JPH02134541A - Inspection of metal structure - Google Patents

Inspection of metal structure

Info

Publication number
JPH02134541A
JPH02134541A JP63288356A JP28835688A JPH02134541A JP H02134541 A JPH02134541 A JP H02134541A JP 63288356 A JP63288356 A JP 63288356A JP 28835688 A JP28835688 A JP 28835688A JP H02134541 A JPH02134541 A JP H02134541A
Authority
JP
Japan
Prior art keywords
illumination light
image
objective lens
projected
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63288356A
Other languages
Japanese (ja)
Other versions
JPH0833342B2 (en
Inventor
Ryutaro Kodama
児玉 竜太郎
Atsushi Hirose
淳 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63288356A priority Critical patent/JPH0833342B2/en
Publication of JPH02134541A publication Critical patent/JPH02134541A/en
Publication of JPH0833342B2 publication Critical patent/JPH0833342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve accuracy by providing an outer lighting source which projects illuminating light on a specimen in the oblique direction, and taking only the overlapped part out of three kinds of images whose lighting conditions are different. CONSTITUTION:Inner illuminating light L1 is projected on the coarse surface part (Al eutectic layer) and a smooth surface (Si crystal part) of a specimen surface 2 through an objective lens 5 of a microscope 3. External illuminating light L2 is projected in the oblique direction at a specified angle with the specimen surface 2. The images of the surface structure of the specimen which are captured with the objective lens 5 are picked up with a camera 8 for the following cases: when both illuminating lights L1 and L2 are projected; when only the illuminating light L1 is projected; and when only the illuminating light L2 is projected. The images are binary-coded in bright and dark values. Regions P1 - P3 of the specified components of the surface structure are taken out. Then, only a part P4 where the regions P1 - P3 are overlapped is taken out as a true region P7 of the specified component.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は顕微鏡を用いた金属組織の検査方法に関し、さ
らに詳しくは例えば合金組織のなかに含まれる特定の成
分の面積率を検出するのに好適な検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for inspecting a metal structure using a microscope, and more specifically, for example, a method suitable for detecting the area ratio of a specific component contained in an alloy structure. Regarding inspection methods.

従来の技術 例えばアルミニウム合金の表面組織のなかからSi(シ
リコン)結晶部の析出面積率を検出する方法として第9
図に示すような方法がある。
Conventional technology For example, as a method for detecting the precipitation area ratio of Si (silicon) crystal parts in the surface structure of an aluminum alloy, the ninth
There is a method as shown in the figure.

これは定盤1上にセットされた試料2に対し、落射式顕
微鏡3の鏡筒4および対物レンズ5を通してハーフミラ
−6で反射した内部照明光源7の照明光り、を照射する
一方、対物レンズ5がとらえた試料2の表面組織をハー
フミラ−6を通して二次元の固体撮像素子(例えばCO
D等)型のカメラ8で撮像する。そして、カメラ8がと
らえた画像を画像処理装置9にて所定のレベルで明暗二
値化し、前述したSi結晶部に相当するところの明部の
面積を演算して求めることにより、Si結異部の析出面
積率が得られる。
This irradiates the sample 2 set on the surface plate 1 with the illumination light from the internal illumination light source 7 reflected by the half mirror 6 through the lens barrel 4 and objective lens 5 of the epi-illuminated microscope 3, while the objective lens 5 The surface structure of sample 2 captured by
D, etc.) type camera 8 takes an image. Then, the image captured by the camera 8 is binarized at a predetermined level by the image processing device 9, and the area of the bright part corresponding to the aforementioned Si crystal part is calculated and determined. A precipitation area ratio of is obtained.

すなわち、第3図にも示すように試料2の表面は一旦平
滑に仕上げたのちにエツチングを施すことにより、Si
結晶異部Oの露出面は鏡面に近い平滑面のままであるの
に対してAQ共品層11はエツチングにより荒らされて
粗面となっている。
That is, as shown in FIG. 3, the surface of sample 2 was once smoothed and then etched to form a Si
The exposed surface of the crystal abnormality O remains a mirror-like smooth surface, whereas the AQ common layer 11 has been roughened by etching and has a rough surface.

したがって、内部照明光り、を試料2の表面に照射する
と、AQ共品層11では粗面のために乱反射して反射光
のごく一部が対物レンズ5側に入射するのに対し、St
結晶異部Oでは平滑面であるために照射光が正反射して
反射光の大部分が対物レンズ5側に入射することになる
。つまり、前述した二値化画像では正反射光の強い部分
がSi結晶部10として認識されて抽出されることにな
る。
Therefore, when internal illumination light is irradiated onto the surface of the sample 2, the AQ common layer 11 reflects it diffusely due to its rough surface, and only a small part of the reflected light enters the objective lens 5 side.
Since the crystal abnormal part O has a smooth surface, the irradiated light is specularly reflected, and most of the reflected light is incident on the objective lens 5 side. That is, in the above-mentioned binarized image, the portion where the specularly reflected light is strong is recognized as the Si crystal portion 10 and extracted.

発明が解決しようとする課題 しかしながら従来の方法においては、反射光の明るさの
違いから平滑面であるところのSi結晶部10を抽出す
る方式であるため、エツチングにより腐食した部分が必
ずしも粗面とならずに偶然に平滑面に近い状態になるよ
うなことがあるとSi結晶部10と1共品層11とを明
確に区別できないことになる。したがって、Si結晶部
10を抽出するのに最適なしきい値を設定することがき
わめて困難で検出誤差が生じやすい。しかも、従来の方
法では外光の影響を受けやすく、これが上記の検出誤差
を一段と大きくする一因となっている。
Problems to be Solved by the Invention However, in the conventional method, the Si crystal part 10, which is a smooth surface, is extracted from the difference in the brightness of reflected light, so the part corroded by etching is not necessarily a rough surface. If the surface becomes close to a smooth surface by chance, it will not be possible to clearly distinguish between the Si crystal portion 10 and the single layer 11. Therefore, it is extremely difficult to set an optimal threshold for extracting the Si crystal portion 10, and detection errors are likely to occur. Moreover, the conventional method is susceptible to the influence of external light, which is one of the reasons for further increasing the above-mentioned detection error.

本発明は以上のような点に鑑みてなされたもので、その
目的とするところは、照明条件が異なる三種類の画像か
ら、相互に重複する部分のみを例えば組織の平滑面とし
て抽出することで精度の向上を図った検査方法を提供す
るものである。
The present invention has been made in view of the above points, and its purpose is to extract only mutually overlapping parts from three types of images with different illumination conditions, for example, as a smooth surface of tissue. The present invention provides an inspection method with improved accuracy.

課題を解決するための手段 本発明は、試料表面の粗面部と平滑面との光反射特性の
相違に基づいて表面組織の特定の成分を抽出して検査す
る方法であって、試料に対し顕微鏡の対物レンズを通し
て内部照明光を照射するとともに試料表面と所定角度を
なす斜め方向から外部照明光を照射し、内部照明光と外
部照明光の双方を照射した場合と内部照射光のみを照射
した場合、および外部照明光のみを照射した場合のそれ
ぞれについて、対物レンズがとらえた試料の表面組織を
撮像装置で撮像するとともにその画像を明暗二値化して
表面組織の特定の成分の領域を抽出し、前記照明条件が
異なる三種類の各二値化画像から抽出した領域が相互に
重複する部分のみを特定成分の真の領域として抽出する
ことを特徴としている。
Means for Solving the Problems The present invention is a method for extracting and inspecting specific components of a surface structure based on the difference in light reflection characteristics between a rough surface and a smooth surface of a sample. When internal illumination light is irradiated through the objective lens and external illumination light is irradiated from an oblique direction forming a predetermined angle with the sample surface, cases in which both internal illumination light and external illumination light are irradiated and cases in which only internal illumination light is irradiated. , and when only external illumination light is irradiated, the surface tissue of the sample captured by the objective lens is imaged by an imaging device, and the image is binarized to extract a specific component area of the surface structure. The present invention is characterized in that only the portions where the regions extracted from the three types of binarized images having different illumination conditions mutually overlap are extracted as the true region of the specific component.

作用 この方法によると、照明条件が異なれば、たとえ同一対
象物を撮像したとしても反射光量の変動のために各画像
から抽出した特定成分の領域は少しずつ異なる。そこで
、例えば金属組織の平滑面に対応する領域について、1
上記照明条件が異なる三種類の二値化画像上で相互に重
複する部分のみを真の平滑面領域として抽出することで
その抽出誤差が小さくなる。
According to this method, if the illumination conditions differ, even if the same object is imaged, the region of the specific component extracted from each image will differ slightly due to variations in the amount of reflected light. Therefore, for example, for a region corresponding to a smooth surface of a metal structure, 1
By extracting only mutually overlapping portions on the three types of binarized images with different illumination conditions as true smooth surface regions, the extraction error is reduced.

実施例 第1図〜第7図は本発明の一実施例を示す図であって、
検査装置の具体的構成としては第2図に示すように試料
2に対し斜め方向から照明光り。
Embodiment FIGS. 1 to 7 are diagrams showing an embodiment of the present invention,
As shown in FIG. 2, the specific configuration of the inspection device is such that the sample 2 is illuminated from an oblique direction.

を照射する外部照明光源12を備えている点で第9図の
ものと異なっている。
It differs from the one shown in FIG. 9 in that it includes an external illumination light source 12 that illuminates the light.

先ず第2図および第3図に示すように内部照明光源7の
みを点灯させてその内部照明光L1を対物レンズ5を通
して試料20表面に照射する。この時、AQ共晶層11
では前述したようにエツチングにより粗面となっている
ために内部照明光Llが乱反射して反射光のごく一部が
対物レンズ5側に入射する。一方、Si結晶部10では
その表面が鏡面に近い平滑面となっているために内部照
明光り、が正反射して反射光の大部分が明るさとして対
物レンズ5側に入射する。
First, as shown in FIGS. 2 and 3, only the internal illumination light source 7 is turned on, and the internal illumination light L1 is irradiated onto the surface of the sample 20 through the objective lens 5. At this time, the AQ eutectic layer 11
As described above, since the surface is roughened by etching, the internal illumination light Ll is diffusely reflected, and a small portion of the reflected light enters the objective lens 5 side. On the other hand, since the surface of the Si crystal part 10 is a smooth surface close to a mirror surface, internal illumination light is specularly reflected and most of the reflected light enters the objective lens 5 side as brightness.

対物レンズ5側に戻ってくるAff共品層11からの乱
反射光とSi結晶部10からの正反射光はそれぞれの物
質の明るさとしてカメラ8でとらえられ、第2図の画像
処理装置9の画像メモリに記憶される。画像の明るさは
A/D変換器により1画面を例えば256X240の画
素に標本化し、64段階の濃度レベルに量子化されてい
る。
The diffusely reflected light from the Aff common layer 11 and the specularly reflected light from the Si crystal portion 10 returning to the objective lens 5 side are captured by the camera 8 as the brightness of each substance, and are captured by the camera 8 as the brightness of each substance. Stored in image memory. The brightness of the image is determined by sampling one screen into, for example, 256×240 pixels using an A/D converter, and quantizing the brightness into 64 density levels.

続いて、照明光源の点灯状態を切り換えて、第2図およ
び第4図に示すように外部照明光源12のみを点灯させ
てその外部照明光り、を試料2の表面に対し所定角度θ
をもって斜め方向から照射する。この時、Al1共品層
11では粗面であるために外部照明光り、が乱反射して
反射光のごく一部が対物レンズ5側に明るさとして戻っ
てくる。
Next, the lighting states of the illumination light sources are switched to turn on only the external illumination light source 12 as shown in FIGS.
Hold it and irradiate from an oblique direction. At this time, since the Al1 common layer 11 has a rough surface, external illumination light is diffusely reflected, and a small portion of the reflected light returns to the objective lens 5 side as brightness.

一方、Si結晶部10では平滑面であるために外部照明
光り、が入射角θと等しい角度で正反射し、したがって
その正反射光は対物レンズ5側にはほとんど戻ってこな
い。そして、対物レンズ5側に戻ってくる反射光は第3
図と同様にカメラ8でとらえられて画像処理装置9の画
像メモリに記憶される。
On the other hand, since the Si crystal part 10 has a smooth surface, the external illumination light is specularly reflected at an angle equal to the incident angle θ, so that the specularly reflected light hardly returns to the objective lens 5 side. The reflected light returning to the objective lens 5 side is the third
Similarly to the figure, the image is captured by the camera 8 and stored in the image memory of the image processing device 9.

次に、再度照明条件を変えるべく内部照明光源7と外部
照明光源12の双方を点灯させて第1図(A)に示すよ
うに試料2の表面を照射する。この時、Al共品層11
およびSi結晶部10での反射状態は第3図と第4図の
状態を合成した状態、すなわち内部照明光7のみを照射
した場合と外部照明光12のみを照射した場合との合成
状態となっており、対物レンズ5側に戻ってくるi共晶
層11およびSi結晶部10からの反射光は、上記と同
様にカメラ8でとらえられて画像処理装置9の画像メモ
リに記憶される。
Next, in order to change the illumination conditions again, both the internal illumination light source 7 and the external illumination light source 12 are turned on to illuminate the surface of the sample 2 as shown in FIG. 1(A). At this time, the Al common layer 11
The reflection state at the Si crystal part 10 is a combination of the states shown in FIG. 3 and FIG. The reflected light from the i-eutectic layer 11 and the Si crystal portion 10 returning to the objective lens 5 side is captured by the camera 8 and stored in the image memory of the image processing device 9 in the same manner as described above.

上記のように照明条件を変えて画像処理装置9に記憶し
た三種類の画像は例えば第5図〜第7図のようになる。
The three types of images stored in the image processing device 9 under different illumination conditions as described above are shown in FIGS. 5 to 7, for example.

すなわち、第5図は内部照明光7のみを照射した場合の
画像を示しており、また第6図は外部照明光12のみを
照射した場合の画像を示しており、さらに第7図は内部
照明光7と外部照明光12の双方を照射した場合の画像
を示している。
That is, FIG. 5 shows an image when only internal illumination light 7 is irradiated, FIG. 6 shows an image when only external illumination light 12 is irradiated, and FIG. 7 shows an image when only internal illumination light 12 is irradiated. An image obtained when both light 7 and external illumination light 12 are irradiated is shown.

これら三種類の画像を比較すると明らかなように、第5
図および第7図では平滑面であるSi結晶異部Oからの
正反射光が対物レンズ5側に入射するために第5図およ
び第7図ではSi結晶部10が白色部分として表れてい
るのに対し、第6図ではSi結晶部10の正反射光が対
物レンズ5側にほとんど入射しないためにSi結晶部1
0は黒色部分として表れている。
As is clear from comparing these three types of images, the fifth
In FIG. 5 and FIG. 7, the Si crystal portion 10 appears as a white portion in FIG. 5 and FIG. On the other hand, in FIG. 6, since almost no specularly reflected light from the Si crystal part 10 enters the objective lens 5 side, the Si crystal part 1
0 appears as a black area.

したがって、第5図および第7図で81結晶部10とし
て認識された白色部分と、第6図でSi結晶部10とし
て認識された黒色部分とが完全−致していれば問題はな
いのであるが、上記各図から明らかなように反射特性の
違いのために各画像上でSi結晶部10と認識された領
域形状が少しづつ異なっている。
Therefore, if the white part recognized as the 81 crystal part 10 in FIGS. 5 and 7 and the black part recognized as the Si crystal part 10 in FIG. 6 completely match, there will be no problem. As is clear from the above figures, the shape of the region recognized as the Si crystal part 10 on each image differs slightly due to the difference in reflection characteristics.

そこで第1図(B)に示すように、画像処理装置9に記
憶されているところの内部照明光L1照射時の画像P、
と、内部照明光L1および外部照射光り、の双方照射時
の画像P3とを比較し、いわゆるパターンマツチング法
と同様の手法により双方の画像P、、P3にて明るさの
差のない部分をS結晶部10として認識した上で白黒反
転させる。
Therefore, as shown in FIG. 1(B), an image P stored in the image processing device 9 when the internal illumination light L1 is irradiated,
, and the image P3 when both the internal illumination light L1 and the external illumination light are irradiated are compared, and the parts with no difference in brightness in both images P, P3 are determined using a method similar to the so-called pattern matching method. After recognizing it as the S crystal part 10, the black and white are inverted.

つまり、双方の画像Pl、P3を比較して、各画像P、
、P、上での白色部分のうち相互に重複している部分の
みをSi結晶部10として認識する。
That is, by comparing both images Pl and P3, each image P,
, P, and only the mutually overlapping white portions are recognized as Si crystal portions 10.

この場合において、前述したようにエツチングにより腐
食したAI2共品共晶層に偶然に粗面でない平面部が存
在すると、この平面部は平滑面であるところのSi結晶
部10に類似した反射特性を呈するためにSi結晶部1
0との区別がつかなくなる。その結巣として、画像P、
とP3とを合成した画像P4上においても、なおも実際
に81結晶部10でない部分がSi結晶部10として認
識されている可能性がある。
In this case, if a flat surface that is not a rough surface happens to exist in the AI2 eutectic layer corroded by etching as described above, this flat surface will exhibit reflection characteristics similar to those of the Si crystal portion 10, which is a smooth surface. Si crystal part 1
It becomes indistinguishable from 0. As the result, image P,
Even on the image P4, which is a composite of 81 and P3, there is a possibility that a portion that is not actually the 81 crystal portion 10 is recognized as the Si crystal portion 10.

そこで、合成画像P4を明暗二値化して二値化画像P5
とする一方で、外部照明光り、照射時の画像P、を明暗
二値化し、双方の画像P、とP6とを比較して各画像P
5.P、上での黒色部分のうち相互に重複している部分
のみを画像P7上でSi結晶部10の真の領域Eとして
抽出して認識する。
Therefore, the composite image P4 is binarized into light and dark, and the binarized image P5 is
At the same time, the external illumination light and the image P at the time of irradiation are converted into brightness and darkness, and both images P and P6 are compared to obtain each image P.
5. Of the black parts on P and P, only the mutually overlapping parts are extracted and recognized as the true region E of the Si crystal part 10 on the image P7.

すなわち、外部照明光り、照射時の画像P、上では、S
i結晶部10は鏡面に近い状態にあるので照明光り、の
ほとんどが正反射し、しかも照明光臼体が斜め方向から
の照射であるのでSi結晶異部Oは黒色部分となって表
れる。これに対し、上記のようにA[共晶層11に粗面
にならない平面部があった場合、AQ共品層11の平面
部は金属であるためにSi結晶部10よりも反射率が大
きく、照明光り、を乱反射する割合が高くなる。よって
1.l共晶層11の平面部はSi結晶部10よりも明る
い白色部分として画像Pl上に表れる。
That is, the external illumination light, the image P at the time of irradiation, and the above, S
Since the i-crystal part 10 is in a state close to a mirror surface, most of the illumination light is reflected specularly, and since the illumination light body is irradiated from an oblique direction, the Si crystal abnormal part O appears as a black part. On the other hand, if the A[eutectic layer 11 has a flat part that does not have a rough surface as described above, the planar part of the AQ eutectic layer 11 has a higher reflectance than the Si crystal part 10 because it is made of metal. , the rate of diffuse reflection of illumination light increases. Therefore 1. The plane portion of the l-eutectic layer 11 appears on the image Pl as a white portion that is brighter than the Si crystal portion 10.

したがって、この性質を利用して、二値化画像P、とP
6との間で黒色部分についての論理積をとることにより
、画像P7のようにSi結晶部10の真の領域Eのみが
抽出されることになる。
Therefore, by using this property, the binarized images P and P
6 for the black portion, only the true region E of the Si crystal portion 10 is extracted as shown in image P7.

Si結晶部10の真の領域Eが抽出されると、画像処理
装置9は領域Eの面積を画素数として求めて、この画素
数と画面の総画素数との割合からSi結晶異部Oの析出
面積率を求めて出力することになる。
When the true region E of the Si crystal part 10 is extracted, the image processing device 9 calculates the area of the region E as the number of pixels, and calculates the area of the Si crystal abnormal part O from the ratio of this number of pixels to the total number of pixels of the screen. The precipitation area ratio will be calculated and output.

第8図の実施例は試料22の円筒内周面22aを検査す
る場合の例を示しており、対物レンズ25は鏡筒24の
軸線に対して直角に取り付けられる一方、図示外の外部
照明光源の照明光Li2は光ファイバー27を通して内
部照明光L11と交差するように照射される。28はフ
ァイバーホルダ、26は反射ミラー、29は外部照明光
L1.を旋回させるための軸部、30はセットビスであ
る。画像処理の手順としては先に説明した場合と同じで
あり、この実施例の場合にも第1実施例と同様の作用効
果が得られる。
The embodiment shown in FIG. 8 shows an example in which a cylindrical inner circumferential surface 22a of a sample 22 is inspected, and the objective lens 25 is attached at right angles to the axis of the lens barrel 24, while an external illumination light source (not shown) The illumination light Li2 is emitted through the optical fiber 27 so as to intersect with the internal illumination light L11. 28 is a fiber holder, 26 is a reflecting mirror, and 29 is external illumination light L1. 30 is a set screw. The image processing procedure is the same as that described above, and the same effects as in the first embodiment can be obtained in this embodiment as well.

発明の効果 以上のように本発明方法によれば、内部照明光に外部照
明光を加え、双方の照明光照射時と、内部照明光照射時
、および外部照明光照射時のそれぞれの各二値化画像か
ら抽出した領域が相互に重複する部分のみについて特定
成分の真の領域として抽出するようにしたことにより、
外光等の影響による抽出誤差を少なくして精度の高い特
定成分の抽出を行え、検査結果の信頼性が向上する。
Effects of the Invention As described above, according to the method of the present invention, external illumination light is added to internal illumination light, and each binary value is obtained when both illumination lights are irradiated, when the internal illumination light is irradiated, and when the external illumination light is irradiated. By extracting only the parts where the regions extracted from the transformed image mutually overlap as the true regions of the specific component,
It is possible to extract specific components with high precision by reducing extraction errors due to the influence of external light, etc., and improve the reliability of test results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の一実施例を示す図で第2図の内
部および外部照明光照射時の要部拡大図、第1図(B)
は特定成分の抽出時における画像処理過程の模式化した
フローチャート、第2図は本発明の一実施例を示すシス
テム全体の概略説明図、第3図は内部照明光照射時の要
部拡大図、第4図は外部照明光照射時の要部拡大図、第
5図は内部照明光照射時の画像例を示す説明図、第6図
は外部照明光照射時の画像例を示す説明図、第7図は内
部および外部照明光照射時の画像例を示す説明図、第8
図は本発明の他の実施例を示す要部拡大図、第9図は従
来の検査方法を説明するためのシステム全体の概略説明
図である。 2.22・・・試料、4,24・・鏡筒、5,25・・
・対物レンズ、7・・・内部照明光源、8・・・カメラ
、9・・・画像処理装置、10・・・Si結晶部(平滑
面)、11・・・Ag共晶層(粗面)、12・・・外部
照明光源、L l+  L l 1・・・内部照明光、
L2+ll!・・・外部照明光。 第1図(B) Sili6m11Bffl肉像
FIG. 1(A) is a diagram showing one embodiment of the present invention, and FIG. 2 is an enlarged view of the main part when internal and external illumination light is irradiated, and FIG. 1(B) is a diagram showing an embodiment of the present invention.
is a schematic flowchart of the image processing process when extracting a specific component, FIG. 2 is a schematic explanatory diagram of the entire system showing an embodiment of the present invention, and FIG. 3 is an enlarged view of the main part when irradiating internal illumination light. FIG. 4 is an enlarged view of the main part when external illumination light is irradiated, FIG. 5 is an explanatory diagram showing an example of an image when internal illumination light is irradiated, FIG. Figure 7 is an explanatory diagram showing an example of an image when internal and external illumination light is irradiated;
The figure is an enlarged view of main parts showing another embodiment of the present invention, and FIG. 9 is a schematic explanatory diagram of the entire system for explaining a conventional inspection method. 2.22...sample, 4,24...lens barrel, 5,25...
- Objective lens, 7... Internal illumination light source, 8... Camera, 9... Image processing device, 10... Si crystal part (smooth surface), 11... Ag eutectic layer (rough surface) , 12... External illumination light source, L l+ L l 1... Internal illumination light,
L2+ll! ...External lighting light. Figure 1 (B) Sili6m11Bffl flesh image

Claims (1)

【特許請求の範囲】[Claims] (1)試料表面の粗面部と平滑面との光反射特性の相違
に基づいて表面組織の特定の成分を抽出して検査する方
法であって、 試料に対し顕微鏡の対物レンズを通して内部照明光を照
射するとともに試料表面と所定角度をなす斜め方向から
外部照明光を照射し、 内部照明光と外部照明光の双方を照射した場合と内部照
射光のみを照射した場合、および外部照明光のみを照射
した場合のそれぞれについて、対物レンズがとらえた試
料の表面組織を撮像装置で撮像するとともにその画像を
明暗二値化して表面組織の特定の成分の領域を抽出し、 前記照明条件が異なる三種類の各二値化画像から抽出し
た領域が相互に重複する部分のみを特定成分の真の領域
として抽出することを特徴とする金属組織の検査方法。
(1) A method of extracting and inspecting specific components of the surface structure based on the difference in light reflection characteristics between rough and smooth surfaces of the sample, in which internal illumination light is applied to the sample through the objective lens of a microscope. At the same time, external illumination light is irradiated from an oblique direction forming a predetermined angle with the sample surface, and both internal and external illumination light, only internal illumination light, and only external illumination light are irradiated. In each case, the surface structure of the sample captured by the objective lens is imaged by an imaging device, and the image is binarized into brightness and darkness to extract a region of a specific component of the surface structure. A method for inspecting a metallographic structure, characterized in that only a portion where regions extracted from each binarized image mutually overlap is extracted as a true region of a specific component.
JP63288356A 1988-11-15 1988-11-15 Metal tissue inspection method Expired - Lifetime JPH0833342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288356A JPH0833342B2 (en) 1988-11-15 1988-11-15 Metal tissue inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288356A JPH0833342B2 (en) 1988-11-15 1988-11-15 Metal tissue inspection method

Publications (2)

Publication Number Publication Date
JPH02134541A true JPH02134541A (en) 1990-05-23
JPH0833342B2 JPH0833342B2 (en) 1996-03-29

Family

ID=17729149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288356A Expired - Lifetime JPH0833342B2 (en) 1988-11-15 1988-11-15 Metal tissue inspection method

Country Status (1)

Country Link
JP (1) JPH0833342B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212276A (en) * 2006-02-09 2007-08-23 Seiko Instruments Inc Thin slice manufacturing apparatus and method
CN103175948A (en) * 2013-02-26 2013-06-26 奇瑞汽车股份有限公司 Detection tool of curve surface defects of sheet metal part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141611A1 (en) 2016-02-19 2017-08-24 株式会社Screenホールディングス Defect detection apparatus, defect detection method, and program
JP6688629B2 (en) * 2016-02-19 2020-04-28 株式会社Screenホールディングス Defect detecting device, defect detecting method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616804A (en) * 1979-07-23 1981-02-18 Hitachi Ltd Pattern check unit of printed circuit board
JPS56168550A (en) * 1980-05-31 1981-12-24 Nippon Kokan Kk <Nkk> Method and appratus for measuring physical properties of sintered ore
JPS6288946A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Image extracting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616804A (en) * 1979-07-23 1981-02-18 Hitachi Ltd Pattern check unit of printed circuit board
JPS56168550A (en) * 1980-05-31 1981-12-24 Nippon Kokan Kk <Nkk> Method and appratus for measuring physical properties of sintered ore
JPS6288946A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Image extracting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212276A (en) * 2006-02-09 2007-08-23 Seiko Instruments Inc Thin slice manufacturing apparatus and method
CN103175948A (en) * 2013-02-26 2013-06-26 奇瑞汽车股份有限公司 Detection tool of curve surface defects of sheet metal part

Also Published As

Publication number Publication date
JPH0833342B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
KR920007196B1 (en) Method and apparatus for detecting foreign matter
JP2005321237A (en) Pattern inspection method and pattern inspection device
KR0185797B1 (en) Method and apparatus for optical inspection
JPH0515978B2 (en)
JP4910800B2 (en) Screw parts inspection device and inspection method
JPH02134541A (en) Inspection of metal structure
JP2000097873A (en) Surface defect inspecting device
JP2726808B2 (en) Appearance inspection device
JPS63277960A (en) Inspecting method for defect in threaded neck part
KR100517868B1 (en) Method for determining and evaluating defects in a sample surface
JP3321503B2 (en) Appearance inspection equipment for electronic components
JPH10274515A (en) Curved surface inspection method and camera unit for inspection
JPH06160065A (en) Inspecting device for notch
JPH0299806A (en) Inspection of surface defect
JPH0466849A (en) Inspecting apparatus of external appearance
JP2000028536A (en) Defect inspecting apparatus
JPH043820B2 (en)
JP2001289793A (en) Surface inspection device
JPS63122229A (en) Inspecting device for pattern of thick film ic
JPS5848837A (en) Defect checking method
JPS59933A (en) Method for inspection of aluminum pattern on semiconductor wafer
JPH0690143B2 (en) Method for detecting agglomerated particles in transparent thin film
JPS6150044A (en) Optical examination method
JP2003050208A (en) Method and device for inspecting inner surface of paper cup
JP2003130807A (en) Defect detector