JPH02133954A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPH02133954A
JPH02133954A JP28728288A JP28728288A JPH02133954A JP H02133954 A JPH02133954 A JP H02133954A JP 28728288 A JP28728288 A JP 28728288A JP 28728288 A JP28728288 A JP 28728288A JP H02133954 A JPH02133954 A JP H02133954A
Authority
JP
Japan
Prior art keywords
interference
layer
integrated circuit
circuit device
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28728288A
Other languages
Japanese (ja)
Inventor
Akinori Matsuda
松田 昭憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28728288A priority Critical patent/JPH02133954A/en
Publication of JPH02133954A publication Critical patent/JPH02133954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate a fear that a mutual interference is caused between circuit elements even when an operating frequency of an integrated circuit device is high and its operating speed is fast by a method wherein the circuit element divided from an epitaxial layer of a water by using a junction isolation layer are formed. CONSTITUTION:Inside each partial region on a wafer, an n-type epitaxial layer 7 as this partial region is used as a drain region and single n-channel vertical- type field-effect transistors T are formed. Two interference routes exist between circuit elements formed in different partial regions; in the case of this invention, one interference route out of them is formed via a low-concentration impurity semiconductor region 2. Accordingly, in this integrated circuit device, an operating frequency where an impedance value of the first interference route is lowered to a degree generating an interference actually in nearly the same as a frequency for a second interference route or a little higher than that. When the impedance value of the first interference route as a main cause of the interference in a conventional case is increased, it is possible to reduce a that a mutual interference is caused between the circuit elements of the integrated circuit device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路装置であって電子回路を構成するトラ
ンジスタ等の回路要素ないしは回路要素群がウェハ内の
互いに電位が分離された半導体領域に分割して作り込ま
れるものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an integrated circuit device in which circuit elements such as transistors constituting an electronic circuit or a group of circuit elements are located in semiconductor regions of a wafer whose potentials are separated from each other. It relates to things that are divided and created.

〔従来の技術〕[Conventional technology]

よく知られているように集積回路装置では、その構成回
路要素は基板上に成長されたエピタキシャル層内に作り
込まれた上で、アルミ等の金属の接続膜で所望の回路を
構成するように相互接続されるが、回路動作時に各回路
要素はその端子が電源電位、接地電位、中間電位等積々
の固定電位ないしは可変電位に置かれるので、エピタキ
シャル層を互いに独立な電位をとりうる複数個の部分領
域に分割し、それぞれに単一の回路要素ないしは動作電
位上同じ条件の回路要素群を振り分けて作り込む必要が
ある。第3図は、回路要素としての単一の縦形電界効果
トランジスタをエピタキシャル層から接合分離法によっ
て分割した各部分子iJl域内に作り込む例を示すもの
である。
As is well known, in integrated circuit devices, the component circuit elements are built into an epitaxial layer grown on a substrate, and then a desired circuit is constructed using a connecting film of metal such as aluminum. However, during circuit operation, the terminals of each circuit element are placed at fixed or variable potentials such as power supply potential, ground potential, and intermediate potential. It is necessary to divide the area into sub-areas of , and create a single circuit element or a group of circuit elements with the same operating potential conditions in each area. FIG. 3 shows an example in which a single vertical field effect transistor as a circuit element is fabricated in each molecular iJl region divided from the epitaxial layer by a junction separation method.

第3図において、p形の基板2の表面にp形の埋込分離
層5およびn形の埋込層6を高不純物濃度で拡散した上
でn形のエピタキシャル層7を成長させ、その表面から
p形の接合分離層8を高不純物濃度で埋込分離層5に達
するまで深く拡散することにより、エピタキシャル層7
を複数個の部分領域に分割してそのそれぞれに縦形電界
効果トランジスタTを作り込む。
In FIG. 3, a p-type buried isolation layer 5 and an n-type buried layer 6 are diffused with high impurity concentration on the surface of a p-type substrate 2, and then an n-type epitaxial layer 7 is grown. The epitaxial layer 7 is formed by deeply diffusing the p-type junction isolation layer 8 with high impurity concentration until it reaches the buried isolation layer 5.
is divided into a plurality of partial regions, and a vertical field effect transistor T is fabricated in each of the partial regions.

各電界効果トランジスタT用の半導体層としては、埋込
層6に接続するようn形で深く拡散されたドレイン用の
高不純物濃度の接続層11のほか、いずれも環状パター
ンで拡散されたp形の外側チャネル形成層12および内
側チャネル形成層15.  これらチャネル形成層内に
環状パターンで拡散された高不純物濃度のn形のソース
層16が設けられ、その上に通例のようにゲート酸化膜
13を介してゲート14が設けられる。トランジスタの
ドレイン端子りはコンタクト層11から、ソース端子S
はソース層16から、ゲート端子Gはゲート14からそ
れぞれ導出される0図かられかるように、エピタキシャ
ル層7から分割された各部分領域には、それに作り込ま
れた縦形電界効果トランジスタTのドレイン端子りの電
位が掛かる− 以上のように構成されたトランジスタTは例えば第2図
に示すような接続で使用される。すなわち、両トランジ
スタTのドレイン端子りはそれぞれ負荷りを介して電源
電位点Vと、ソース端子Sは基板2が置かれる接地電位
点Eとそれぞれ接続され、それらのゲート端子Gに独立
に与えられる制御信号に応じて負荷りを例えば開閉制御
する。
The semiconductor layer for each field effect transistor T includes a connection layer 11 with a high impurity concentration for the drain which is deeply diffused in n-type so as to be connected to the buried layer 6, and a p-type semiconductor layer which is diffused in an annular pattern. outer channel forming layer 12 and inner channel forming layer 15. An n-type source layer 16 with a high impurity concentration diffused in an annular pattern is provided in these channel forming layers, and a gate 14 is provided thereon via a gate oxide film 13 as usual. The drain terminal of the transistor is connected from the contact layer 11 to the source terminal S.
is derived from the source layer 16, and the gate terminal G is derived from the gate 14.As can be seen from Figure 0, each partial region divided from the epitaxial layer 7 has a drain of the vertical field effect transistor T built therein. A potential is applied to the terminals. The transistor T constructed as described above is used in a connection as shown in FIG. 2, for example. That is, the drain terminals of both transistors T are connected to the power supply potential point V through the respective loads, and the source terminals S are respectively connected to the ground potential point E where the substrate 2 is placed, and the voltages are applied to their gate terminals G independently. For example, the load is controlled to open or close depending on the control signal.

集積回路装置が表示パネルの駆動用の場合は負荷りはそ
の各画素であって、集積回路装置内にはかかる電界効果
トランジスタTが少なくとも数十個集積化されるが、そ
の開閉状態に応じてそのドレイン端子りの電位つまりそ
のトランジスタが作り込まれた部分領域の電位が電源電
位Eから接地電位Sまで独立に変動し得るので、各トラ
ンジスタ回路間に相互干渉が発生しないよう各部分領域
内にトランジスタが1個ずつ作り込まれる。
When the integrated circuit device is used to drive a display panel, the load is on each pixel, and at least several dozen such field effect transistors T are integrated within the integrated circuit device. Since the potential of the drain terminal, that is, the potential of the partial region in which the transistor is built, can vary independently from the power supply potential E to the ground potential S, the Transistors are built one by one.

もちろん場合によっては、負荷りは各トランジスタTの
ソース端子Sと接地電位点Eとの間に挿入されることも
ある。
Of course, depending on the case, a load may be inserted between the source terminal S of each transistor T and the ground potential point E.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように集積回路を構成する回路要素としての例え
ばトランジスタを接合分離された部分領域内に振り分け
て作り込めば、回路動作時に回路要素間の相互干渉は生
じないはずなのであるが、回路の動作周波数が高(ある
いはその動作速度が早くなると、干渉を完全には防止で
きなくなってくる。これは部分領域間に接続層や基板を
介して動的な干渉が生じ得るためであって、これに関連
する等価回路が第2図に示されている。
As mentioned above, if the circuit elements constituting an integrated circuit, such as transistors, are distributed and fabricated in junction-separated partial regions, mutual interference between the circuit elements should not occur during circuit operation, but the circuit operation At higher frequencies (or at higher operating speeds), it is no longer possible to completely prevent interference. This is because dynamic interference can occur between subareas through connection layers and substrates, The relevant equivalent circuit is shown in FIG.

第1の干渉路は2個のトランジスタTのドレイン端子り
間に基板2を介して形成されるもので、図のようにドレ
イン用のコンタクト1111の抵抗。
The first interference path is formed between the drain terminals of the two transistors T via the substrate 2, and as shown in the figure, the resistance of the drain contact 1111.

埋込層6の抵抗、埋込層6と基板2との間の接合容il
Cおよび基板2の抵抗の直列CR回路であり、そのイン
ピーダンス値が動作周波数が高くなるとともに低下して
干渉が発生しゃすくなる。第2の干渉路は両トランジス
タのソース端子S間に接続層8を介して形成されるもの
で、外側チャネル形成層12の抵抗1部分領域であるエ
ピタキシャル層7の抵抗1工ピタキシヤル層7と接合分
離層8との間の接合容1cおよび接合分離層8の抵抗の
直列C1?回路であり、同様に動作周波数が高くなると
そのインピーダンス値が低くなる。
Resistance of buried layer 6, junction capacitance il between buried layer 6 and substrate 2
This is a series CR circuit consisting of a resistor of C and the substrate 2, and its impedance value decreases as the operating frequency increases, making it more likely that interference will occur. The second interference path is formed between the source terminals S of both transistors via the connection layer 8, and is connected to the resistor 1 epitaxial layer 7 of the epitaxial layer 7, which is the resistor 1 partial region of the outer channel forming layer 12. Series C1 of the junction capacitance 1c with the separation layer 8 and the resistance of the junction separation layer 8? Similarly, as the operating frequency increases, the impedance value decreases.

なお、この第2図の回路接続では第2の干渉路の方は短
絡されていて働かないが、負荷りがソース端子S側に接
続される場合に干渉の原因となり得る。また、いずれの
干渉路もその中点が直接ないしは埋込骨M層5の抵抗を
介して一応接地されてはいるが、各トランジスタのドレ
イン端子りまたはソース端子Sの電位が独立に変動する
と、接地によっても干渉を完全に防止できず、これらの
干渉路に流れる電流によって回路要素間に干渉が発生し
てしまうのである。
In the circuit connection shown in FIG. 2, the second interference path is short-circuited and does not work, but it may cause interference if a load is connected to the source terminal S side. In addition, although the midpoint of each interference path is grounded directly or via the resistance of the embedded bone M layer 5, if the potential of the drain terminal or source terminal S of each transistor changes independently, Even grounding cannot completely prevent interference, and the current flowing through these interference paths causes interference between circuit elements.

本発明はかかる問題を解決して、集積回路装置の動作周
波数が高くないしはその動作速度が速い場合にも、その
回路要素間に相互干渉が発生するおそれを少なくするこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve this problem and reduce the possibility of mutual interference occurring between circuit elements even when the operating frequency of an integrated circuit device is not high or its operating speed is high.

〔課題を解決するための手段〕[Means to solve the problem]

この目的は本発明によれば、ともに一方の導電形をもつ
半導体領域およびこれより低い不純物濃度の半導体領域
からなる基体と、基体の低不純物濃度半導体領域側の表
面から拡散された他方の導電形の埋込層と、基体の埋込
層が拡散された表面上に成長された他方の導電形のエピ
タキシャル層と、エピタキシャル層の表面から基体の低
不純物濃度半導体領域に導電接続するように一方の導電
形で拡散されエピタキシャル層を複数個の接合分離され
た部分領域に分割する接合分離層とにより集積回路装置
用のウェハを構成し、このウェハのエピタキシャル層か
ら接合分離層により分割された各部分領域内に集積回路
を構成する回路要素を作り込むことによって達成される
According to the present invention, this object is achieved by providing a base body consisting of a semiconductor region having one conductivity type and a semiconductor region having a lower impurity concentration, and a semiconductor region having the other conductivity type diffused from the surface of the base body on the side of the low impurity concentration semiconductor region. an epitaxial layer of the other conductivity type grown on the surface in which the buried layer of the substrate is diffused; A wafer for an integrated circuit device is constituted by a junction separation layer which is diffused in a conductive type and divides the epitaxial layer into a plurality of junction-separated partial regions, and each portion of the wafer is divided from the epitaxial layer by the junction separation layer. This is accomplished by building circuit elements that make up an integrated circuit within the area.

〔作用〕[Effect]

本発明は前記の第1の干渉路すなわち各部分領域用の埋
込層および基板を介する干渉路のインピーダンス値を上
げることによって集積回路装置を構成する回路要素間の
相互干渉を減少させることに成功したものである。
The present invention successfully reduces mutual interference between circuit elements constituting an integrated circuit device by increasing the impedance value of the first interference path, that is, the interference path through the buried layer and substrate for each partial region. This is what I did.

もちろん、干渉の原因としてはこのほかに前記の第2の
干渉路があるが、これは必ずエピタキシャル層と接合分
離層とを経由し、この内のエピタキシャル層はその不純
物濃度が比較的低くてその抵抗値が高く、かつその接合
分離層との間のpn接合がら空乏層がエピタキシャル層
の方に延びやすいので接合容量も比較的小さいので、こ
の第2の干渉路のインピーダンス値が低下する周波数は
比較的高い、これに比べて、第1の干渉路中の埋込層お
よび基板はいずれも抵抗値が低く従って両者間の接合容
量値も高いので、第1の干渉路のインピーダンスが低下
する周波数は第2の干渉路よりも1桁以上低いのがふつ
うである。
Of course, another cause of interference is the second interference path mentioned above, but this always goes through the epitaxial layer and the junction separation layer, and the epitaxial layer has a relatively low impurity concentration and is The resistance value is high, and since the depletion layer of the pn junction between it and the junction separation layer easily extends toward the epitaxial layer, the junction capacitance is also relatively small, so the frequency at which the impedance value of this second interference path decreases is Compared to this, both the embedded layer and the substrate in the first interference path have low resistance values and the junction capacitance between them is also high, so the frequency at which the impedance of the first interference path decreases is relatively high. is usually an order of magnitude or more lower than the second interference path.

第1の干渉路中の埋込層は、前の第3図のように回路要
素の端子に接続される半導体層としての役目のほか、各
部分領域の接合分離を完全にする役目を持ち、このため
に高不純物濃度層とされるのでその抵抗値は常に低く、
集積回路装置ではこの抵抗値を下げるわけには行かない
、第1の干渉路中の基板の方は、その不純物濃度を低め
て抵抗値を上げることは原理上可能であるが、集積回路
装置用のM iffにはその比抵抗の面内ばらつきや高
温熱処理時の機械的な変形を少なくするためにCZ法(
チックラルスキー法)による単結晶シリコンを用いるこ
とが必要で、この現在の製造方法では低不純物濃度で高
抵抗性のものを実用化するのは困難である。
The buried layer in the first interference path not only serves as a semiconductor layer connected to the terminal of the circuit element as shown in FIG. For this reason, it is made into a highly impurity concentration layer, so its resistance value is always low.
In integrated circuit devices, this resistance value cannot be lowered.In principle, it is possible to lower the impurity concentration of the substrate in the first interference path and increase the resistance value. The CZ method (
It is necessary to use single-crystal silicon produced by the Chickralski method, and with this current manufacturing method, it is difficult to put into practical use a product with low impurity concentration and high resistance.

本発明はこの点に着目したもので、基板を上述の構成に
いう一方の導電形をもつ半導体領域として、これに同導
電形でより低い不純物濃度をもつ半導体領域例えばエピ
タキシャル層領域を組み合わせた基体を従来の基板のか
わりに用いる。以降は従来と同様に、その表面に他方の
導電形の埋込層を拡散した上でエピタキシャル層を他方
の導電形で成長させ、その表面から一方の導電形の接合
分離層を基体の低不純物濃度半導体領域に導電接続する
ように拡散してエピタキシャル層が複数個の部分?■域
に接合分離されたウェハを作り、その各部分領域内に回
路要素を作り込む。
The present invention focuses on this point, and uses a substrate in which a semiconductor region having one conductivity type as described above is combined with a semiconductor region having the same conductivity type and a lower impurity concentration, such as an epitaxial layer region. is used instead of the conventional substrate. Thereafter, in the same way as before, a buried layer of the other conductivity type is diffused on the surface, an epitaxial layer is grown in the other conductivity type, and a junction separation layer of one conductivity type is grown from the surface with low impurity impurity of the substrate. Multiple epitaxial layers diffused to conductively connect to the doped semiconductor region? (2) A wafer is made that is bonded and separated into regions, and circuit elements are built into each of the regions.

これによって、第1の干渉路中の基板に低不純物濃度で
高抵抗性のものを利用したのと等価になり、その抵抗値
を大きくかつその埋込層とのpn接合の接合容量を小さ
くして、第1の干渉路のインピーダンス値が低下する周
波数を第2の干渉路に対する周波数以上に上げ、回路要
素間の相互干渉を減少さセることができる。
This is equivalent to using a substrate with low impurity concentration and high resistance in the first interference path, increasing the resistance value and reducing the junction capacitance of the pn junction with the buried layer. In this way, the frequency at which the impedance value of the first interference path decreases can be increased above the frequency for the second interference path, thereby reducing mutual interference between circuit elements.

〔実施例〕〔Example〕

以下、第1図を参照しながら本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to FIG.

同図は回路要素として第3図の場合と同じ縦形電界効果
トランジスタを作り込む本発明による集積回路装置をそ
の主な製作工程ごとの状態で示すもので、その完成時の
状態が同図(C)に示されており、その第3図との対応
部分には同じ符号が付されている。
This figure shows an integrated circuit device according to the present invention in which the same vertical field effect transistors as in the case of FIG. ), and corresponding parts to those in FIG. 3 are given the same reference numerals.

第1図(a)は本発明による集積回路装置用の基体3を
示すもので、それを構成する半導体領域1が従来の基板
に対応し、これには通常のCZ法による比抵抗が数十Ω
C111程度の単結晶シリコンが用いられ、その導電形
は図示のように例えばp形とされる。基体3のもう一つ
の構成要素である低不純物濃度半導体領域2には、この
例では半導体領域1上に同じp形でただし比抵抗がそれ
より1桁高い数百Ωl程度になる低不純物濃度で成長さ
れたエピタキシャル層が用いられる。この低不純物濃度
半導体領域2の厚みは集積回路装置の使用電圧によって
も異なるがふつうは数十μが必要で、例えばその上に成
長されるn形のエピタキシャル層の厚みが20〜30−
の場合、その約2倍の40〜50μとされる。
FIG. 1(a) shows a substrate 3 for an integrated circuit device according to the present invention, in which a semiconductor region 1 constituting the substrate corresponds to a conventional substrate, which has a resistivity of several tens of tens of yen by the usual CZ method. Ω
Single crystal silicon of about C111 is used, and its conductivity type is, for example, p-type as shown in the figure. In this example, the low impurity concentration semiconductor region 2, which is another component of the substrate 3, has a low impurity concentration of about several hundred Ωl, which is the same p-type as on the semiconductor region 1, but whose resistivity is an order of magnitude higher than that of the low impurity concentration semiconductor region 2. A grown epitaxial layer is used. The thickness of this low impurity concentration semiconductor region 2 varies depending on the operating voltage of the integrated circuit device, but is usually several tens of microns.For example, the thickness of the n-type epitaxial layer grown thereon is 20 to 30-
In this case, the thickness is about twice that, 40 to 50μ.

ついで、この基体3の低不純物濃度半導体領域2の表面
に酸化膜4を付け、これをマスクとして埋込分離層5用
にp形不純物を、埋込層6用にn形不純物をそれぞれ導
入し、ともにlO〜20Ω/口程度のシート抵抗値が得
られるように熱拡散させて第1図(a)の状態とする。
Next, an oxide film 4 is applied to the surface of the low impurity concentration semiconductor region 2 of the base 3, and using this as a mask, p-type impurities are introduced into the buried isolation layer 5 and n-type impurities are introduced into the buried layer 6. , are thermally diffused so as to obtain sheet resistance values of about 10 to 20 Ω/hole to form the state shown in FIG. 1(a).

第1図し)は本発明による集積回路装置用のウェハ9を
示すものである。この状態にするには、まず同図(a)
の基体3上に酸化膜4を取り除いた後にn形のエピタキ
シャル層7を比抵抗が10ΩC1前後になる不純物濃度
で成長させる。この例のように集積回路装置に高耐圧の
縦形電界効果トランジスタを作り込む場合には、このエ
ピタキシャル層7の厚みは20〜301Em程度とされ
る。ついで、このエピタキシャル層7の表面から、新し
く付けた酸化lI4をマスクとしてp形の接合分離層8
をそのシート抵抗がlO〜20Ω/口程度になる比較的
高不純物濃度で図示のように埋込分離層5と接続するま
で深く拡散することにより、エピタキシャル層7を複数
個の部分領域に接合分離する。これが第1図ら)の状態
である。
FIG. 1) shows a wafer 9 for an integrated circuit device according to the invention. To achieve this state, first see (a) in the same figure.
After removing the oxide film 4 on the substrate 3, an n-type epitaxial layer 7 is grown at an impurity concentration such that the resistivity becomes around 10ΩC1. When a high voltage vertical field effect transistor is fabricated in an integrated circuit device as in this example, the thickness of the epitaxial layer 7 is approximately 20 to 301 Em. Next, a p-type junction isolation layer 8 is formed from the surface of this epitaxial layer 7 using the newly applied oxide lI4 as a mask.
The epitaxial layer 7 is junction-separated into a plurality of partial regions by deeply diffusing it at a relatively high impurity concentration so that its sheet resistance is about 10 to 20 Ω/hole until it connects with the buried isolation layer 5 as shown in the figure. do. This is the state shown in Fig. 1 et al.).

本発明では、上のように作られたウェハ内の各部分領域
内に集積回路を構成する回路要素ないしは回路要素群が
作り込まれる。この例では各部分領域内には、第1図(
C)のようにこの部分領域であるn形のエピタキシャル
層7をドレイン領域として単一のnチャネル形の縦形電
界効果トランジスタTが作り込まれる0部分領域の下の
n形の埋込N6は、通常のようにその接合分離を完全に
する役目のほか、ドレイン領域を接続層11とともにド
レイン端子りに接続する役目を果たすので、トランジス
タの作り込みに当たっては、エピタキシャル層7の表面
からn形の接続層11を高不純物濃度で深く拡散して埋
込層6と接続することによりドレイン系をまず形成する
In the present invention, a circuit element or a group of circuit elements constituting an integrated circuit is fabricated in each partial area of the wafer produced as described above. In this example, each subregion contains the information shown in Figure 1 (
As shown in C), the n-type buried N6 under the 0 partial region in which a single n-channel vertical field effect transistor T is built using the n-type epitaxial layer 7 as the drain region is as follows: In addition to the usual role of perfecting the junction isolation, it also plays the role of connecting the drain region to the drain terminal together with the connection layer 11, so when fabricating the transistor, it is necessary to make an n-type connection from the surface of the epitaxial layer 7. A drain system is first formed by deeply diffusing layer 11 with high impurity concentration and connecting it to buried layer 6.

つぎに、p形の外側チャネル形成層12を1011原子
/d程度の比較的低不純物濃度で5〜10−程度とやや
深く環状パターンで拡散して置いた上で、その内側のエ
ピタキシャル層7の表面を0.1−程度の薄いゲート酸
化膜13で覆い、その上に多結晶シリコン等のゲート1
4を設ける。ついで、通例のようにこのゲー)14をマ
スクとするイオン注入法により、p形の内側チャネル形
成層15およびn形のソース層16を順次いずれも環状
のパターンで拡散する。この際、内側チャネル形成層1
5は外側チャネル形成層12と同程度の不純物濃度で例
えば3μ前後の深さに、ソース層16は10111原子
/d以上の高不純物濃度で1〜2−の深さにそれぞれ拡
散される。
Next, a p-type outer channel forming layer 12 is diffused in a circular pattern with a relatively low impurity concentration of about 1011 atoms/d to a depth of about 5 to 10-1, and then the inner epitaxial layer 7 is formed. The surface is covered with a gate oxide film 13 as thin as about 0.1, and a gate 1 made of polycrystalline silicon or the like is formed on top of it.
4 will be provided. Next, the p-type inner channel forming layer 15 and the n-type source layer 16 are sequentially diffused in an annular pattern using the conventional ion implantation method using the gate electrode 14 as a mask. At this time, the inner channel forming layer 1
The source layer 16 is diffused to a depth of 1 to 2 - with a high impurity concentration of 10111 atoms/d or more.

以上で半導体層の拡散工程が終わるので、ついでゲー)
14の上を含めて酸化膜17を全面被覆し、その要所に
窓を明けて電極膜18を設け、それから図示のようにト
ランジスタT用の端子S、DおよびGを導出する。なお
、ソース端子S用の電極膜18は外側チャネル形成層1
2およびソース層16に導電接触して両層を短絡する。
This completes the semiconductor layer diffusion process, so let's move on to the game)
An oxide film 17 is applied over the entire surface including the top of the oxide film 14, and an electrode film 18 is provided by opening windows at important points thereof, and then terminals S, D and G for the transistor T are led out as shown in the figure. Note that the electrode film 18 for the source terminal S is the outer channel forming layer 1.
2 and source layer 16 to short-circuit both layers.

また、接合分離層8に導電接触する電極膜18からは接
地端子Eが導出される。この縦形電界効果トランジスタ
Tでは、ゲー)14の下のp形の内側チャネル形成層1
5の表面にn形のチャネルが形成される。電子をキャリ
アとする電流は、ソース端子Sと接続されたソース層1
6からこのチャネルを通ってドレイン領域としてのエピ
タキシャル層7内に入り、その中を縦方向に通過した後
、埋込層6および接続層11を経てドレイン端子りに導
かれる。
Further, a ground terminal E is led out from the electrode film 18 that is in conductive contact with the junction separation layer 8 . In this vertical field effect transistor T, the p-type inner channel forming layer 1 under the gate electrode 14 is
An n-type channel is formed on the surface of 5. A current with electrons as carriers flows through the source layer 1 connected to the source terminal S.
6 passes through this channel into an epitaxial layer 7 serving as a drain region, passes therein in the vertical direction, and then is guided to the drain terminal via the buried layer 6 and the connection layer 11.

以上の本発明による集積回路装置においても、異なる部
分領域に作り込まれた回路要素相互間には第2図に示さ
れた2個の干渉路が存在するが、この内の第1の干渉路
は本発明の場合は低不純物濃度半導体領域2を介して形
成される。この干渉路の抵抗成分は、その内の低不純物
濃度半導体領域2の抵抗Rの値が従来の基板の場合より
1桁高くなるので、接合分離層8を介する第2の干渉路
の抵抗成分と同程度かそれより若干大きくなる。
In the above-described integrated circuit device according to the present invention, there are two interference paths shown in FIG. 2 between the circuit elements built in different partial areas, but the first interference path among these exists. In the case of the present invention, is formed via the low impurity concentration semiconductor region 2. The resistance component of this interference path is different from the resistance component of the second interference path via the junction separation layer 8 because the value of the resistance R of the low impurity concentration semiconductor region 2 is one order of magnitude higher than that of the conventional substrate. It will be about the same size or slightly larger.

また、その容量成分である低不純物濃度半導体領域2と
埋込層6との間の接合容量Cは、接合がら空乏層が高抵
抗性の前者の方に延びやすくなるので、従来よりずっと
小さくなり、第2の干渉路内の接合分離層8とエピタキ
シャル層7との間の接合容量と同程度かそれ以下になる
In addition, the junction capacitance C between the low impurity concentration semiconductor region 2 and the buried layer 6, which is the capacitance component, becomes much smaller than before because the depletion layer from the junction tends to extend toward the high resistance former. , the junction capacitance between the junction isolation layer 8 and the epitaxial layer 7 in the second interference path is about the same or lower.

従って、本発明による集積回路装置では、第1の干渉路
のインピーダンス値が実際に干渉が発生する程度にまで
低下する動作周波数は、第2の干渉路に対する周波数と
同程度か若干高めになる。
Therefore, in the integrated circuit device according to the present invention, the operating frequency at which the impedance value of the first interference path decreases to such an extent that interference actually occurs is approximately the same as or slightly higher than the frequency for the second interference path.

このように従来から干渉の主原因であった第1の干渉路
のインピーダンス値を増加させて、本発明によって集積
回路装置の回路要素間に相互干渉が発生する危険を減少
することができる。
In this manner, by increasing the impedance value of the first interference path, which has conventionally been the main cause of interference, the present invention can reduce the risk of mutual interference occurring between circuit elements of an integrated circuit device.

以上の実施例では回路要素を縦形電界効果トランジスタ
としたが、本発明はこれに限らず回路要素がバイポーラ
トランジスタ等である場合にも適宜に実施をすることが
できる。
In the above embodiments, the circuit elements are vertical field effect transistors, but the present invention is not limited to this, and can be appropriately implemented even when the circuit elements are bipolar transistors or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、ともに一方の導
電形をもつ半導体領域およびこれより低い不純物濃度の
半導体61域からなる基体と、基体の低不純物濃度半導
体領域側の表面から拡散された他方の導電形の埋込層と
、基体の埋込層が拡散された表面上に成長された他方の
導電形のエピタキシャル層と、エピタキシャル層の表面
から基体の低不純物濃度半導体領域に導電接続するよう
に一方の導電形で拡散されエピタキシャル層を複数個の
接合分離された部分領域に分割する接合分離層とにより
集積回路装置用のウェハを構成した上で、このウェハの
エピタキシャル層から接合分離層により分割された各部
分領域内に集積回路を構成する回路要素を作り込むよう
にしたので、部分領域の下側の埋込層および低不純物濃
度半導体領域を介する干渉路のインピーダンス値を大き
くするごとができ、これによって部分領域に振り分けて
作り込まれる集積回路装置の回路要素間に干渉が発生す
る動作l′ii1波数を従来より例えば1桁高めて、干
渉の程度を有効に減少させあるいはその危険を実質上な
くすことができる。
As explained above, in the present invention, there is a base body consisting of a semiconductor region having one conductivity type and a semiconductor region 61 having a lower impurity concentration, and a semiconductor region having the other conductivity type diffused from the surface of the base body on the low impurity concentration semiconductor region side. a buried layer of a conductivity type and an epitaxial layer of the other conductivity type grown on the surface of the substrate in which the buried layer is diffused, such that the surface of the epitaxial layer is conductively connected to the lightly doped semiconductor region of the substrate. A wafer for an integrated circuit device is formed by a junction separation layer that is diffused with one conductivity type and divides the epitaxial layer into a plurality of junction-separated subregions, and then the epitaxial layer of this wafer is divided by the junction separation layer. Since the circuit elements constituting the integrated circuit are built into each partial region, the impedance value of the interference path passing through the buried layer and the low impurity concentration semiconductor region under the partial region can be increased. As a result, the wave number of the operation that causes interference between the circuit elements of an integrated circuit device that is divided into partial areas and manufactured is increased by, for example, one order of magnitude compared to the conventional one, thereby effectively reducing the degree of interference or substantially eliminating its risk. The top can be removed.

本発明は、高耐圧で大電流を扱う出力トランジスタが多
数個組み込まれる高周波領域で動作する集積回路装置に
適し、例えば表示パネルの駆動用集積回路に適用するこ
とにより画素間に生じやすいいわゆるクロストークを減
少させ、その表示を鮮明にして画質を向上することがで
きる。
The present invention is suitable for integrated circuit devices that operate in a high frequency range and incorporate a large number of output transistors that handle high voltage and large currents.For example, when applied to an integrated circuit for driving a display panel, so-called crosstalk that is likely to occur between pixels It is possible to improve the image quality by reducing the number of images and making the display clearer.

【図面の簡単な説明】 第1図および第2図が本発明に関し、第1図は本発明に
よる集積回路装置の一実施例をその主な製作工程ごとの
状態で示す一部拡大断面図、第2図はその回路要素相互
間に形成される干渉路の等価回路図である。第3図は従
来の集積回路装置の一部拡大断面図である。図において
、 l二基体を構成する半導体領域ないしは基板、2:基体
を構成する低不純物4度半導体餠域ないしはエピタキシ
ャル層、3:基体、4二酸化膜、5:埋込分離層、6:
埋込層、7:エピタキシャル層ないしは部分領域、8:
接合骨MN、9:ウェハ、11ニドレイン接続層、12
:外側チャネル形成層、13:ゲート酸化膜、14:ゲ
ート、15:内側チャネル形成層、16:ソース層、1
7:電極膜下酸化膜、18:電極膜、C:低不純物濃度
半導体領域と埋込層との間の接合容量、C;エピタキシ
ャル層と接合分離層との間の接合容量、Dニドレイン端
子、E:接地端子ないしは接地電位点、G:ゲート端子
、S:ソース端子、L:負荷、R:低不純物4度半導体
領域の抵抗、T:回路要素ないしは縦形電界効果トラン
ジスタ、■:電源電圧ないしは電源電位点、である。 12図 ↑l ↑工
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 and 2 relate to the present invention; FIG. 1 is a partially enlarged sectional view showing an embodiment of an integrated circuit device according to the present invention in each of its main manufacturing steps; FIG. 2 is an equivalent circuit diagram of the interference path formed between the circuit elements. FIG. 3 is a partially enlarged sectional view of a conventional integrated circuit device. In the figure, 1: semiconductor region or substrate constituting the base body, 2: low impurity semiconductor region or epitaxial layer constituting the base body, 3: base body, 4 dioxide film, 5: buried isolation layer, 6:
Buried layer, 7: Epitaxial layer or partial region, 8:
Joint bone MN, 9: wafer, 11 Nidorain connection layer, 12
: outer channel forming layer, 13: gate oxide film, 14: gate, 15: inner channel forming layer, 16: source layer, 1
7: Oxide film under electrode film, 18: Electrode film, C: Junction capacitance between low impurity concentration semiconductor region and buried layer, C: Junction capacitance between epitaxial layer and junction separation layer, D Nidrain terminal, E: Ground terminal or ground potential point, G: Gate terminal, S: Source terminal, L: Load, R: Resistance of low impurity 4 degree semiconductor region, T: Circuit element or vertical field effect transistor, ■: Power supply voltage or power supply is the potential point. Figure 12 ↑l ↑Eng.

Claims (1)

【特許請求の範囲】[Claims] ともに一方の導電形をもつ半導体領域およびこれより低
い不純物濃度の半導体領域からなる基体と、基体の低不
純物濃度半導体領域側の表面から拡散された他方の導電
形の埋込層と、基体の埋込層が拡散された表面上に成長
された他方の導電形のエピタキシャル層と、エピタキシ
ャル層の表面から基体の低不純物濃度半導体領域に導電
接続するように一方の導電形で拡散されエピタキシャル
層を複数個の接合分離された部分領域に分割する接合分
離層とにより集積回路装置用のウェハを構成し、このウ
ェハのエピタキシャル層から接合分離層により分割され
た各部分領域内に集積回路を構成する回路要素を作り込
むようにしたことを特徴とする集積回路装置。
A base body consisting of a semiconductor region of one conductivity type and a semiconductor region with a lower impurity concentration, a buried layer of the other conductivity type diffused from the surface of the base body on the low impurity concentration semiconductor region side, and a buried layer of the base body. an epitaxial layer of the other conductivity type grown on the surface in which the doped layer is diffused, and a plurality of epitaxial layers diffused in one conductivity type such that the surface of the epitaxial layer is conductively connected to the low impurity concentration semiconductor region of the substrate. A wafer for an integrated circuit device is constructed by a junction separation layer that is divided into junction-separated partial regions, and a circuit that constitutes an integrated circuit in each partial region that is divided from the epitaxial layer of this wafer by the junction separation layer. An integrated circuit device characterized by having built-in elements.
JP28728288A 1988-11-14 1988-11-14 Integrated circuit device Pending JPH02133954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28728288A JPH02133954A (en) 1988-11-14 1988-11-14 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28728288A JPH02133954A (en) 1988-11-14 1988-11-14 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPH02133954A true JPH02133954A (en) 1990-05-23

Family

ID=17715381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28728288A Pending JPH02133954A (en) 1988-11-14 1988-11-14 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPH02133954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135427A (en) * 2007-11-06 2009-06-18 Denso Corp Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135427A (en) * 2007-11-06 2009-06-18 Denso Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US5945712A (en) Semiconductor device having a SOI structure with substrate bias formed through the insulator and in contact with one of the active diffusion layers
JPH09266248A (en) Semiconductor device
US6051868A (en) Semiconductor device
US4990982A (en) Semiconductor device of high breakdown voltage
JP3195474B2 (en) Semiconductor device
JP2845493B2 (en) Semiconductor device
JP2900908B2 (en) Semiconductor device and manufacturing method thereof
US5254864A (en) Semiconductor device
JPH04241452A (en) Semiconductor integrated circuit device
US6043534A (en) High voltage semiconductor device
JPH02133954A (en) Integrated circuit device
JP2001504275A (en) Lateral bipolar field effect mode hybrid transistor and method
JPH0653510A (en) Terminal part of power stage of monolithic semiconductor device and related manufacturing process
JPH03165049A (en) Structure for preventing concentration of electric field in semiconductor device and method for forming this structure
KR20010011793A (en) Bicmos having cmos of soi structure and vertical bipolar transistor
JPH07115126A (en) Semiconductor integrated circuit device
JPS62104068A (en) Semiconductor integrated circuit device
JPS6140140B2 (en)
JPS6334949A (en) Semiconductor device
JPS5858747A (en) Metal oxide semiconductor type semiconductor integrated circuit
JP3260009B2 (en) Semiconductor device and manufacturing method thereof
JPS6022358A (en) Semiconductor integrated circuit device
JPS61156830A (en) Semiconductor device and manufacture thereof
JPS6276775A (en) Semiconductor device
JPS6126237A (en) Semiconductor ic device