JPH02133383A - Conductive paste and mullite multilayered wiring board formed by using this paste - Google Patents

Conductive paste and mullite multilayered wiring board formed by using this paste

Info

Publication number
JPH02133383A
JPH02133383A JP28357188A JP28357188A JPH02133383A JP H02133383 A JPH02133383 A JP H02133383A JP 28357188 A JP28357188 A JP 28357188A JP 28357188 A JP28357188 A JP 28357188A JP H02133383 A JPH02133383 A JP H02133383A
Authority
JP
Japan
Prior art keywords
powder
paste
weight
mullite
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28357188A
Other languages
Japanese (ja)
Inventor
Takashi Kuroki
喬 黒木
Seiichi Tsuchida
槌田 誠一
Shosaku Ishihara
昌作 石原
Tatsuji Noma
辰次 野間
Takeshi Fujita
毅 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28357188A priority Critical patent/JPH02133383A/en
Publication of JPH02133383A publication Critical patent/JPH02133383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To adjust the sintering shrinkage of the conductive paste to the sintering shrinkage of mullite ceramics by incorporating specific two kinds of W powders, a vehicle, sintering assistant, deflocculant, and thickener into the paste. CONSTITUTION:The conductive paste is obtd. by compounding 0.5 to 5 pts.wt. sintering assistant (e.g.: Al2O3-SiO-MgO), 0.05 to 2 pts.wt. deflocculant (e.g.: hexamethyl phosphotriamide), and 0.5 to 3 pts.wt. thickener (e.g.: dibenzylidene- D-sorbitol) with total 100 pts.wt. of total 84 to 89wt.% of 20 to 60wt.% W powder produced at 700 to 850 deg.C in a reducing atmosphere and 80 to 40wt.% W powder produced at 900 to 1000 deg.C in the reducing atmosphere, and 11 to 16wt.% vehicle having 2000 to 9000PQ.S/4sec<-1> viscosity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ムライト多層配線基板、特に厚膜・薄膜混成
基板に適合する導体ペーストおよびこれを用いたムライ
ト多層配線基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a conductor paste suitable for mullite multilayer wiring boards, particularly thick film/thin film hybrid boards, and a mullite multilayer wiring board using the same.

〔従来の技術〕[Conventional technology]

最近、多層配線基板においてこれまで用いられてきたア
ルミナセラミック基板に比べ訪電率の低い、特公昭61
−15532号に記載されているようなムライトセラミ
ック基板が注目されている。第1図は厚膜基板にムライ
トセラミックスを用いた厚膜・薄膜混成基板の断面模式
図で、グリーンシート法によシ&層したムライトセラミ
ック基板10内部にスルーホール導体2と配線導体3を
厚膜で形成し、基板1と同時焼成した後、この基板表面
に有機絶層4と配線導体5を薄膜で形成し、薄膜導体5
にはんだ層6を介してLSIチップ7を接続したもので
ある。この場合、スルーホール導体2を形成する材料と
して、従来、アルミナセラミック基板に用いられている
W粉末を含む導体ペーストがあるが、ムライト多層配線
基板に適合するものはなかった。
Recently, in multi-layer wiring boards, the number of visitors has been lower than that of the alumina ceramic substrates that have been used up until now.
Mullite ceramic substrates such as those described in No. 15532 are attracting attention. Figure 1 is a schematic cross-sectional view of a thick film/thin film hybrid board using mullite ceramics as a thick film board, in which through-hole conductors 2 and wiring conductors 3 are thickly arranged inside a mullite ceramic board 10 which is formed and layered by the green sheet method. After forming a film and firing simultaneously with the substrate 1, an organic insulation layer 4 and a wiring conductor 5 are formed as a thin film on the surface of this substrate.
An LSI chip 7 is connected via a solder layer 6. In this case, as a material for forming the through-hole conductor 2, there is a conductor paste containing W powder that is conventionally used for alumina ceramic substrates, but there is no material suitable for mullite multilayer wiring boards.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、アルミナセラミック基板に用いられている導体ペ
ーストは、ムライトセラミックスとの焼結収縮率のマツ
チングについて配慮されていないため、ムライトセラミ
ック基板1と該基板のスルーホールに充填された導体ペ
ーストとを同時焼成した場合、第2図、第3図に示すよ
うに、スルーホール導体2が基板1の表面よ#)10〜
25μmと大きく突出して、突起部8が発生し、このた
め、基板表面への薄膜形成が困難であるという問題があ
った。
Conventionally, the conductive paste used for alumina ceramic substrates does not take into account the matching of the sintering shrinkage rate with mullite ceramics, so the mullite ceramic substrate 1 and the conductive paste filled in the through holes of the substrate are simultaneously used. When fired, as shown in FIGS. 2 and 3, the through-hole conductor 2 is close to the surface of the substrate 1.
There was a problem in that the protrusions 8 were formed with a large protrusion of 25 μm, making it difficult to form a thin film on the surface of the substrate.

この点についてさらに詳しく説明すると次のようになる
。導体ペースト中のW粉末の焼結収縮量は平均粒径と関
係しているが、アルミナセラミック基板では、アルミナ
セラミックスに使用される焼結助剤がW粒子間に浸透す
るため、W粒子はアルミナセラミックスとほぼ同様の収
縮挙動を示す。
This point will be explained in more detail as follows. The amount of sintering shrinkage of the W powder in the conductor paste is related to the average particle size, but in alumina ceramic substrates, the sintering aid used for alumina ceramics penetrates between the W particles, so the W particles are Shows almost the same shrinkage behavior as ceramics.

しかし、ムライトセラミック基板では、W粒子間への焼
結助剤の浸透が少なく、その浸透距離はムライトセラミ
ックスとW粉末との接触面から10μm程度である。こ
のため、W粉末の焼結収縮率は3〜7%と小さく、ムラ
イトセラミックスの焼結収縮率16〜23%に比べ大き
な差がある。突起部8の発生要因となるこの焼結収縮差
を小さくすることが課題である。
However, in the mullite ceramic substrate, the sintering aid hardly penetrates between the W particles, and the penetration distance is about 10 μm from the contact surface between the mullite ceramic and the W powder. Therefore, the sintering shrinkage rate of W powder is small at 3 to 7%, which is a large difference compared to the sintering shrinkage rate of mullite ceramics, which is 16 to 23%. The challenge is to reduce this difference in sintering shrinkage, which is a factor in the formation of the protrusions 8.

本発明の目的は、上記課題を解決し、薄膜形成の容易な
ムライト多層配線基板を製作するのに適した導体ペース
トおよびこれを用いたムライト多層配線基板を提供する
ことにるる。
An object of the present invention is to solve the above-mentioned problems and provide a conductive paste suitable for manufacturing a mullite multilayer wiring board that can be easily formed into a thin film, and a mullite multilayer wiring board using the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、700〜850℃の還元雰囲気で作製した
W粉末(I)と900〜1000℃の還元雰囲気で作製
したW粉末(ff)とを含有し、W粉末(I)対W粉末
(II)の重量比が20 :80ないし60二40であ
る導体ペーストとすることで達成される。
The above object contains W powder (I) produced in a reducing atmosphere of 700 to 850°C and W powder (ff) produced in a reducing atmosphere of 900 to 1000°C. ) in a weight ratio of 20:80 to 60:40.

W粉末の焼結収縮率を大きくする方法としては、ほかに
焼結助剤の利用とW粉末の粒径の適正化が挙げられる。
Other methods for increasing the sintering shrinkage rate of W powder include using a sintering aid and optimizing the particle size of W powder.

しかし、焼結助剤の添加量が多いと、焼結後、基板のス
ルーホール近傍にクラックが発生しやすく、さらにペー
ストの粘度が高まシ、スルーホールへの充填が困難にな
る0また、W粉末は、ボールミル等で微粉化しても、そ
の焼結収縮率はそれほど小さくならず、かえって収縮バ
ラツキが大きくなる傾向がある。
However, if the amount of sintering aid added is large, cracks are likely to occur near the through holes of the substrate after sintering, and the viscosity of the paste increases, making it difficult to fill the through holes. Even if W powder is pulverized using a ball mill or the like, its sintering shrinkage rate does not decrease so much, and the variation in shrinkage tends to increase.

本発明は、W粉床の作製過程での還元温度によシ焼結収
縮率の異なる点に着目してなされたものである。すなわ
ち、還元温度を種々変えて作製したW粉末について焼結
収縮率を調べた結果、700〜850℃の還元雰囲気で
作製したW粉末(I)は、焼結収縮率が比較的大きく、
900〜1000℃の還元雰囲気で作製したW粉末(I
[)は、焼結収縮率が比較的小さく、ボールミル等で微
粉化しても、焼結収縮率は約1%小さくなる程度である
ことが判った。そこで、この還元温度の異なるW粉末(
I)とW粉末(I[)を混合し、その混合割合を前記の
範囲に選定することによシ、薄膜形成に支障のない程度
に基板表面に対するスルーホール導体の凹凸量を小さく
することを可能にした。
The present invention was made by focusing on the fact that the sintering shrinkage rate varies depending on the reduction temperature during the process of producing a W powder bed. That is, as a result of examining the sintering shrinkage rate of W powder produced at various reducing temperatures, the sintering shrinkage rate of W powder (I) produced in a reducing atmosphere of 700 to 850°C was relatively large;
W powder (I
It was found that the sintering shrinkage rate of [) is relatively small, and even if it is pulverized using a ball mill or the like, the sintering shrinkage rate is only about 1% smaller. Therefore, this W powder with different reduction temperatures (
By mixing I) and W powder (I[) and selecting the mixing ratio within the above range, it is possible to reduce the amount of unevenness of the through-hole conductor on the substrate surface to the extent that it does not interfere with thin film formation. made possible.

4体ペーストは、スルーホールに充填しやすいことが必
要である。このため、ペースト原料とその配合比を次の
ように選定することが望ましい。
The four-body paste needs to be easy to fill through holes. For this reason, it is desirable to select the paste raw materials and their blending ratios as follows.

焼結助剤・・・a5〜5N量部 解膠剤・・・・・・α05〜2重量部 増粘剤・・・・・・α5〜5重量部 〔作用〕 焼結収縮率の大きいW粉末(I)と焼結収縮率の小さい
W粉末(II)を、W粉末(r) 20〜60重量%、
W粉末(II) 40〜80重量%の割合で混合するこ
とKよシ、W粉末の焼結収縮率はムライトセラミックス
の焼結収縮率に近くなシ、さらに焼結助剤として120
.−810−Mg0等を添加することで、基板表面に出
ているW粉末の焼結収縮が助成される。
Sintering aid: a5-5 parts by weight Peptizer: α05-2 parts by weight Thickener: α5-5 parts by weight [Function] W with large sintering shrinkage rate Powder (I) and W powder (II) with a small sintering shrinkage rate were combined with W powder (r) 20 to 60% by weight,
W powder (II) should be mixed at a ratio of 40 to 80% by weight.The sintering shrinkage rate of W powder is close to that of mullite ceramics, and 120% as a sintering aid.
.. By adding -810-Mg0 or the like, sintering shrinkage of the W powder exposed on the substrate surface is assisted.

それによって、基板表面に対するスルーホール導体の凹
凸量を薄膜形成のだめの許容範囲内とすることができた
As a result, the amount of unevenness of the through-hole conductor on the substrate surface could be kept within the allowable range for forming a thin film.

6ペーストのスルーホールに充填しにくい原因は、焼結
助剤がビヒクルとぬれKくい、W微粉末がビヒクルとぬ
れるのに時間がかかる、あるいは増粘剤として用いるゲ
ル化剤のゲル化力のバラツキなどによる、チクソトロピ
ー性の過不足にあることから、チクソトロピー性を適正
化することによシ、ねばシが発生し充填しやすくなると
考え、解膠剤として効果のある表面活性剤等の添加によ
シ、粘度が低く、ねばシとチクソトロピー性が充填に適
した値と々るようにした。それKよって、スルーホール
に充填しやすいペーストとすることができた。
6. The reasons why it is difficult to fill through holes with paste are that the sintering aid does not get wet with the vehicle, that it takes time for the W fine powder to get wet with the vehicle, or that the gelling power of the gelling agent used as a thickener is insufficient. Since there is an excess or deficiency in thixotropy due to variations, etc., we believe that by optimizing thixotropy, stickiness will occur and it will be easier to fill. The viscosity is low, and the stickiness and thixotropy are at values suitable for filling. Therefore, the paste could be easily filled into through holes.

〔実施例〕〔Example〕

以下、本発明の実施例を第4図によシ説明する〇下記の
原料と配合比によυドクターブレード法で作製した生の
ムライトセラミックシート(以下、グリーンシートとよ
ぶ)を、100℃、12Kg/cm2でホットプレスに
よシ平坦化した後、NG穴明は機によシφα13mmの
スルーホールを必要数形成し九〇 グリーンシート原料と配合比 このグリーンシートのスルーホールに、下記の原料と配
合比による導体ペーストをスクリーン印刷法で充填した
Hereinafter, an example of the present invention will be explained with reference to FIG. 4. A raw mullite ceramic sheet (hereinafter referred to as a green sheet) produced by the υ doctor blade method using the following raw materials and blending ratio was heated at 100°C. After flattening by hot press at 12Kg/cm2, NG Anamei is machined to form the required number of through holes of φα13mm. A conductive paste with a mixing ratio of

導体ペーストの原料と配合比 焼結助剤   ・・・CtS〜5重量部解膠剤   ・
・・・・・(105〜2重量部増粘剤   ・・・・・
・α5〜3 重量部ただし、上に示したW粉末は、70
0〜850℃の還元雰囲気で作製したW粉末(I) 2
0〜60重量%と、900〜1000℃の還元雰囲気で
作製したW粉末(II) 40〜80重量%を混合した
ものである。
Raw materials and compounding ratio of conductor paste Sintering aid: CtS ~ 5 parts by weight Deflocculant ・
・・・・・・(105~2 parts by weight thickener ・・・・・・
・α5~3 parts by weight However, the W powder shown above is 70 parts by weight.
W powder (I) produced in a reducing atmosphere at 0 to 850°C 2
It is a mixture of 0 to 60% by weight and 40 to 80% by weight of W powder (II) produced in a reducing atmosphere at 900 to 1000°C.

上記したW粉末(I)およびW粉末(II)の還元温度
および混合割合は、後述するような所期の焼結収縮率を
満足する範囲を規定したもので、W粉末(I)の還元温
度が上記範囲の下限(700℃)よシ低いと、焼結収縮
率が所期の値より大きくなり、W粉末(II)の還元温
度が上記範囲の上限(1000℃)を超えると、焼結収
縮率が所期の値よシ小さくなって、いずれも不適である
。また、1000℃を超える還元温度では、W粉末の粒
成長が大きく、粒同士の固着力も強いため、粉砕が困難
となる0これらのW粉末(I)およびW粉末(I[)は
、作製された粉末をそのiま使用しても良いし、ボール
ミル、かいらい機等で微粉化して使用しても良い。ビヒ
クルに対するW粉末の配合量が84重ft%よシ少ない
と、ペーストの粘度が低過ぎて充填不良となる。
The reduction temperature and mixing ratio of W powder (I) and W powder (II) described above are defined within a range that satisfies the desired sintering shrinkage rate as described below. is lower than the lower limit of the above range (700°C), the sintering shrinkage rate becomes larger than the desired value, and when the reduction temperature of W powder (II) exceeds the upper limit of the above range (1000°C), the sintering shrinkage rate becomes higher than the desired value. The shrinkage rate is smaller than the expected value, and both are unsuitable. In addition, at reduction temperatures exceeding 1000°C, the grain growth of W powder is large and the adhesion between grains is strong, making it difficult to grind. The resulting powder may be used as it is, or may be pulverized using a ball mill, miller, etc. If the amount of W powder added to the vehicle is less than 84 weight %, the viscosity of the paste will be too low, resulting in poor filling.

また、W粉末の配合量が89重量%を超えると、ペース
トの粘度が高過ぎて充填できなくなる0ビヒクルは、一
般に使用されているエチルセルロース等のバインダをn
−ブチルカルピトールや、α−テルピネオールあるいは
n−ブチルカルピトールアセテートやトリデカトール等
の溶剤に溶解したもので、粘度は2000〜9000 
Pq、6 / 45ec−’ (回転粘度計)が適当で
ある。焼結助剤にはAJ205−8iO−MgOを使用
するが、α5重量部未満では効果がなく、5重量部を超
えると、基板のスルーホール近傍にクラックが発生する
。解膠剤には、表面活性剤、カップリング剤あるいはへ
キサメチルホスホトリアミドのような極性非プロトン溶
媒を、W粉末のぬれ性向上も考慮して使用する。その添
加量は前記の範囲が適当でα05重量部未満では効果が
なく、ペーストの粘度が高く、チクソトロピー性が強過
ぎてねばシがないため、スルーホールに充填できない。
In addition, when the blending amount of W powder exceeds 89% by weight, the viscosity of the paste becomes too high and it becomes impossible to fill the vehicle.
-It is dissolved in a solvent such as butylcarpitol, α-terpineol, n-butylcarpitol acetate, or tridecatol, and has a viscosity of 2,000 to 9,000.
Pq, 6/45ec-' (rotational viscometer) is suitable. AJ205-8iO-MgO is used as a sintering aid, but if it is less than α5 parts by weight, it is ineffective, and if it exceeds 5 parts by weight, cracks will occur near the through holes of the substrate. As the deflocculant, a surfactant, a coupling agent, or a polar aprotic solvent such as hexamethylphosphotriamide is used in consideration of improving the wettability of the W powder. The appropriate amount of addition is within the above range; if it is less than α05 parts by weight, it will not be effective, and the paste will have a high viscosity and too strong thixotropy and will not be sticky, so it cannot be filled into through holes.

また、2重量部を超えると、ペースト印刷時の粘度変化
が犬きく、充填が不安定になる。解膠剤は1種でも艮い
し、数稚添加しても良い。また、添加方法としては、原
料粉末とともにボールミル処理等で付与しても良いし、
べ一スト化した状態で添加しても良い。増粘剤には、ジ
ベンジリデン−D−ソルビトール等のゲル化剤を使用す
るが、α5重量部未満では効果がなく、充填しにくい。
Furthermore, if the amount exceeds 2 parts by weight, the viscosity changes significantly during paste printing and filling becomes unstable. One type of deflocculant may be used, or several types may be added. In addition, as for the addition method, it may be added by ball milling etc. together with the raw material powder,
It may be added in the form of a paste. A gelling agent such as dibenzylidene-D-sorbitol is used as a thickener, but if it is less than α5 parts by weight, it is ineffective and difficult to fill.

また、3重量部を超えると、チクソトロピー性が強過ぎ
て充填できなくなる。
Moreover, if it exceeds 3 parts by weight, the thixotropic property becomes too strong and filling becomes impossible.

導体ペーストをスルーホールに充填した後、各層の配線
パターンをスクリーン印刷法で形成する。
After filling the through holes with conductive paste, wiring patterns for each layer are formed by screen printing.

このようにしてスルーホール導体、配線導体を形成した
グリーンシート4〜60枚をホットプレス法で熱圧溜し
た後、水素還元雰囲気で1時間、1600〜1650℃
で焼結した。焼成された厚膜基板の表面のセラミックぐ
ずやスルーホール部の凹凸をできるだけなくすために、
軽く機械的に表面の平滑化処理を行なった。この表面に
ポリイミド等の有機絶縁材料を塗布、乾燥させ、その上
にA!!等の配線導体の薄膜をスパッタ法で形成した後
、エツチングによシ配線パターンを形成する工程を反覆
して、2〜4層の薄膜層を形成した。
After 4 to 60 green sheets on which through-hole conductors and wiring conductors have been formed in this way are heat-pressed using a hot press method, they are heated at 1600 to 1650°C in a hydrogen reducing atmosphere for 1 hour.
Sintered with In order to eliminate as much as possible ceramic debris on the surface of the fired thick film substrate and unevenness in the through holes,
The surface was lightly smoothed mechanically. An organic insulating material such as polyimide is applied to this surface, dried, and A! ! After forming a thin film of a wiring conductor such as the above by sputtering, the process of forming a wiring pattern by etching was repeated to form two to four thin film layers.

このようにして製作した厚膜・薄膜混成多層配線基板は
、第4図に示すように% 700〜850℃の還元雰囲
気で作製したW粉末(I)を20〜60重量%配合した
領域(A)で、基板表面に対するスルーホール導体の凹
凸量が±5μm以内となシ、薄膜形成での有機絶縁層お
よび薄膜導体の配線パターン形成不良の発生がなくなっ
た。また、スルーホール導体の凹凸量が±5μm以内で
あれば、スルーホール導体上に配線ペーストでスルーホ
ール径よシ大きいパッドを形成しても問題がなかった。
The thick-film/thin-film hybrid multilayer wiring board manufactured in this way has an area (A ), as long as the amount of unevenness of the through-hole conductor with respect to the substrate surface was within ±5 μm, defects in the formation of wiring patterns of the organic insulating layer and the thin film conductor during thin film formation were eliminated. Further, as long as the amount of unevenness of the through-hole conductor was within ±5 μm, there was no problem even if a pad larger than the diameter of the through-hole was formed using wiring paste on the through-hole conductor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導体ペースト中のW粉末の焼結収縮率
をムライトセラミックスの焼結収縮率に近い値とするこ
とができるため、この導体ペーストをムライト多層配線
基板に使用することによυ、従来の導体ペーストを用い
た場合に比べ、基板表面に対するスルーホール導体の凹
凸量を十分小さくすることができる。それによって、厚
膜・薄膜混成基板の製作時に、厚膜基板(ムライトセラ
ミックス)表面への薄膜形成が容易となシ、歩留り艮く
製作することが可能となった。
According to the present invention, the sintering shrinkage rate of the W powder in the conductor paste can be made close to the sintering shrinkage rate of mullite ceramics. Compared to the case of using a conventional conductor paste, the amount of unevenness of the through-hole conductor on the substrate surface can be sufficiently reduced. As a result, when manufacturing a thick-film/thin-film hybrid substrate, it is easy to form a thin film on the surface of the thick-film substrate (mullite ceramics), and it has become possible to manufacture the substrate at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術を説明するための厚膜・wI膜混成基
板の断面模式図、第2図は厚膜基板(ムライトセラミッ
クス)表面付近の拡大断面図、第5図は厚膜基板表面の
スルーホール導体の凹凸量とW粉末粒径の関係を示す従
来技術の説明図、第4図は厚膜基板表面のスルーホール
導体の凹凸量とW粉末混合割合の関係を示す本発明の説
明図である。 1・・・ムライトセラミック基板、2・・・スルーホー
ル導体(厚膜)、6・・・配線導体(厚膜)、4・・・
有機絶縁層(薄膜)、5・・・配線導体(薄膜)、6・
・・はんだ層、7・・・LSIチップ、8・・・突起部
(スルーホール導体)。 第20
Fig. 1 is a schematic cross-sectional view of a thick film/wI film hybrid substrate for explaining the conventional technology, Fig. 2 is an enlarged cross-sectional view of the vicinity of the surface of the thick film substrate (mullite ceramics), and Fig. 5 is a schematic cross-sectional view of the surface of the thick film substrate (mullite ceramics). An explanatory diagram of the prior art showing the relationship between the amount of unevenness of the through-hole conductor and the W powder particle size, and FIG. 4 is an explanatory diagram of the present invention showing the relationship between the amount of unevenness of the through-hole conductor on the surface of the thick film substrate and the W powder mixing ratio. It is. DESCRIPTION OF SYMBOLS 1... Mullite ceramic board, 2... Through-hole conductor (thick film), 6... Wiring conductor (thick film), 4...
Organic insulating layer (thin film), 5... Wiring conductor (thin film), 6.
...Solder layer, 7...LSI chip, 8...Protrusion (through-hole conductor). 20th

Claims (3)

【特許請求の範囲】[Claims] 1.700〜850℃の還元雰囲気で作製したW粉末(
I)と900〜1000℃の還元雰囲気で作製したW粉
末(II)とを含有し、W粉末(I)対W粉末(II)の重
量比が20:80ないし60:40である導体ペースト
1. W powder produced in a reducing atmosphere at 700-850°C (
A conductive paste containing W powder (I) and W powder (II) produced in a reducing atmosphere at 900 to 1000° C., the weight ratio of W powder (I) to W powder (II) being 20:80 to 60:40.
2.W粉末(I)およびW粉末(II) 100重量部 の合量・・・・・・84〜89重量% ビヒクル・・・11〜16重量% 焼結助剤・・・0.5〜5重量部 解膠剤・・・・・・0.05〜2重量部 増粘剤・・・・・・0.5〜3重量部 からなる請求項1記載の導体ペースト。2. W powder (I) and W powder (II) 100 parts by weight Total amount...84-89% by weight Vehicle...11-16% by weight Sintering aid: 0.5 to 5 parts by weight Deflocculating agent: 0.05 to 2 parts by weight Thickener: 0.5 to 3 parts by weight The conductive paste according to claim 1, comprising: 3.請求項1または2記載の導体ペーストを用いたムラ
イト多層配線基板。
3. A mullite multilayer wiring board using the conductor paste according to claim 1 or 2.
JP28357188A 1988-11-11 1988-11-11 Conductive paste and mullite multilayered wiring board formed by using this paste Pending JPH02133383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28357188A JPH02133383A (en) 1988-11-11 1988-11-11 Conductive paste and mullite multilayered wiring board formed by using this paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28357188A JPH02133383A (en) 1988-11-11 1988-11-11 Conductive paste and mullite multilayered wiring board formed by using this paste

Publications (1)

Publication Number Publication Date
JPH02133383A true JPH02133383A (en) 1990-05-22

Family

ID=17667251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28357188A Pending JPH02133383A (en) 1988-11-11 1988-11-11 Conductive paste and mullite multilayered wiring board formed by using this paste

Country Status (1)

Country Link
JP (1) JPH02133383A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029462A (en) * 1973-07-19 1975-03-25
JPS6273791A (en) * 1985-09-27 1987-04-04 株式会社日立製作所 Ceramic circuit substrate
JPS63122195A (en) * 1986-11-12 1988-05-26 株式会社日立製作所 Conductor paste for mullite system ceramic multilayer interconnection board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029462A (en) * 1973-07-19 1975-03-25
JPS6273791A (en) * 1985-09-27 1987-04-04 株式会社日立製作所 Ceramic circuit substrate
JPS63122195A (en) * 1986-11-12 1988-05-26 株式会社日立製作所 Conductor paste for mullite system ceramic multilayer interconnection board

Similar Documents

Publication Publication Date Title
US4781968A (en) Micro-electronics devices and methods of manufacturing same
CA1078079A (en) Method for preparing a multilayer ceramic
JP3026465B2 (en) Ceramic thin film hybrid wiring board and manufacturing method
US20060234021A1 (en) Multi-layer ceramic substrate, method for manufacturing the same and electronic device using the same
US5458709A (en) Process for manufacturing multi-layer glass ceramic substrate
EP0476954B1 (en) Method for preparing green sheets
JPH0613755A (en) Ceramic multilayer wiring board and manufacture thereof
JPH02133383A (en) Conductive paste and mullite multilayered wiring board formed by using this paste
JP3127797B2 (en) Glass ceramic substrate with built-in capacitor
JPH08274470A (en) Multilayer interconnection board
JPH0532455A (en) Inorganic composition having low dielectric constant and sinterable at low temperature
JP3064047B2 (en) Multilayer ceramic circuit board
JPH0544840B2 (en)
EP0269063A2 (en) Mullite ceramic multi-layered substrate and process for producing the same
JP2001044633A (en) Ceramic circuit board
JPH03141153A (en) Inorganic composition having low-temperature sintering property and low dielectric constant
EP0445968A1 (en) Low-temperature sinterable inorganic composition having low dielectric constant
JPH09153681A (en) Built-in resistor paste for manufacture of lowtemperature fired substrate
JPH0417392A (en) Manufacture of multilayer ceramic wiring board
JPH0969687A (en) Manufacture of glass ceramic multilayer circuit board
JPH0878847A (en) Low temperature baking multilayered circuit board
JPH1179828A (en) Production of alumina ceramic substrate
JPH06139814A (en) Conductive paste
JPH0590753A (en) Ceramic wiring board with projecting through-holes
JPH0650792B2 (en) Ceramic structure containing oxidation resistant metal conductor and method for manufacturing the same