JP2893921B2 - Optical sampling device - Google Patents

Optical sampling device

Info

Publication number
JP2893921B2
JP2893921B2 JP2274730A JP27473090A JP2893921B2 JP 2893921 B2 JP2893921 B2 JP 2893921B2 JP 2274730 A JP2274730 A JP 2274730A JP 27473090 A JP27473090 A JP 27473090A JP 2893921 B2 JP2893921 B2 JP 2893921B2
Authority
JP
Japan
Prior art keywords
polarization
light
plane
optical
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2274730A
Other languages
Japanese (ja)
Other versions
JPH04148872A (en
Inventor
直 杉山
淑也 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2274730A priority Critical patent/JP2893921B2/en
Publication of JPH04148872A publication Critical patent/JPH04148872A/en
Application granted granted Critical
Publication of JP2893921B2 publication Critical patent/JP2893921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は高速の電気信号を測定する装置に関し、特
にS/Nを改善した光サンプリング装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring a high-speed electric signal, and more particularly to an optical sampling device with improved S / N.

<従来技術> 最近の高速電子デバイスは高速なものが多く開発され
ている。例えば、HEMT(High Electron Mobility Trans
istor)ではゲート遅延時間が約10ps程度であり、また
光通信などに用いられる半導体レーザーの直接変調帯域
も数十GHzに達している。この様な高速電子デバイスに
よる高速現象の測定は、通常サンプリングオシロスコー
プが用いられている。第4図にサンプリングオシロスコ
ープの原理を示す。すなわち、(A)のように連続する
N個の被測定信号に対して、ゲート時間を少しずつずら
しながら測定して行き、その結果を合成して(B)のよ
うな測定値を得る。この技術では、サンプリング幅が測
定結果の分解能になる。
<Prior Art> Recently, many high-speed electronic devices have been developed. For example, HEMT (High Electron Mobility Trans
istor), the gate delay time is about 10 ps, and the direct modulation band of a semiconductor laser used for optical communication and the like has reached several tens of GHz. In order to measure a high-speed phenomenon by such a high-speed electronic device, a sampling oscilloscope is usually used. FIG. 4 shows the principle of the sampling oscilloscope. That is, the measurement is performed while gradually shifting the gate time for N consecutive signals to be measured as in (A), and the results are combined to obtain a measurement value as in (B). In this technique, the sampling width becomes the resolution of the measurement result.

一方、GaAs基板は電気光学効果を有するので、光を照
射すると電界の大きさに応じてその反射戻り光の偏波面
が変化する。この現象を利用して、光を用いた測定装置
が開発されている。第5図にこのような光を用いた測定
装置の構成を示す。YAGレーザー1の出力光はパルス圧
縮部2でps程度のパルス幅に圧縮され、偏光子3、波長
板4を介してGaAs集積回路5に入力される。また、その
戻り光は波長板4を通り、偏光子3で反射されて受光素
子6でその強度が測定され、表示部8で表示される。駆
動回路7でGaAs集積回路5が発生する電界を変えるとそ
の戻り光の偏光面が変化し、偏光子3によって受光素子
6に入射する光の強度が変化する。駆動回路7により、
YAGレーザー1の出力光のタイミングとGaAs集積回路5
を駆動するタイミングを同期させ、かつその位相差を少
しずつずらして行くことによって、第4図で説明したサ
ンプリング技術と同じ原理でGaAs集積回路5の動作を測
定する事が出来る。
On the other hand, since the GaAs substrate has an electro-optic effect, when irradiated with light, the plane of polarization of the reflected return light changes according to the magnitude of the electric field. Utilizing this phenomenon, a measuring device using light has been developed. FIG. 5 shows the configuration of a measuring apparatus using such light. The output light of the YAG laser 1 is compressed to a pulse width of about ps by the pulse compression unit 2 and is input to the GaAs integrated circuit 5 via the polarizer 3 and the wavelength plate 4. The return light passes through the wave plate 4 and is reflected by the polarizer 3. The intensity of the returned light is measured by the light receiving element 6 and displayed on the display unit 8. When the electric field generated by the GaAs integrated circuit 5 is changed by the drive circuit 7, the plane of polarization of the returned light changes, and the intensity of light incident on the light receiving element 6 by the polarizer 3 changes. By the drive circuit 7,
Timing of output light of YAG laser 1 and GaAs integrated circuit 5
The operation of the GaAs integrated circuit 5 can be measured according to the same principle as the sampling technique described with reference to FIG. 4 by synchronizing the timing for driving the GaAs integrated circuit and gradually shifting the phase difference.

<発明が解決すべき課題> しかしながら、第4図のサンプリングオシロスコープ
では、サンプリング幅はステップリカバリダイオードの
速度に制限され、25ps程度が限界であり、光パルスを用
いる光オシロスコープでも10ps程度が限界であるという
課題があった。
<Problems to be solved by the invention> However, in the sampling oscilloscope of FIG. 4, the sampling width is limited by the speed of the step recovery diode, and is limited to about 25 ps, and even the optical oscilloscope using optical pulses is limited to about 10 ps. There was a problem that.

また、第5図の光を用いた測定装置ではpsオーダーの
測定が可能であるが、受光素子6に入射する光の強度お
よび信号強度が微弱であり、S/N比を高くすることが困
難であるという課題があった。
Although the measurement apparatus using light shown in FIG. 5 can measure in the order of ps, it is difficult to increase the S / N ratio because the intensity and signal intensity of the light incident on the light receiving element 6 are weak. There was a problem that was.

<発明の目的> この発明は上記の課題を解決するためになされたもの
で、高速の測定信号を高いS/N比で測定できる光サンプ
リング装置を実現することを目的とする。
<Object of the Invention> The present invention has been made to solve the above problems, and has as its object to realize an optical sampling device capable of measuring a high-speed measurement signal at a high S / N ratio.

<課題を解決する為の手段> 本発明は光パルスの偏波面の状態を被測定回路の動作
電圧に応じて変化させ、この偏波面の変化を検出して被
測定回路の電圧波形を測定する光サンプリング装置に係
るもので、その特徴とするところは光パルスを出力する
光パルス発生手段と、この光パルス発生手段の出力光の
偏波面の状態を変調する偏波面変調手段と、この偏波面
変調手段の出力光を入射して被測定回路の動作電圧に対
応する電界により偏波面を変化させる電気光学素子と、
この電気光学素子の出力光における偏波面の変化を検出
する検出手段と、この検出手段の出力を同期検波する同
期検波手段とを備え、同期検波手段の出力に基づいて被
測定回路の電圧波形を測定するように構成した点にあ
る。
<Means for Solving the Problems> According to the present invention, the state of the plane of polarization of an optical pulse is changed in accordance with the operating voltage of the circuit under test, and the change in the plane of polarization is detected to measure the voltage waveform of the circuit under test. The present invention relates to an optical sampling device, which is characterized by an optical pulse generating means for outputting an optical pulse, a polarization plane modulating means for modulating the state of the plane of polarization of the output light of the optical pulse generating means, and a polarization plane An electro-optical element that changes the plane of polarization by an electric field corresponding to the operating voltage of the circuit to be measured by receiving the output light of the modulating means,
Detecting means for detecting a change in the plane of polarization in the output light of the electro-optical element, and synchronous detecting means for synchronously detecting the output of the detecting means; and detecting the voltage waveform of the circuit under test based on the output of the synchronous detecting means. The point is that it is configured to measure.

<作用> 偏波面変調した光パルスを、被測定回路の電界が加わ
った電気光学素子に照射して偏波面を回転した後、同期
検波することにより、被測定回路の動作電圧を高いS/N
比で測定することができる。
<Operation> The polarization-modulated optical pulse is applied to the electro-optical element to which the electric field of the circuit to be measured is applied, and after rotating the plane of polarization, synchronous detection is performed to increase the operating voltage of the circuit to be measured.
It can be measured by ratio.

<実施例> 第1図に本発明に係る光サンプリング装置の一実施例
を示す、第5図と同じ部分は同一の記号を付してある。
11は偏光子3の透過光出力の偏波面が変調される偏波面
変調器でLiNbO3等の電気光学効果を持つ素子を用いた位
相変調器からなるもの、12は偏波面変調器11の出射光が
入射してその透過光が被測定回路であるGaAs集積回路5
に入射するλ/2板(半波長板)、13はGaAs集積回路5で
反射した光がλ/2板12,偏波面変調器11および偏光子3
を介して受光素子6に入射した後、受光素子6の出力電
気信号を入力するロックインアンプ、14はロックインア
ンプ13の出力を入力する表示装置、15は偏波面変調器11
の変調信号およびロックインアンプ13の参照信号となる
信号を出力する発振器である。偏光子3と受光素子6が
偏波面の変化を検出する検出手段を構成する。
<Embodiment> FIG. 1 shows an embodiment of an optical sampling apparatus according to the present invention. The same parts as those in FIG. 5 are denoted by the same reference numerals.
Reference numeral 11 denotes a polarization plane modulator that modulates the polarization plane of the transmitted light output of the polarizer 3 and is composed of a phase modulator using an element having an electro-optic effect such as LiNbO 3 , and 12 denotes an output of the polarization plane modulator 11. GaAs integrated circuit 5 which is the circuit to be measured when the emitted light is incident
Λ / 2 plate (half-wave plate), 13 is a λ / 2 plate 12, a polarization modulator 11 and a polarizer 3 for reflecting light reflected by the GaAs integrated circuit 5.
A lock-in amplifier for inputting an output electric signal of the light-receiving element 6 after entering the light-receiving element 6 through the optical amplifier 6, a display device 14 for inputting an output of the lock-in amplifier 13, and a polarization modulator 11
This is an oscillator that outputs the modulated signal of FIG. 1 and a signal serving as a reference signal of the lock-in amplifier 13. The polarizer 3 and the light receiving element 6 constitute detection means for detecting a change in the plane of polarization.

上記構成の装置の動作を次に説明する。第2図は第1
図の要部の動作を説明する動作説明図である。第3図は
発振器15出力,偏波面変調器11が入射光の偏波面変調器
11の主軸(X軸)に対して垂直な電界成分(Y軸成分)
に与える位相差および受光素子6出力を示すタイムチャ
ートである。図においてA1〜G2は偏光子3からGaAs集積
回路5を見たときの偏波面の状態を示し、添字1は発振
器15の出力がLoの時、添字2は発振器15の出力がHiの時
と対応する。偏光子3を透過した入射光は直線偏光とな
り(A1,A2)、偏波面変調器11に入射する。偏波面変調
器11の主軸は偏光子3の軸に対して(以下同様)22.5°
回転しており、発振器15の出力がLoの時90°、Hiの時27
0°の位相差を与える。したがって前者の場合右回り楕
円偏光(B1)となり、後者の場合左回り楕円偏光(B2)
となる。次にλ/2板12を通過すると、楕円偏光の長軸と
GaAs集積回路5の屈折率楕円体の長軸のなす角が45°と
なる。このためには、GaAs集積回路5の屈折率楕円体の
長軸と偏光子3の軸とが一致している場合、あらかじめ
λ/2板12の主軸の方向が33.75°となるように調整して
おけばよい。その結果、λ/2板12を透過した光は、長軸
が45°方向のそれぞれ左回り楕円偏光、右回り楕円偏光
となる(C1,C2)。GaAs集積回路5は電気光学効果を持
つので、回路が動作状態にあれば、電界強度に応じて照
射された光の偏波面を変化させる。したがってGaAs集積
回路5に入射した光はGaAs集積回路5の動作電圧(電界
強度と対応)の変化に対応して偏波面の状態が変化す
る。今GaAs集積回路5の主軸XYを図のようにとり、入射
光のX方向の成分の電界に対しY方向成分の電界の位相
が僅かに遅れる場合を考える。この場合に左回り楕円偏
光(C1)が入射すると、反射光は楕円率が小さくなり
(D1)、右回り楕円偏光(C2)の場合、楕円率は大きく
なる(D2)(GaAs集積回路5による位相差が小さい場
合)。この反射光は再びλ/2板12を透過し(E1,E2)、
偏波面変調器11を透過して直線偏光となる(F1,F2)。
このとき、楕円率によって偏波面の偏光子3の軸に対す
る角度が変り、角度の大小は楕円率の大小に対応する。
例えば楕円率が1/tan22.5°(GaAsで偏波面の状態が変
化しない場合)のとき45°となる。偏波面変調器11の出
射光はさらに偏光子3に入射し、垂直方向の偏光成分の
みが受光素子6に入射する(G1,G2)。受光素子6の出
力は発振器15の出力がLoのとき大きく、Hiのとき小さく
なる(第3図(C))。受光素子6の出力は発振器15の
出力を参照信号としてロックインアンプ13で同期検波さ
れてGaAs集積回路5の動作電圧に応じた出力が得られ、
この出力に基づいて被測定回路5の電圧波形が表示装置
14で表示される。
The operation of the apparatus having the above configuration will be described below. Figure 2 shows the first
It is an operation explanatory view for explaining the operation of the main part of the figure. Figure 3 shows the output of the oscillator 15 and the polarization modulator 11 is a polarization modulator of the incident light.
Electric field component (Y-axis component) perpendicular to 11 main axes (X-axis)
5 is a time chart showing a phase difference and output of the light-receiving element 6 given to the first embodiment. In the figure, A1 to G2 indicate the state of the polarization plane when the GaAs integrated circuit 5 is viewed from the polarizer 3, and the suffix 1 indicates when the output of the oscillator 15 is Lo, and the suffix 2 indicates when the output of the oscillator 15 is Hi. Corresponding. The incident light transmitted through the polarizer 3 becomes linearly polarized light (A1, A2), and enters the polarization plane modulator 11. The principal axis of the polarization modulator 11 is 22.5 ° with respect to the axis of the polarizer 3 (the same applies hereinafter).
It is rotating, 90 ° when the output of oscillator 15 is Lo, 27 when it is Hi
Gives a 0 ° phase difference. Therefore, in the former case, clockwise elliptically polarized light (B1), and in the latter case, counterclockwise elliptically polarized light (B2)
Becomes Next, when passing through the λ / 2 plate 12, the major axis of the elliptically polarized light
The angle formed by the major axis of the refractive index ellipsoid of the GaAs integrated circuit 5 is 45 °. For this purpose, when the major axis of the refractive index ellipsoid of the GaAs integrated circuit 5 and the axis of the polarizer 3 coincide with each other, the direction of the main axis of the λ / 2 plate 12 is adjusted in advance to 33.75 °. It should be left. As a result, the light transmitted through the λ / 2 plate 12 becomes left-handed elliptically polarized light and right-handed elliptically polarized light in the major axis direction of 45 ° (C1, C2). Since the GaAs integrated circuit 5 has an electro-optic effect, if the circuit is in an operating state, the plane of polarization of the irradiated light is changed according to the electric field intensity. Therefore, the light incident on the GaAs integrated circuit 5 changes its polarization plane state in accordance with the change in the operating voltage (corresponding to the electric field intensity) of the GaAs integrated circuit 5. Assume now that the main axis XY of the GaAs integrated circuit 5 is as shown in the figure, and the phase of the electric field of the Y-direction component is slightly delayed with respect to the electric field of the X-direction component of the incident light. In this case, when the left-handed elliptically polarized light (C1) is incident, the reflected light has a smaller ellipticity (D1), and the right-handed elliptically polarized light (C2) has a larger ellipticity (D2) (according to the GaAs integrated circuit 5). When the phase difference is small). This reflected light passes through the λ / 2 plate 12 again (E1, E2),
The light passes through the polarization modulator 11 and becomes linearly polarized light (F1, F2).
At this time, the angle of the plane of polarization with respect to the axis of the polarizer 3 changes depending on the ellipticity, and the magnitude of the angle corresponds to the magnitude of the ellipticity.
For example, when the ellipticity is 1 / tan 22.5 ° (when the state of the polarization plane does not change in GaAs), the angle is 45 °. The light emitted from the polarization plane modulator 11 further enters the polarizer 3, and only the polarization component in the vertical direction enters the light receiving element 6 (G1, G2). The output of the light receiving element 6 increases when the output of the oscillator 15 is Lo, and decreases when it is Hi (FIG. 3C). The output of the light receiving element 6 is synchronously detected by the lock-in amplifier 13 using the output of the oscillator 15 as a reference signal, and an output corresponding to the operating voltage of the GaAs integrated circuit 5 is obtained.
Based on this output, the voltage waveform of the circuit under test 5 is displayed on the display device.
Displayed at 14.

このような構成の光サンプリング装置によれば、偏波
面の状態を変調し、受光素子の出力をロックインアンプ
で同期検波して信号を得ているので、理論的には透過雑
音帯域幅をいくらでも小さくすることができ、S/Nが向
上する。また主に1/fノイズからなる光源のノイズが小
さい帯域に変調周波数を合せれば、よりS/Nが向上す
る。
According to the optical sampling device having such a configuration, since the state of the polarization plane is modulated and the output of the light receiving element is synchronously detected by the lock-in amplifier to obtain a signal, the transmission noise bandwidth can be theoretically increased as much as possible. It can be reduced and S / N is improved. Also, if the modulation frequency is adjusted to a band where the noise of the light source mainly composed of 1 / f noise is small, the S / N is further improved.

また偏波面の状態を変調することにより、被測定回路
の動作電圧による偏波面の状態変化、すなわち受光素子
に入射する信号強度を等価的に2倍にして検出するの
で、感度およびS/Nが向上する。
Also, by modulating the state of the polarization plane, the change in the state of the polarization plane due to the operating voltage of the circuit under test, that is, the signal intensity incident on the light receiving element is equivalently doubled and detected, so that the sensitivity and S / N are reduced. improves.

なお、これらの実施例では被測定物としてGaAs集積回
路の場合すなわち、被測定物自身が電気光学材料で構成
されている場合を説明したが、シリコン等の電気光学効
果を有さない材料にも適用される。この場合はシリコン
等の被測定物に近接してLiTaO3単結晶などの電気光学効
果を有する材料を配置し、このLiTaO3単結晶に光を照射
して、シリコン等からなる被測定回路が発生する電界に
より電気光学効果を生じさせるようにすればよい。
In these examples, the case where the object to be measured is a GaAs integrated circuit, that is, the case where the object to be measured itself is made of an electro-optical material has been described, but a material having no electro-optical effect such as silicon may be used. Applied. In this case, placing a material having an electro-optic effect, such as proximity to LiTaO 3 single crystal to be measured such as silicon, by irradiating light to the LiTaO 3 single crystal, the measurement circuit is generated composed of silicon or the like An electro-optic effect may be generated by the generated electric field.

また上記の実施例では偏波面変調器を使用し、位相差
を90°、270°と変化させて偏波面の状態を変調した
が、変調器の数、軸の角度および位相差はこれに限ら
ず、偏波面の状態を変調し、受光素子に入射する光の強
度が変調されれば、任意の組合せとすることができる。
In the above embodiment, the polarization plane modulator was used, and the state of the polarization plane was modulated by changing the phase difference to 90 ° and 270 °. However, the number of modulators, the angle of the axis, and the phase difference are not limited to this. Instead, any combination can be used as long as the state of the plane of polarization is modulated and the intensity of light incident on the light receiving element is modulated.

またGaAs集積回路の反射光の偏波面の状態の変化を検
出する代りに透過光を検出してもよい。
Alternatively, transmitted light may be detected instead of detecting a change in the state of the plane of polarization of reflected light from the GaAs integrated circuit.

<発明の効果> 以上、実施例に基づいて具体的に説明したように、本
発明によれば、高速の測定信号を高いS/N比で測定でき
る光サンプリング装置を簡単な構成で実現することがで
きる。
<Effects of the Invention> As described above in detail based on the embodiments, according to the present invention, it is possible to realize an optical sampling device capable of measuring a high-speed measurement signal at a high S / N ratio with a simple configuration. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る光サンプリング装置の一実施例を
示す構成ブロック図、第2図は第1図装置の動作を説明
するための説明図、第3図は第1図装置の動作を説明す
るためのタイムチャート、第4図はサンプリング技術の
原理図、第5図は従来の光サンプリング装置の構成図で
ある。 1……光パルス発生手段、5……被測定回路、6……検
出手段、11……偏波面変調手段、13……同期検波手段。
FIG. 1 is a block diagram showing the configuration of an embodiment of an optical sampling device according to the present invention, FIG. 2 is an explanatory diagram for explaining the operation of the FIG. 1 device, and FIG. FIG. 4 is a time chart for explanation, FIG. 4 is a principle diagram of a sampling technique, and FIG. 5 is a configuration diagram of a conventional optical sampling device. 1 ... optical pulse generation means, 5 ... measured circuit, 6 ... detection means, 11 ... polarization plane modulation means, 13 ... synchronous detection means.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光パルスの偏波面の状態を被測定回路の動
作電圧に応じて変化させ、この偏波面の変化を検出して
被測定回路の電圧波形を測定する光サンプリング装置に
おいて、 光パルスを出力する光パルス発生手段と、 この光パルス発生手段の出力光の偏波面の状態を変調す
る偏波面変調手段と、 この偏波面変調手段の出力光を入射して被測定回路の動
作電圧に対応する電界により偏波面を変化させる電気光
学素子と、 この電気光学素子の出力光における偏波面の変化を検出
する検出手段と、 この検出手段の出力を同期検波する同期検波手段とを備
え、 同期検波手段の出力に基づいて被測定回路の電圧波形を
測定するように構成したことを特徴とする光サンプリン
グ装置。
An optical sampling apparatus for changing the state of the plane of polarization of an optical pulse in accordance with the operating voltage of a circuit to be measured, detecting the change in the plane of polarization, and measuring the voltage waveform of the circuit to be measured. An optical pulse generating means for outputting an optical pulse; a polarization plane modulating means for modulating the state of the plane of polarization of the output light from the optical pulse generating means; An electro-optical element that changes the plane of polarization by a corresponding electric field; detecting means for detecting a change in the plane of polarization in the output light of the electro-optical element; and synchronous detecting means for synchronously detecting the output of the detecting means. An optical sampling device characterized in that a voltage waveform of a circuit to be measured is measured based on an output of a detection means.
JP2274730A 1990-10-12 1990-10-12 Optical sampling device Expired - Fee Related JP2893921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274730A JP2893921B2 (en) 1990-10-12 1990-10-12 Optical sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274730A JP2893921B2 (en) 1990-10-12 1990-10-12 Optical sampling device

Publications (2)

Publication Number Publication Date
JPH04148872A JPH04148872A (en) 1992-05-21
JP2893921B2 true JP2893921B2 (en) 1999-05-24

Family

ID=17545779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274730A Expired - Fee Related JP2893921B2 (en) 1990-10-12 1990-10-12 Optical sampling device

Country Status (1)

Country Link
JP (1) JP2893921B2 (en)

Also Published As

Publication number Publication date
JPH04148872A (en) 1992-05-21

Similar Documents

Publication Publication Date Title
US4681449A (en) High speed testing of electronic circuits by electro-optic sampling
JPH05264609A (en) Method and system for measuring high frequency electric signal through electrooptic effect
US4411520A (en) Light dispersion measuring apparatus
JP2893921B2 (en) Optical sampling device
JP2656686B2 (en) Optical probe method and apparatus
JP3596964B2 (en) Optical delay device
US5041778A (en) Electrooptic measurement systems for frequency analysis of very wide range signals
JP2906633B2 (en) Optical sampling device
JP3165873B2 (en) Electric signal measuring method and apparatus
US5012183A (en) Electrooptic effect element and electrical signal waveform measuring apparatus using the same
JP2906285B2 (en) Optical sampling device
JP2893908B2 (en) Optical sampling device
JP3549813B2 (en) High frequency electromagnetic wave detection system and high frequency electromagnetic wave detection method
JP2827264B2 (en) Physical quantity measurement device using light
JP3130187B2 (en) Electric field detector
JP2561655Y2 (en) Optical sampling device
JP3057280B2 (en) Optical sampling device
JPH04121673A (en) Light sampler
JPH063375A (en) Electric field distribution measuring instrument utilizing electro-optic effect
JP2822433B2 (en) Physical quantity measurement device using light
JP3063369B2 (en) Magnetic field detector
JPH07134147A (en) Signal waveform measuring device
JPH0271160A (en) Electro-optic sampler and electric signal waveform measurement device using said sampler
JP2655748B2 (en) Electrical waveform measurement method and device
JPH05267408A (en) Electric field detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees