JPS61269037A - System for measuring dispersing characteristics of optical fiber - Google Patents

System for measuring dispersing characteristics of optical fiber

Info

Publication number
JPS61269037A
JPS61269037A JP11017685A JP11017685A JPS61269037A JP S61269037 A JPS61269037 A JP S61269037A JP 11017685 A JP11017685 A JP 11017685A JP 11017685 A JP11017685 A JP 11017685A JP S61269037 A JPS61269037 A JP S61269037A
Authority
JP
Japan
Prior art keywords
optical fiber
light
mode
modes
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11017685A
Other languages
Japanese (ja)
Other versions
JPH0528338B2 (en
Inventor
Kiyobumi Mochizuki
望月 清文
Masayuki Fujise
雅行 藤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP11017685A priority Critical patent/JPS61269037A/en
Publication of JPS61269037A publication Critical patent/JPS61269037A/en
Publication of JPH0528338B2 publication Critical patent/JPH0528338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/332Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using discrete input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To make it possible to instantaneously measure the relative delay time difference of multiple wavelengths, by providing a light incident means, a light condensing means, a mode separation means and a display means. CONSTITUTION:A light pulse during oscillation is incident to an optical fiber 3-3 with good efficiency by using a lens 3-2A and the emitted light of the optical fiber 3-3 is condensed in the output side thereof by a lens 3-2B to be guided to a monochrometer 3-4. When the slit provided to the emitting end of said fiber 3-3 is perfectly opened, all of modes are spatially separated and emitted. Next, because the modes are further timewise separated, said modes are guided to a streak camera 3-5 and a SIT camera 3-7. The signal of each mode plotted on a primary picture is read by an analyser 3-9 to be imparted to a television monitor 3-10. The delay time difference between the modes having different wavelength is visibly displayed on a monitor 3-10 on the basis of the output signal of the analyser 3-9 while the reference signal formed by a delay circuit 3-8 is triggered.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は光ファイバの分散特性を測定する装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an apparatus for measuring dispersion characteristics of an optical fiber.

(従来技術とその問題点) 光フアイバ通信に使用する光の波長や中継伝送する際の
中継距離は、光ファイバの伝送損失と分散特性とによっ
て決定される。特に、光ファイバのもつ分散特性は、波
形歪を生起させ、ディジタ      iル伝送する際
の伝送速度に制限を与える。従って、      □1
iti *ゝ7 y 4 i#c’#J°゛T<>’l
t、7y4i<0)@j     i分散特性によって
中継距離が制限されることもあり、光ファイバの分散特
性の測定は、伝送損失の測定と同様非常に重要なことで
ある。
(Prior art and its problems) The wavelength of light used in optical fiber communication and the relay distance during relay transmission are determined by the transmission loss and dispersion characteristics of the optical fiber. In particular, the dispersion characteristics of optical fibers cause waveform distortion and limit the transmission speed during digital transmission. Therefore, □1
iti *ゝ7 y 4 i#c'#J°゛T<>'l
t, 7y4i<0)@j i The relay distance may be limited by the dispersion characteristics, so measuring the dispersion characteristics of an optical fiber is very important, as is the measurement of transmission loss.

光ファイバにおける分散とは、光フアイバ内を伝搬する
光の速度が波長によって異なる現象であり・′″″′”
!(DN:ZtiCf!II−’tu:ICtLt?I
z゛、、。
Dispersion in optical fiber is a phenomenon in which the speed of light propagating within an optical fiber differs depending on the wavelength.
! (DN:ZtiCf!II-'tu:ICtLt?I
z゛,,.

くつかの方法が提案されている。従来のこの種の   
   □。
Several methods have been proposed. This type of conventional
□.

11゜ 測定装置の代表例を第1図及び第2図に示した。   
    ;□第1図において、半導体レーザ等の光源1
−1からパルス幅数百ピコ秒の光パルスを光ファイバ1
−2に入射させると、光ファイバー−2内でラマン効果
により第1ストークス光、第2ストークス光−・・−・
第nストークス光が発生する。この波長の異なる各スト
ークス光のうち1つのストークス光、例えば、第1スト
ークス光を波長選択回路1−5により抽出し、抽出され
た第1ストークス光は分光器1−7により分岐され、一
方は被測定光ファイバ1−3を伝搬した後、受光器14
によって電気パルスに変換され、オシロスコープ1−6
に入力される。分光器1−7によって分岐された他方の
第1ストークス光は受光器l−4′で電気パルスに変換
され、基準信号となるように遅延回路1−8で一定の遅
延が与えられ、オシロスコープ1−6に入力される。オ
シロスコープ1−6では、基準信号の基準電気パルスと
被測定光ファイバを伝搬した後に電気信号に変換された
被測定用電気パルスとの両パルス位置から相対遅延時間
差を求めることができる。
A typical example of a 11° measuring device is shown in FIGS. 1 and 2.
;□In Figure 1, light source 1 such as a semiconductor laser
-1 to optical fiber 1 with a pulse width of several hundred picoseconds.
-2, the Raman effect causes the first Stokes light, the second Stokes light...
The nth Stokes light is generated. One Stokes light, for example, the first Stokes light, from among the Stokes lights with different wavelengths is extracted by the wavelength selection circuit 1-5, and the extracted first Stokes light is split by the spectrometer 1-7, and one After propagating through the optical fiber to be measured 1-3, the optical receiver 14
is converted into an electrical pulse by the oscilloscope 1-6
is input. The other first Stokes light branched by the spectrometer 1-7 is converted into an electric pulse by the photoreceiver l-4', and a certain delay is given by the delay circuit 1-8 so that it becomes a reference signal. -6 is input. The oscilloscope 1-6 can determine the relative delay time difference from the pulse positions of the reference electric pulse of the reference signal and the electric pulse to be measured that has been converted into an electric signal after propagating through the optical fiber to be measured.

次に、波長選択回路1−5で波長の異なる第2ストーク
ス光を選択し同様の作業を行い、基準信号との相対遅延
時間差を求める。この作業を第nストークス光まで繰り
返すことにより、光ファイバ1−3を伝搬する光の各波
長に対する相対遅延時間の関係が測定され、光ファイバ
130分散特性が求められる(L、G、 Cohen 
et al、 Appl、oct。
Next, the wavelength selection circuit 1-5 selects a second Stokes beam having a different wavelength and performs the same operation to determine the relative delay time difference with the reference signal. By repeating this operation up to the n-th Stokes light, the relationship between the relative delay time for each wavelength of the light propagating through the optical fibers 1-3 is measured, and the dispersion characteristics of the optical fiber 130 are determined (L, G, Cohen
et al, Appl, oct.

Vol 16. p 3136.1977)。Vol 16. p 3136.1977).

なお、光源1−1としては、YAGレーザ等のような高
出力レーザを用い、光フアイバl−2内で誘導ラマン現
象が発生するようにしている。
Note that a high-output laser such as a YAG laser is used as the light source 1-1, and a stimulated Raman phenomenon is generated within the optical fiber 1-2.

次に、第2図に示す分散測定装置について説明する。い
くつかの波長の異なる半導体レーザ(LD)2−1の出
射光は、シンセサイザ2−6によって周波数fで正弦波
状に変調される。この変調された半導体レーザ2−1の
うちの一つが光スイッチ2−2によって選択され、その
出力が光ファイバ2−3に入射される。光ファイバ2−
3の出射光は受光器2−4によって電気信号2−7に変
換され、基準となる電気信号2−8との位相差が位相差
器2−5によって求められる。同様にして、いくつかの
波長に対する変調信号の位相変化が求められ、この結果
から、光ファイバ2−3の分散特性が求められる( K
、  Tatekura eL at、 Sympos
ius on optical fibe?  s+e
asure+wents、 Boulder。
Next, the dispersion measuring device shown in FIG. 2 will be explained. Emitted light from the semiconductor laser (LD) 2-1 having several different wavelengths is sinusoidally modulated at a frequency f by a synthesizer 2-6. One of the modulated semiconductor lasers 2-1 is selected by the optical switch 2-2, and its output is input into the optical fiber 2-3. Optical fiber 2-
The emitted light of No. 3 is converted into an electrical signal 2-7 by a light receiver 2-4, and the phase difference with the reference electrical signal 2-8 is determined by a phase shifter 2-5. Similarly, the phase changes of the modulated signal for several wavelengths are determined, and from this result, the dispersion characteristics of the optical fiber 2-3 are determined (K
, Tatekura eL at, Sympos
ius on optical fiber? s+e
asure+wents, Boulder.

U、S、A  、1984 ”)。U, S, A, 1984”).

以上説明したように、従来の光フアイバ分散測定装置は
1つ1つの波長に対して、別々に光フアイバ内での光遅
延又は光遅延差を測定していた。
As explained above, the conventional optical fiber dispersion measuring device measures the optical delay or optical delay difference within the optical fiber separately for each wavelength.

この測定方法では、■測定に時間がかかり、測定中の温
度変化による光ファイバの長さ変動が測定結果に誤差と
なって現れること、■光源側と受光側とが別々の場所に
位置しているような場合の測定、すなわち遠端測定が困
難であること、■また、波長の異なる光源を必要とする
ことから、光源が複雑化すること等の欠点があった。
With this measurement method, the following problems arise: ■ Measurement takes time, and fluctuations in the length of the optical fiber due to temperature changes during measurement may cause errors in the measurement results. ■ The light source side and the light receiving side are located in different locations. There are disadvantages such as difficulty in making measurements at the far end, that is, far-end measurements; and (2) the need for light sources with different wavelengths, which makes the light source complicated.

(発明の目的) 本発明は、上述した従来技術の欠点に鑑みなされたもの
で、高精度でかつ、多波長の相対遅延時間差を瞬時に測
定でき、遠端測定も可能な光ファイバの分散特性測定方
式を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned shortcomings of the prior art, and is based on the dispersion characteristics of an optical fiber that enables instantaneous measurement of relative delay time differences of multiple wavelengths with high precision, and enables far-end measurement. The purpose is to provide a measurement method.

(発明の構成と作用) 本発明による光ファイバの分散特性測定方式は、測定光
としてパルス幅の狭い縦多モードの光パルスを発生させ
て被測定用の光ファイバに入射させるための光入射手段
と、前記光ファイバからの出射光を集光する集光手段と
、該集光手段の出力を各モードに分離するモード分離手
段と、該モード分離手段により分離された各モードの遅
延時間差を求めて前記光ファイバの分散特性として同一
表示面上に同時に可視表示する表示手段とを備えている
(Structure and operation of the invention) The method for measuring the dispersion characteristics of an optical fiber according to the present invention includes a light input means for generating a longitudinally multimode light pulse with a narrow pulse width as a measurement light and making it incident on an optical fiber to be measured. , a focusing means for focusing the light emitted from the optical fiber, a mode separating means for separating the output of the focusing means into each mode, and a delay time difference between each mode separated by the mode separating means. and display means for simultaneously visually displaying the dispersion characteristics of the optical fiber on the same display surface.

以下に図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

(実施例) 第3図は本発明による分散測定装置の実施例である。こ
の実施例において、縦多モード発振している半導体レー
ザ3−1を周波数fの正弦波を発生するシンセサイザ3
−6とパルス波形を発生させるためのコムジェネレータ
あるいはパルス発生器3−11とを用いて駆動すると、
パルス幅数十ピコ秒で繰り返し周波数fHzの縦多モー
ドを有する光パルスが発生する。この発振している光パ
ルスはレンズ3−2Aを用いて効率良く被測定媒体であ
る光ファイバ3−3に入射される。光ファイバ3−3の
出力側ではレンズ3−2Bで光ファイバ3−3の出射光
を集光し、各波長ごとに分離するためのモノクロメータ
3−4に導かれる。このモノクロメータ3−4は、グレ
ーティングを内蔵しており、入射光を波長ごとの各モー
ドに空間的に分離するものであり、モノクロメータ3−
4の出力端にあるスリットを完全に開放しておくと、各
モード全てが空間的に分離され、出射される。なお、各
モードを空間的に分離する手段として、プリズムを用い
ても良い。次に空間的に分離された各モードは、更に時
間的に分離するためにストリークカメラ3−5及びSI
Tカメラ3−7に導かれる。
(Example) FIG. 3 shows an example of the dispersion measuring device according to the present invention. In this embodiment, a synthesizer 3 generates a sine wave with a frequency f by converting the semiconductor laser 3-1 which is oscillating in longitudinal multimode mode into a sine wave having a frequency f.
-6 and a comb generator or pulse generator 3-11 for generating a pulse waveform.
An optical pulse having a pulse width of several tens of picoseconds and a repetition frequency of fHz and having longitudinal multiple modes is generated. This oscillating light pulse is efficiently incident on the optical fiber 3-3, which is the medium to be measured, using the lens 3-2A. On the output side of the optical fiber 3-3, the light emitted from the optical fiber 3-3 is collected by a lens 3-2B and guided to a monochromator 3-4 for separating the light into wavelengths. This monochromator 3-4 has a built-in grating and spatially separates the incident light into each mode for each wavelength.
By leaving the slit at the output end of No. 4 completely open, all modes are spatially separated and emitted. Note that a prism may be used as a means for spatially separating each mode. Next, each spatially separated mode is connected to a streak camera 3-5 and an SI for further temporal separation.
Guided by T camera 3-7.

この両カメラ3−5及び3−7は、被測定媒体である光
ファイバ3−3によって各波長ごとに異なった遅延時間
を例えば縦軸に、各波長を横軸に電気信号で一次画面上
に表示させるための装置である。また、この両カメラ3
−5及び3−7は、数本 ピコ秒の精度で時間的に各モードを分離することが可能
である。−次画面上にプロットされた各モードの信号は
、アナライザ3−9で読み出され、画像解析能力をもっ
たテレビモニタ3−IOに与えられる。
Both cameras 3-5 and 3-7 use an optical fiber 3-3, which is a medium to be measured, to display electric signals on the primary screen with different delay times for each wavelength on the vertical axis and each wavelength on the horizontal axis. This is a device for displaying images. Also, both cameras 3
-5 and 3-7, it is possible to temporally separate each mode with an accuracy of several picoseconds. - The signals of each mode plotted on the next screen are read out by the analyzer 3-9 and given to the television monitor 3-IO having image analysis capability.

なお、シンセサイザ3−6の出射光は分岐され、一方は
数十ピコ秒のパルス幅の光パルスを発生させるためのパ
ルス発生器またはコムゼネレータ3−11へ、他方は、
遅延回路3−8によって、一定の遅延時間が与えられて
基準信号となる。この基準信号は、ストリークカメラ3
−5のトリガパルスとして用いられる。すなわち、波長
の異なる各モードの遅延時間差は、アナライザ3−9の
出力信号を上述の遅延回路3−8によって作り出された
基準信号をトリガとしてテレビモニター3−10に可視
表示され、可視表示された遅延時間差から各モードごと
の光ファイバ3−3による分散特性を求めることができ
る。
Note that the output light from the synthesizer 3-6 is branched, one of which is sent to a pulse generator or comb generator 3-11 for generating an optical pulse with a pulse width of several tens of picoseconds, and the other is
A constant delay time is given by the delay circuit 3-8, and the signal becomes a reference signal. This reference signal is the streak camera 3
-5 trigger pulse. That is, the delay time difference between the modes having different wavelengths is visually displayed on the television monitor 3-10 using the output signal of the analyzer 3-9 as a trigger with the reference signal created by the delay circuit 3-8 described above. The dispersion characteristics of the optical fiber 3-3 for each mode can be determined from the delay time difference.

第4図(al及び(b)は上述した本発明の測定装置を
用いて、分散特性を測定した測定例を示す特性図である
FIGS. 4A and 4B are characteristic diagrams showing an example of measurement of dispersion characteristics using the above-mentioned measuring device of the present invention.

1mIg(a)1″゛3+゛″”(7)′<′v″゛″
?m#−E−F   。
1mIg (a) 1″゛3+゛″” (7)′<’v″゛″
? m#-E-F.

発振している半導体レーザからの出射光を、被測定媒体
である光ファイバ3−3を通さずに、直接モノクロメー
タ3−4に入射させた時の、テレビモニタ3−IOによ
ってとらえたストリーク像である。光ファイバ3−3を
通さない時は、波長の異なる縦多モード発振している1
00ps以下の光パルスが横軸に一列になっており、波
長が異なっても遅延時間がないことがわかる。なお、同
図で輝度は光強度に相当している。
A streak image captured by the television monitor 3-IO when the emitted light from the oscillating semiconductor laser is directly input to the monochromator 3-4 without passing through the optical fiber 3-3, which is the medium to be measured. It is. When the optical fiber 3-3 is not passed through, longitudinal multimode oscillation with different wavelengths occurs1.
It can be seen that the optical pulses of 00 ps or less are lined up on the horizontal axis, and there is no delay time even if the wavelengths are different. Note that in the figure, brightness corresponds to light intensity.

次に、第4図(b)は長さ4.5 (km)光ファイバ
3−3を伝搬した上述の光パルスをテレビモニタ3−1
0で測定したストリーク像である。同図から各モードの
ストリーク像が斜めに傾斜していることが分かる。これ
は各波長(各モード)によって光ファイバ3−3の伝搬
時間が異なることを意味し、各波長に対して伝搬時間が
異なる性質、すなわち、各波長の相対遅延時間差が求め
ようとする光ファイバ3−3の分散特性である。例えば
、同図から波長1.29μmにおける分散値りは、次式
の通りである。
Next, FIG. 4(b) shows the above-mentioned optical pulse propagated through the 4.5 (km) long optical fiber 3-3 on the TV monitor 3-1.
This is a streak image measured at 0. It can be seen from the figure that the streak images of each mode are obliquely inclined. This means that the propagation time of the optical fiber 3-3 differs depending on each wavelength (each mode), and the property that the propagation time differs for each wavelength, that is, the relative delay time difference of each wavelength is the characteristic of the optical fiber to be found. 3-3 dispersion characteristics. For example, from the figure, the dispersion value at a wavelength of 1.29 μm is as follows.

但し、T1は1.28616μ輪(1,29−△−/2
)における遅延時間(ps) T、は1.29384μa+(1,29+△讐/2)に
おける遅延時間(ps) ΔWはT2の波長−T1の波長(μm)l は光ファイ
バの長さ (km) である。
However, T1 is 1.28616μ ring (1,29-△-/2
) Delay time (ps) T is 1.29384 μa + (1,29 + Δ/2) Delay time (ps) ΔW is wavelength of T2 − wavelength of T1 (μm) l is length of optical fiber (km) It is.

尚、第4図(b)は横軸と縦軸の単位が極めて不明確に
なっているが、実際のテレビモニタ3−10では、横軸
が1 (nm) 、縦軸が1.63 (ps)まで解読
できるようになっている。
Although the units of the horizontal and vertical axes in FIG. 4(b) are extremely unclear, in the actual TV monitor 3-10, the horizontal axis is 1 (nm) and the vertical axis is 1.63 (nm). ps) can be decoded.

また、通常は上式により測定者による計算処理によって
分散値りを求めるのではなく、図示されていないが、テ
レビモニタ3−10に内蔵されているマイコン等により
計算され、求めようとする分散値りがディジタル表示あ
るいは印字されるような構造となっている。
In addition, normally, the dispersion value is not calculated by the measurer using the above formula, but is calculated by a microcomputer, etc. built into the television monitor 3-10 (not shown), and the dispersion value to be determined is The structure is such that the information is displayed digitally or printed.

(実施例2) 実施例1では、送信側と受信側とが同一地点にある場合
、例えば光フアイバ製造の工場内等において測定する近
端測定の分散特性測定装置について説明した。しかし、
通常は測定しようとする光ファイバの長さが数十キロメ
ータと長いため、送信側と受信側とが互いに離れた地点
で測定するのが通例である。この遠端測定を行う場合、
基準信号をどのように取り出すか、あるいは、受信側で
送信側に同期した基準信号を作り出すかが問題となり、
従来は分散特性の遠端測定が可能な測定方式については
何ら開示されていない。
(Embodiment 2) In Embodiment 1, a dispersion characteristic measuring device for near-end measurement was described in which the transmitting side and the receiving side are located at the same location, for example, in an optical fiber manufacturing factory. but,
Since the length of the optical fiber to be measured is typically several tens of kilometers, it is customary to perform measurements at points where the transmitting and receiving sides are separated from each other. When making this far end measurement,
The problem is how to extract the reference signal, or how to create a reference signal on the receiving side that is synchronized with the transmitting side.
Conventionally, there has been no disclosure of any measurement method capable of far-end measurement of dispersion characteristics.

第5図は本発明の他の実施例であり、分散特性を遠端測
定により測定する場合の構成図である。
FIG. 5 is another embodiment of the present invention, and is a block diagram in which the dispersion characteristics are measured by far-end measurement.

(1)  送信器 まず送信器の構成について説明する。(1) Transmitter First, the configuration of the transmitter will be explained.

送信器としては、縦多モード発振する1個の光源3−1
と、その光源から出射光が少なくとも数十ピコ秒のパル
ス幅を有する光パルスとなるような変調手段があれば良
い。同図では、変調手段として、シンセサイザ3−6と
パルス発生器3−11とを組合わせたものを用いている
が、シンセサイザ3−6とコムジェネレータとの組合わ
せでも良い。また、光源3−1からの出力光を効率良く
光ファイバ3−3に入射させるために凸レンズ3−2A
を用いればさらに効果的である。
As a transmitter, one light source 3-1 that oscillates in longitudinal multimode is used.
It is sufficient if there is a modulation means so that the light emitted from the light source becomes a light pulse having a pulse width of at least several tens of picoseconds. In the figure, a combination of a synthesizer 3-6 and a pulse generator 3-11 is used as the modulation means, but a combination of a synthesizer 3-6 and a comb generator may also be used. In addition, in order to efficiently input the output light from the light source 3-1 into the optical fiber 3-3, a convex lens 3-2A is provided.
It is even more effective to use .

(2)  受信器 光ファイバ3−3からの出射光を集光させるレンズ3−
2Bから遅延時間差を可視表示させるテレビモニタ3−
10までは、第3図と全(同一である。
(2) Lens 3- for condensing the light emitted from the receiver optical fiber 3-3
TV monitor 3- that visually displays the delay time difference from 2B
Up to 10 are all (same as in FIG. 3).

第3図と異なる点は、新たに基準信号を作り出す手段を
有している点である。すなわち、受信器にシンセサイザ
3−6′ と可変遅延器3−12とを設け、送信器のシ
ンセサイザ3−6と同期をとるようにしている。ところ
で可変遅延器3−12の遅延量りとしては で与えられる。但し、Cは真空中における光速、lは光
ファイバ3−3の長さ、nは光ファイバ3−3の屈折率
である。または、遅延量りとして、テレビモニタ3−1
0を見ながらストリーク像がテレビ画面の中央に写し出
されるように調整しても良い。
The difference from FIG. 3 is that a means for newly generating a reference signal is provided. That is, the receiver is provided with a synthesizer 3-6' and a variable delay device 3-12 to synchronize with the synthesizer 3-6 of the transmitter. By the way, the delay amount of the variable delay device 3-12 is given by: However, C is the speed of light in vacuum, l is the length of the optical fiber 3-3, and n is the refractive index of the optical fiber 3-3. Or, as a delay measure, use the TV monitor 3-1.
Adjustment may be made so that the streak image is projected at the center of the television screen while looking at 0.

なお、シンセサイザ3−6′の周波数fについては、予
め送受信側で決めておく必要がある。
Note that the frequency f of the synthesizer 3-6' must be determined in advance by the transmitting and receiving sides.

以上のように送信器と同期のとれた基準信号を作り出し
、第3図と同様にストリークカメラ3−5にトリガとし
て与えれば良い。
As described above, a reference signal synchronized with the transmitter may be generated and applied as a trigger to the streak camera 3-5 in the same manner as shown in FIG.

(実施例3) 第6図は本発明による他の実施例であり、遠端測定に用
いる受信器の構成図である。本実施例では基準信号を送
信側の変調周波数fを取り出して用いることに特徴があ
り、集光レンズ3−2Bの後に光を分岐するための分光
器3−13を挿入し、一方は第5図と同様の測定系に行
き、他方は基準信号を作るための受光素子3−14に入
力される。受光素子3−14はAPD等の半導体受光素
子を用いれば良り、数十ピコ秒のパルス幅の光パルスを
受光した時のみ電気信号に変換されるように構成してお
く。このような構成にすれば、受信側で送信側と同期の
取れた基準信号を簡単に作り出すことができる。なお、
図示していないが被測定媒体である光ファイバ3−3が
長い場合には、半導体受光素子3−14の後に増幅器を
挿入すれば良い。
(Embodiment 3) FIG. 6 is another embodiment according to the present invention, and is a configuration diagram of a receiver used for far-end measurement. This embodiment is characterized in that the modulation frequency f on the transmitting side is extracted and used as the reference signal, and a spectroscope 3-13 for splitting light is inserted after the condenser lens 3-2B, and one The signal goes to a measurement system similar to that shown in the figure, and the other signal is input to a light receiving element 3-14 for generating a reference signal. The light receiving element 3-14 may be a semiconductor light receiving element such as an APD, and is configured so that it is converted into an electrical signal only when it receives a light pulse with a pulse width of several tens of picoseconds. With this configuration, it is possible to easily create a reference signal on the receiving side that is synchronized with the transmitting side. In addition,
Although not shown, if the optical fiber 3-3 serving as the medium to be measured is long, an amplifier may be inserted after the semiconductor light-receiving element 3-14.

(発明の効果) 以上のように、本発明の測定方式を用いれば、各波長に
対する光ファイバの分散特性が同時に可視表示が出来る
とともに瞬時に測定が可能であり、周囲の環境温度によ
る測定誤差もなくすことができる。また、lps以下の
時間分解能が期待できるので、高精度の分散特性を求め
ることができる。
(Effects of the Invention) As described above, by using the measurement method of the present invention, the dispersion characteristics of the optical fiber for each wavelength can be visually displayed at the same time and measured instantly, and measurement errors due to the surrounding environmental temperature can be avoided. It can be eliminated. Furthermore, since a time resolution of lps or less can be expected, highly accurate dispersion characteristics can be obtained.

更に、従来の技術では困難であった遠端測定も可能とな
りその効果は極めて大である。
Furthermore, far-end measurements, which were difficult with conventional techniques, are also possible, which is extremely effective.

【図面の簡単な説明】 第1図及び第2図は従来の分散測定装置の構成図、第3
図は本発明の一実施例を示す構成図、第4図(a)及び
(blは本発明による分散測定装置を用いて測定した特
性側図、第5図及び第6図は本発明により遠端測定を行
うための実施例の構成図である。 if・・・光源、  1−2・・・光ファイバ、1−3
・・・光ファイバ(被測定用)、1−4・・・受光器、
  1−4′・・・受光器、1−5・・・波長選択回路
、1−6・・・オシロスコープ、  1−7・・・分光
器、1−8・・・遅延回路、2−1・・・半導体レーザ
、  2−2・・・光スィッチ、2−3・・・光ファイ
バ、  2−4・・・受光器、2−5・・・位相差器、
  2−6・・・シンセサイザ、2−7・・・受信電気
信号、2−8・・・基準電気信号、3−1・・・光源、
  3−2A・・・レンズ、  3−2B・・・レンズ
、  3−3・・・光ファイバ、  3−4・・・モノ
クロメータ、  3−5・・・ストリークカメラ、3−
6・・・シンセサイザ、  3−7・・・SITカメラ
、)      3−8°°°遅延回路・  3−9°
°°アナラ9ザ・3−10・・・テレビモニタ、3−1
1・・・パルス発生器、  3−12・・・可変遅延回
路、  3−13・・・分光器、  3−14・・・受
光素子。 第1[X] ツリI幻
[Brief explanation of the drawings] Figures 1 and 2 are configuration diagrams of a conventional dispersion measuring device,
The figure is a block diagram showing one embodiment of the present invention, Figures 4(a) and (bl) are characteristic side views measured using the dispersion measuring device according to the present invention, and Figures 5 and 6 are far-reaching diagrams according to the present invention. It is a block diagram of an example for performing edge measurement. if... Light source, 1-2... Optical fiber, 1-3
...Optical fiber (for measurement), 1-4... Light receiver,
1-4'... Light receiver, 1-5... Wavelength selection circuit, 1-6... Oscilloscope, 1-7... Spectrometer, 1-8... Delay circuit, 2-1. ... Semiconductor laser, 2-2... Optical switch, 2-3... Optical fiber, 2-4... Light receiver, 2-5... Phase differencer,
2-6... Synthesizer, 2-7... Received electrical signal, 2-8... Reference electrical signal, 3-1... Light source,
3-2A... Lens, 3-2B... Lens, 3-3... Optical fiber, 3-4... Monochromator, 3-5... Streak camera, 3-
6...Synthesizer, 3-7...SIT camera,) 3-8°°° delay circuit/3-9°
°° Anara 9 the 3-10...TV monitor, 3-1
DESCRIPTION OF SYMBOLS 1... Pulse generator, 3-12... Variable delay circuit, 3-13... Spectrometer, 3-14... Light receiving element. 1st [X] Tree I illusion

Claims (1)

【特許請求の範囲】[Claims] 測定光としてパルス幅の狭い縦多モードの光パルスを発
生させて、被測定用の光ファイバに入射させるための光
入射手段と、前記光ファイバからの出射光を集光する集
光手段と、該集光手段の出力を各モードに分離するモー
ド分離手段と、該モード分離手段により分離された各モ
ードの遅延時間差を求めて前記光ファイバの分散特性と
して同一表示面上に同時に可視表示する表示手段とを備
えた光ファイバの分散特性測定方式。
a light input means for generating a vertical multi-mode optical pulse with a narrow pulse width as measurement light and inputting it into an optical fiber to be measured; a condensing means for condensing the light emitted from the optical fiber; A mode separation means for separating the output of the light condensing means into each mode; and a display for determining the delay time difference of each mode separated by the mode separation means and visually displaying the result as a dispersion characteristic of the optical fiber simultaneously on the same display surface. A method for measuring dispersion characteristics of an optical fiber, comprising means.
JP11017685A 1985-05-24 1985-05-24 System for measuring dispersing characteristics of optical fiber Granted JPS61269037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11017685A JPS61269037A (en) 1985-05-24 1985-05-24 System for measuring dispersing characteristics of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11017685A JPS61269037A (en) 1985-05-24 1985-05-24 System for measuring dispersing characteristics of optical fiber

Publications (2)

Publication Number Publication Date
JPS61269037A true JPS61269037A (en) 1986-11-28
JPH0528338B2 JPH0528338B2 (en) 1993-04-26

Family

ID=14528973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11017685A Granted JPS61269037A (en) 1985-05-24 1985-05-24 System for measuring dispersing characteristics of optical fiber

Country Status (1)

Country Link
JP (1) JPS61269037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176920A (en) * 1987-12-31 1989-07-13 Hamamatsu Photonics Kk Spectral measuring instrument
WO2002011321A2 (en) * 2000-08-01 2002-02-07 Wavecrest Corporation Multichannel system analyzer
WO2002010705A3 (en) * 2000-08-01 2002-08-15 Wavecrest Corp Electromagnetic and optical analyzer
JP2014013191A (en) * 2012-07-04 2014-01-23 Nippon Telegr & Teleph Corp <Ntt> Frequency measurement device of optical device
JP2017049167A (en) * 2015-09-03 2017-03-09 Kddi株式会社 Device for measuring propagation delay difference

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176920A (en) * 1987-12-31 1989-07-13 Hamamatsu Photonics Kk Spectral measuring instrument
WO2002011321A2 (en) * 2000-08-01 2002-02-07 Wavecrest Corporation Multichannel system analyzer
WO2002010705A3 (en) * 2000-08-01 2002-08-15 Wavecrest Corp Electromagnetic and optical analyzer
WO2002011321A3 (en) * 2000-08-01 2003-02-13 Wavecrest Corp Multichannel system analyzer
JP2014013191A (en) * 2012-07-04 2014-01-23 Nippon Telegr & Teleph Corp <Ntt> Frequency measurement device of optical device
JP2017049167A (en) * 2015-09-03 2017-03-09 Kddi株式会社 Device for measuring propagation delay difference

Also Published As

Publication number Publication date
JPH0528338B2 (en) 1993-04-26

Similar Documents

Publication Publication Date Title
JP3394902B2 (en) Chromatic dispersion measuring device and polarization dispersion measuring device
JP2009523248A (en) Optical signal measurement system
JP3631025B2 (en) Chromatic dispersion measurement apparatus and polarization dispersion measurement apparatus
US7079231B2 (en) Optical network analyzer
US7088495B2 (en) Method and apparatus for time-division multiplexing to improve the performance of multi-channel non-linear optical systems
US5144374A (en) Optical spectroscopy system
US4767207A (en) Apparatus for measuring transmission characteristics of an optical fiber
US5003268A (en) Optical signal sampling apparatus
JP2011179918A (en) Wavelength dispersion measuring device and wavelength dispersion measuring method using the same
JPS61269037A (en) System for measuring dispersing characteristics of optical fiber
JP4463828B2 (en) Measuring method, measuring apparatus and measuring program for wavelength dispersion of optical waveguide
US4790655A (en) System for measuring laser spectrum
JPH0354292B2 (en)
JPH05248996A (en) Wavelength dispersion measuring device for optical fiber
GB2205155A (en) Object movement measuring apparatus
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
US4176954A (en) Equipment for measuring the length of dielectric elements transmitting optical frequencies
JPH06123661A (en) Optical fiber distribution type temperature sensor and apparatus for generating two wavelength light
Mochizuki et al. Optical fiber dispersion measurement technique using a streak camera
JPH04177141A (en) Wave length dispersion measurement method of optical fiber
JPH0882555A (en) Device for evaluating high speed optical frequency change over light
EP0297556A2 (en) Emission spectral width measuring apparatus for light source
JPH037062B2 (en)
JPH0574013B2 (en)
JPH09304189A (en) Single-pulse autocorrelator