形が記録されることになるので、一周期
のサンプリング処理が終了した後に、これを
CRT等の表示装置13で表示できる。 The output of the photodetector 11 is sent to the data recording and analysis device 12.
sent to and recorded. Here, the processing shown in FIG. 2 is executed by sequentially changing the delay time Δt every time the waveform of the light to be measured Pλ 1 is repeated. Therefore, since the sampled waveform will be recorded in the data recording and analysis device 12, it will be necessary to record the sampled waveform after one cycle of sampling processing is completed.
It can be displayed on a display device 13 such as a CRT.
上記のサンプリング作用を第3図のタイムチヤ
ートに示す。 The above sampling action is shown in the time chart of FIG.
同図aのように、波形が周期的に繰り返される
被測定光Pλ1から得られた同図bのトリガパルス
TSは、サンプリングのためのプローブパルス光
Pλ2(同図d図示)のタイミングを定める規準と
なり、その時間差はΔt1,Δt2,……Δt6,Δt7…
…と順次変えられる。従つて、被測定光Pλ1と相
似の波形を、同図eに一点鎖線で示す如く和周波
光Pλ3により得ることができる。 The trigger pulse shown in figure b is obtained from the measured light Pλ 1 whose waveform is periodically repeated as shown in figure a.
T S is probe pulsed light for sampling
This is the criterion for determining the timing of Pλ 2 (shown in d in the same figure), and the time differences are Δt 1 , Δt 2 , ... Δt 6 , Δt 7 ...
...can be changed sequentially. Therefore, a waveform similar to that of the light to be measured Pλ 1 can be obtained using the sum frequency light Pλ 3 as shown by the dashed line in FIG.
本発明については、各種の波形をすることが可
能である。 Various waveforms are possible for the present invention.
例えば、トリガパルスTSは第1図に点線T′Sで
示すように、被測定光源1の駆動信号から得るよ
うにしてもよい。プローブ用のパルス光源8とし
ては各種の超短光パルス発生装置を用い得るが、
半導体レーザを用いれば30〜5psecの超短光パル
スは十分に可能である。また、和または差周波混
合の変換効率を上げるために、導波路構造の非線
形光学素子を用いてもよく、このような導波路構
造はLiNbO3、MBANP(2−(α−メチルベンジ
ルアミノ)−5−ニトロピリジン)、AlGaAsなど
により形成できる。また、LiTaO3の非線形光学
素子を用いることもできる。 For example, the trigger pulse T S may be obtained from the drive signal of the light source 1 to be measured, as shown by the dotted line T' S in FIG. Various types of ultrashort optical pulse generators can be used as the pulse light source 8 for the probe.
Ultra-short optical pulses of 30 to 5 psec are fully possible using a semiconductor laser. In addition, in order to increase the conversion efficiency of sum or difference frequency mixing, a nonlinear optical element with a waveguide structure may be used. 5-nitropyridine), AlGaAs, etc. Furthermore, a nonlinear optical element of LiTaO 3 can also be used.
分光手段10は分光器または狭帯域の波長選択
フイルタを用いてもよい。例えば、被測定光Pλ1
が光フイアバ通信に用いられる波長λ1=1.55μm
のレーザ光であり、プローブパルス光Pλ2が波長
λ2=850nmであるときは、和周波光の波長はλ3=
549nmであるので、このようなフイルタを用いれ
ばよい。なお、実施例では振動数がω3=ω1+ω2
となる和周波混合について説明したが、振動数が
ω4=ω1−ω2となる差周波混合にも同様に適用で
きる。 The spectroscopic means 10 may use a spectroscope or a narrow band wavelength selection filter. For example, the light to be measured Pλ 1
is the wavelength used for optical fiber communication λ 1 = 1.55μm
When the probe pulse light Pλ 2 has a wavelength λ 2 = 850 nm, the wavelength of the sum frequency light is λ 3 =
Since the wavelength is 549 nm, such a filter may be used. In addition, in the example, the frequency is ω 3 = ω 1 + ω 2
Although the explanation has been given on sum frequency mixing where the frequency is ω 4 =ω 1 −ω 2 , it can be similarly applied to difference frequency mixing where the frequency is ω 4 =ω 1 −ω 2 .
以上、詳細に説明した通り本発明によれば、被
測定光から得られるトリガ信号に基づいて出射さ
れるプローブパルス光と、被測定光が一定時間遅
延された遅延被測定光が、和または差周波混合さ
れる。プローブパルス光が混合手段に入射するタ
イミングは、遅延被測定光が混合手段に入射する
タイミングに合わせると共に、遅延被測定光の波
形の繰り返しごとに順次に入射タイミングをシフ
トさせているので、プローブ光で遅延被測定光を
サンプリングすることができる。このため、波形
が高速で繰り返される被測定光(例えば光源から
のレーザ光そのもの)の波形を、精度よく観測す
ることができる。
As described above in detail, according to the present invention, the probe pulse light emitted based on the trigger signal obtained from the light to be measured and the delayed light to be measured, which is the light to be measured delayed by a certain period of time, are either the sum or the difference. frequency mixed. The timing at which the probe pulse light enters the mixing means is matched with the timing at which the delayed light to be measured enters the mixing means, and the input timing is sequentially shifted each time the waveform of the delayed light to be measured is repeated. The delayed measured light can be sampled. Therefore, the waveform of the light to be measured (for example, the laser light itself from the light source) whose waveform is repeated at high speed can be observed with high accuracy.
第1図は本発明の実施例に係る光波形観測装置
の構成図、第2図は被測定光Pλ1の波形の1回の
繰り返しにおけるタイミングを示す図、第3図は
サンプリングの様子を示す図である。
1……被測定光源、3……光分岐器、4……光
検出器、5……遅延用光フイアバ、6……光結合
器、7……遅延回路、8……パルス光源、9……
非線形光学素子、10……分光手段、11……光
検出器、12……データ記録解析装置、13……
表示装置、Pλ1……被測定光、Pλ′1……遅延被測
定光、Pλ2……プローブパルス光、Pλ3……和
(または差)周波混合光。
Fig. 1 is a configuration diagram of an optical waveform observation device according to an embodiment of the present invention, Fig. 2 is a diagram showing the timing of one repetition of the waveform of the light to be measured Pλ 1 , and Fig. 3 is a diagram showing the state of sampling. It is a diagram. DESCRIPTION OF SYMBOLS 1... Light source to be measured, 3... Optical splitter, 4... Photodetector, 5... Optical fiber for delay, 6... Optical coupler, 7... Delay circuit, 8... Pulse light source, 9... …
Nonlinear optical element, 10... Spectroscopic means, 11... Photodetector, 12... Data recording and analysis device, 13...
Display device, Pλ 1 ... light to be measured, Pλ′ 1 ... delayed light to be measured, Pλ 2 ... probe pulse light, Pλ 3 ... sum (or difference) frequency mixed light.
Claims (1)
する光波形観測装置において、 前記被測定光を一定時間遅延させて遅延被測定
光を出射する光学的遅延手段と、前記被測定光の
波形の繰り返しに同期したトリガ信号を得るトリ
ガ手段と、前記トリガ信号にもとづき前記被測定
光の波形よりも時間幅が十分に短く波長が異なる
プローブパルス光を出射するパルス光源と、前記
遅延被測定光と前記プローブパルス光を和または
差周波混合させる混合手段と、前記プローバパル
ス光が前記混合手段に入射するタイミングを前記
遅延被測定光が前記混合手段に入射するタイミン
グに合わせると共に、前記遅延被測定光の波形の
繰り返しごとに順次に入射タイミングをシフトさ
て当該遅延被測定光をサンプリングする遅延手段
と、サンプリングされた前記混合手段による和ま
たは差周波光成分を抽出して記録、解析すること
により、前記被測定光よりも低速で波形が繰り返
される光観測波形を求める記録解析手段とを備え
ることを特徴とする光波形観測装置。 2 前記記録解析手段の出力にもとづき前記光観
測波形を表示する表示手段を更に備えることを特
徴とする請求項1記載の光波形観測装置。 3 前記トリガ手段は前記被測定光を検出してト
リガ信号を出力する光検出器を有する請求項1記
載の光波形観測装置。 4 前記トリガ手段は前記被測定光を出射する光
源の駆動信号からトリガ信号を出力する請求項1
記載の光波形観測装置。 5 前記混合手段は非線形光学素子を有する請求
項1記載の光波形観測装置。 6 前記非線形光学素子は導波路構造のLiNbO3
から形成されている請求項5記載の光波形観測装
置。 7 前記非線形光学素子は導波路構造の
MBANPから形成されている請求項5記載の光
波形観測装置。 8 前記非線形光学素子は導波路構造のAlGaAs
から形成されている請求項5記載の光波形観測装
置。 9 前記非線形光学素子はLiTaO3から形成され
ている請求項5記載の光波形観測装置。[Scope of Claims] 1. An optical waveform observation device for observing an optical waveform of light to be measured whose waveform is repeated, comprising: an optical delay means for delaying the light to be measured by a certain period of time and outputting the delayed light to be measured; a trigger means for obtaining a trigger signal synchronized with the repetition of the waveform of the light to be measured; a pulsed light source that emits probe pulse light having a sufficiently shorter time width and a different wavelength than the waveform of the light to be measured based on the trigger signal; mixing means for performing sum or difference frequency mixing of the delayed light to be measured and the probe pulse light; and adjusting the timing at which the prober pulse light enters the mixing means to coincide with the timing at which the delayed light to be measured enters the mixing means; , a delay means for sampling the delayed light to be measured by sequentially shifting the incident timing every time the waveform of the delayed light to be measured is repeated, and extracting and recording the sampled sum or difference frequency light component by the mixing means; An optical waveform observation device comprising: recording analysis means for determining an optical observation waveform whose waveform is repeated at a slower speed than the light to be measured by analyzing it. 2. The optical waveform observation apparatus according to claim 1, further comprising display means for displaying the optical observation waveform based on the output of the recording analysis means. 3. The optical waveform observation device according to claim 1, wherein the trigger means includes a photodetector that detects the light to be measured and outputs a trigger signal. 4. Claim 1, wherein the trigger means outputs a trigger signal from a drive signal of a light source that emits the light to be measured.
The optical waveform observation device described. 5. The optical waveform observation device according to claim 1, wherein the mixing means includes a nonlinear optical element. 6 The nonlinear optical element has a waveguide structure of LiNbO 3
The optical waveform observation device according to claim 5, wherein the optical waveform observation device is formed from. 7 The nonlinear optical element has a waveguide structure.
The optical waveform observation device according to claim 5, which is formed from MBANP. 8 The nonlinear optical element is an AlGaAs waveguide structure.
The optical waveform observation device according to claim 5, wherein the optical waveform observation device is formed from. 9. The optical waveform observation device according to claim 5, wherein the nonlinear optical element is made of LiTaO 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4615589A JPH02226026A (en) | 1989-02-27 | 1989-02-27 | Apparatus for observing light waveform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4615589A JPH02226026A (en) | 1989-02-27 | 1989-02-27 | Apparatus for observing light waveform |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02226026A JPH02226026A (en) | 1990-09-07 |
JPH0574013B2 true JPH0574013B2 (en) | 1993-10-15 |
Family
ID=12739102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4615589A Granted JPH02226026A (en) | 1989-02-27 | 1989-02-27 | Apparatus for observing light waveform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02226026A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111189619A (en) * | 2020-01-10 | 2020-05-22 | 全球能源互联网研究院有限公司 | Device and method for measuring laser tuning precision |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017034670A1 (en) * | 2015-08-21 | 2017-03-02 | Artur Olszak | Time-multiplexed spectrally controlled interferometry |
JP6640132B2 (en) * | 2017-02-03 | 2020-02-05 | アンリツ株式会社 | Optical sampling oscilloscope and method for improving its sensitivity |
-
1989
- 1989-02-27 JP JP4615589A patent/JPH02226026A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111189619A (en) * | 2020-01-10 | 2020-05-22 | 全球能源互联网研究院有限公司 | Device and method for measuring laser tuning precision |
CN111189619B (en) * | 2020-01-10 | 2022-06-03 | 全球能源互联网研究院有限公司 | Device and method for measuring laser tuning precision |
Also Published As
Publication number | Publication date |
---|---|
JPH02226026A (en) | 1990-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11085831B2 (en) | High-resolution real-time time-frequency domain measuring device and method for ultra-short pulse | |
EP0819924A2 (en) | Apparatus and method for measuring characteristics of optical pulses | |
EP0468632A2 (en) | A narrow bandwidth pulsed light source and a voltage detection apparatus using it | |
JP2564148B2 (en) | Voltage detector | |
Nishikawa et al. | A two-color dual-comb system for time-resolved measurements of ultrafast magnetization dynamics using triggerless asynchronous optical sampling | |
JPH0574013B2 (en) | ||
US7705993B2 (en) | Sampling of optical signals | |
US7529481B1 (en) | Linear optical sampling methods and apparatus | |
JPS6310925A (en) | Signal transmission | |
JPH0512657B2 (en) | ||
JP3393081B2 (en) | Optical device characteristics evaluation system | |
JP2763586B2 (en) | Optical fiber fault point searching method and apparatus | |
JPH0427843A (en) | Low noise pulse light source using laser diode and voltage detector using the light source | |
Hofmann et al. | Electro-optic sampling system for the testing of high-speed integrated circuits using a free running solid-state laser | |
JP2003270127A (en) | Instrument for measuring light amplitude phase time response | |
Fortenberry et al. | Low-power ultrashort optical pulse characterization using linear dispersion | |
JPH0814522B2 (en) | Optical fiber fault point search method and apparatus | |
JPS61269037A (en) | System for measuring dispersing characteristics of optical fiber | |
US20230314216A1 (en) | Pulsed-light spectroscopic device | |
JP2577582B2 (en) | Voltage detector | |
JP2959152B2 (en) | Optical sampling device | |
JP3300422B2 (en) | Optical waveform measurement device | |
JP3095233B2 (en) | Optical waveform measurement device | |
US20070103695A1 (en) | Wavefront sensor using hybrid optical/electronic heterodyne techniques | |
JPS61241630A (en) | Optical beat frequency measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |