JPH02133068A - Magnetic control type dc-dc converter - Google Patents

Magnetic control type dc-dc converter

Info

Publication number
JPH02133068A
JPH02133068A JP28705788A JP28705788A JPH02133068A JP H02133068 A JPH02133068 A JP H02133068A JP 28705788 A JP28705788 A JP 28705788A JP 28705788 A JP28705788 A JP 28705788A JP H02133068 A JPH02133068 A JP H02133068A
Authority
JP
Japan
Prior art keywords
winding
transformer
control
rectifier diode
load voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28705788A
Other languages
Japanese (ja)
Inventor
Tomiyasu Sagane
富保 砂金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28705788A priority Critical patent/JPH02133068A/en
Publication of JPH02133068A publication Critical patent/JPH02133068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To prevent the decrease of load power by installing a control winding, one end of which is connected to a main winding, to a saturable coil, connecting an output-current control circuit so as to keep load voltage constant to a node, bonding the other end of the control winding with the positive pole side of the secondary winding of a transformer and connecting another end of the main winding to a rectifier diode. CONSTITUTION:A control winding NC, one end of which is bonded with a main winding NL, is mounted to a saturable coil 3, an output from a control circuit 4 using load voltage EO as an input and varying output currents so as to keep load voltage constant is connected at a node, the other, end of the control circuit NC is connected to the positive pole side of the secondary winding NS of a transformer T, and another end of the main winding NL is bonded with a rectifier diode D1. Accordingly, an effect on the saturable coil 3 by currents Ir made to flow for the reverse recovery time of the rectifier diode D1 is eliminated, thus preventing the reduction of load power.

Description

【発明の詳細な説明】 〔擾既  要〕 可飽和コイルの制御により負荷電圧を一定にする磁気制
御型DC−DCコンバータに関し、負荷に送出する電力
の減少が少なく又変換周波数も高周波化出来る磁気制御
型DC−DCコンバータの提供を目的とし、 第1の方式としては、可飽和コイルに、一端は主捲線に
接続された制御#@線を設け、該接続点には、負荷電圧
を入力とし負荷電圧を一定にするよう出力電流を可変す
る制御回路の出力を接続し、又該制Ill捲線の他端を
該トランスの2次擾線の正極側に接続し、該主捲線の他
端を整流ダイオードに接続するようにする。
[Detailed Description of the Invention] [Summary] Regarding a magnetically controlled DC-DC converter that keeps the load voltage constant by controlling a saturable coil, the present invention relates to a magnetically controlled DC-DC converter that keeps the load voltage constant by controlling a saturable coil. The first method aims to provide a controlled DC-DC converter, and the saturable coil is provided with a control #@ line connected to the main winding at one end, and the load voltage is input to the connection point. The output of a control circuit that varies the output current to keep the load voltage constant is connected, and the other end of the control Ill winding is connected to the positive electrode side of the secondary winding of the transformer, and the other end of the main winding is connected. Connect it to the rectifier diode.

又第2の方式としては、可飽和コイルに、一端は主捲線
NLに接続された制御捲線を設け、該接続点は、トラン
スの2次捲線の正極側に接続し、該主捲線の他端は整流
ダイオードに接続し、該制Ill捲線の他端は、負荷電
圧を入力とし負荷電圧を一定にするよう出力電流を可変
する制御回路の出力に接続するように構成する。
In the second method, a control winding is provided in the saturable coil, one end of which is connected to the main winding NL, the connection point being connected to the positive side of the secondary winding of the transformer, and the other end of the main winding being connected to the positive terminal of the secondary winding of the transformer. is connected to a rectifier diode, and the other end of the control winding is connected to the output of a control circuit which receives the load voltage as an input and varies the output current so as to keep the load voltage constant.

〔産業上の利用分野〕[Industrial application field]

本発明は、アモルファスコア等を用いる可飽和コイルの
制御により負荷電圧を一定にする磁気制御型DC−DC
コンバータの改良に関する。
The present invention provides a magnetically controlled DC-DC that keeps the load voltage constant by controlling a saturable coil using an amorphous core or the like.
Concerning improvements to the converter.

磁気制御型DC−DCコンバータとは、スイッチング素
子をオンオフする時間比は一定で可変せず、可飽和コイ
ルの、恰もスイッチオフの状態を示す非飽和状態の時間
と、恰もスイッチオンの状態を示す飽和状態の時間との
比を変化させて負荷電圧を一定にするものであり、この
比を変化するには制御電流を用いて行う。
In a magnetically controlled DC-DC converter, the time ratio of turning on and off the switching element is constant and does not vary, and the time ratio of the saturable coil is in an unsaturated state, which indicates the switch-off state, and the time indicates the switch-on state. The load voltage is kept constant by changing the ratio to the saturation time, and this ratio is changed using a control current.

アモルファスコアは鉄撰が少なく、又B−H曲線の角形
特性が良いので、このコアを可飽和コイルに用いる磁気
制御型DC−DCコンバークが多く使用されるようにな
った。
Since the amorphous core has less iron and has good square characteristics of the B-H curve, magnetically controlled DC-DC converters using this core in the saturable coil have come to be widely used.

尚磁気制御型DC−DCコンバータでは、スイッチング
素子がオフとなり、トランスの逆起電力が発生した時、
整流ダイオードのインピーダンスの低い方から高い方に
変換する逆回復時間の間に可飽和コイルに逆電流が流れ
る。
In a magnetically controlled DC-DC converter, when the switching element is turned off and a back electromotive force of the transformer is generated,
A reverse current flows through the saturable coil during the reverse recovery time when the impedance of the rectifier diode changes from low to high.

すると、スイッチング素子がオンになった時に飽和状態
にする為の電圧時間積が増加し、出力される電力が減少
するので、これを防ぐことが望まれている。
Then, when the switching element is turned on, the voltage-time product required to bring it into a saturated state increases, and the output power decreases, so it is desirable to prevent this.

〔従来の技術〕[Conventional technology]

以下従来例を図を用いて説明する。 A conventional example will be explained below using figures.

第4図は従来例の磁気制御型DC−DCコンバータの回
路図、第5図は第4図の各部の電圧波形を示す図、第6
図は従来例の磁気制御型DC−DCコンバータの問題点
説明図である。
Fig. 4 is a circuit diagram of a conventional magnetically controlled DC-DC converter, Fig. 5 is a diagram showing voltage waveforms at various parts in Fig. 4, and Fig. 6
The figure is an explanatory diagram of problems in a conventional magnetically controlled DC-DC converter.

第4図において、駆動回路1の制御によりスイッチング
トランジスタTrを、1:1の比でオンオフすると、ト
ランスTの2次捲線NSには第5図V 8mに示す如き
電圧が発生する。
In FIG. 4, when the switching transistor Tr is turned on and off at a ratio of 1:1 under the control of the drive circuit 1, a voltage as shown in FIG. 5 V8m is generated in the secondary winding NS of the transformer T.

スイッテングトランジスタTrがオンとなり、トランス
Tの2次捲線NSに電圧が発生した時点では、可飽和コ
イル3は非飽和状態でインピーダンスは高いので、この
電圧は第5図V SRに示す如《全部可飽和コイル3に
かかる。
When the switching transistor Tr is turned on and a voltage is generated in the secondary winding NS of the transformer T, the saturable coil 3 is in a non-saturated state and the impedance is high. applied to the saturable coil 3.

しばらくすると、飽和状態となりインビーダンスは略0
となるので、ここでは電圧降下は生じなくなるので、フ
ライホイールダイオードD2の両端の電圧は第5図■1
に示す如き電圧となる。
After a while, it becomes saturated and the impedance becomes approximately 0.
Therefore, no voltage drop occurs here, so the voltage across the flywheel diode D2 is as shown in Figure 5 ■1
The voltage will be as shown in .

この電圧は平滑フィルタ6にて平滑され負荷5に電力を
供給する。
This voltage is smoothed by a smoothing filter 6 and supplies power to the load 5.

スイッチングトランジスタTrがオフとなると、コイル
しに蓄わえられたエネルギーはフライホイールダイオー
ドD2を介しコンデンサCで平滑され負荷5に電力を供
給する。
When the switching transistor Tr is turned off, the energy stored in the coil is smoothed by the capacitor C via the flywheel diode D2 and supplies power to the load 5.

負荷電圧E0の安定を行うには、例えば負荷電圧E0が
高くなると、制御回路4では出力の制御電流ICを増加
し、スイッチングトランジスタTrがオンになった時に
可飽和コイル3に印加される電圧時間積V SRtlを
増加させて負荷電圧E0を下げるようにしている。
In order to stabilize the load voltage E0, for example, when the load voltage E0 increases, the control circuit 4 increases the output control current IC to increase the voltage duration that is applied to the saturable coil 3 when the switching transistor Tr is turned on. The load voltage E0 is lowered by increasing the product VSRtl.

〔発明が解決しようとする課題〕 しかしながら、スイッチングトランジスタTrがオフに
なるとトランスTの2次捲線NSには第6図(A)の■
○に示す如く逆起電力が発生する。
[Problem to be Solved by the Invention] However, when the switching transistor Tr is turned off, the secondary winding NS of the transformer T has the
A back electromotive force is generated as shown in ○.

すると、整流ダイオードD1の逆回復時間の時に逆電流
1rが流れ、可飽和コイル3に流れる電流I SRは次
式の如くなる。
Then, a reverse current 1r flows during the reverse recovery time of the rectifier diode D1, and the current ISR flowing through the saturable coil 3 becomes as shown in the following equation.

1,R=lc+Ir すると、この逆電流1rの影響により、スイッチングト
ランジスタTrオンの時に、可飽和コイル3に印加され
る電圧時間積が増加し、負荷に送出される電力が減少す
る第1の問題点がある。
1, R=lc+Ir Then, due to the influence of this reverse current 1r, when the switching transistor Tr is on, the voltage-time product applied to the saturable coil 3 increases, and the power sent to the load decreases.The first problem is that There is a point.

即ち、第6図(B)に示す如く、負荷電圧E0が低下す
る減少がある。
That is, as shown in FIG. 6(B), there is a decrease in the load voltage E0.

又第5図のV SRに示す如く、可飽和コイル3をリセ
ットする時のリセット時間L2は整流ダイオードD1の
逆回復時間の間はフライホイールダイオードD2を介し
て電流Irが流れているので、この間可飽和コイル3に
印加される電圧は、E ,XNS/ND (但しE.は
電源電圧、NDはトランスTのリ七ッ}I線)で負荷電
圧E。は関係しないので電圧が小さくリセット時間t2
は長《なり変換周波数の高周波化が出来ない第2の問題
点がある。
Also, as shown by VSR in FIG. 5, the reset time L2 when resetting the saturable coil 3 is shortened because the current Ir flows through the flywheel diode D2 during the reverse recovery time of the rectifier diode D1. The voltage applied to the saturable coil 3 is E,XNS/ND (where E is the power supply voltage and ND is the I line of the transformer T), which is the load voltage E. is not related, so the voltage is small and the reset time t2
There is a second problem that the conversion frequency cannot be increased because it is long.

本発明は負荷に送出する電力の減少が少なく又変換周波
数も高周波化出来る磁気制御型DC−DCコンバータの
提供を目的としている。
An object of the present invention is to provide a magnetically controlled DC-DC converter that reduces the decrease in power sent to a load and can increase the conversion frequency.

〔課題を解決するための手段〕[Means to solve the problem]

第1図,第2図は本発明の実施例の磁気制御型DC−D
Cコンバータの回路図である。
FIGS. 1 and 2 are magnetically controlled DC-Ds according to embodiments of the present invention.
FIG. 2 is a circuit diagram of a C converter.

第1図,第2図に示す、直流電源2とトランスTの1次
捲線NPとスイッチング素子Trが直列に接続され、該
トランスTの2次捲線NSの正極側に可飽和コイル3と
整流ダイオードD1とが順次接続され、次に、フライホ
イールダイオードD2を有する平滑フィルタ6とが接続
され、該スイッチング素子Trのオンオフにより該トラ
ンスTの2次捲線NSに出力される電力を該可飽和コイ
ル3により制御し、負荷電圧E0を一定にする磁気制御
型DC−DCコンバータにおいて、第1の方式としては
、第1図に示す如く、前記可飽和コイル3に、一端は主
捲線NLに接続された制御捲線NCを設け、該接続点に
は、該負荷電圧E0を入力とし負荷電圧を一定にするよ
う出力電流を可変する制御回路4の出力を接続し、又該
制御回路NCの他端を該トランスTの2次捲線NSの正
極側に接続し、該主捲線NLの他端を該整流ダイオード
DIに接続するようにする。
As shown in FIGS. 1 and 2, a DC power supply 2, a primary winding NP of a transformer T, and a switching element Tr are connected in series, and a saturable coil 3 and a rectifier diode are connected to the positive side of the secondary winding NS of the transformer T. D1 are sequentially connected, and then a smoothing filter 6 having a flywheel diode D2 is connected, and the power output to the secondary winding NS of the transformer T is transferred to the saturable coil 3 by turning on and off the switching element Tr. In a magnetically controlled DC-DC converter that maintains a constant load voltage E0, the first method is to connect the saturable coil 3 with one end connected to the main winding NL, as shown in FIG. A control winding NC is provided, and the output of a control circuit 4 that inputs the load voltage E0 and varies the output current to keep the load voltage constant is connected to the connection point, and the other end of the control circuit NC is connected to the connection point. It is connected to the positive electrode side of the secondary winding NS of the transformer T, and the other end of the main winding NL is connected to the rectifier diode DI.

又第2の方式としては、第2Vに示す如く、可飽和コイ
ル3に、一端は主1在綿NLに接続された制御+a綿N
Cを設け、該接続点は、トランスTの2次捲線NSの正
極側に接続し、該主捲線NLの他端は、整流ダイオード
DIに接続し、該制御捲線NCの他端は、f1、荷電圧
E。を入力とし負荷電圧を一定にするよう出力電流を可
変する制御回路4の出力に接続するようにする。
In the second method, as shown in 2nd V, the saturable coil 3 has a control +a cotton N which is connected at one end to the main cotton NL.
C, the connection point is connected to the positive side of the secondary winding NS of the transformer T, the other end of the main winding NL is connected to the rectifier diode DI, and the other end of the control winding NC is f1, Load voltage E. is connected to the output of a control circuit 4 which inputs and varies the output current so as to keep the load voltage constant.

L)となり、フライホイールダイオードD2を介して整
流ダイオードDIを流れる電流Irを従来よりもIcX
NC/NL分小さく出来、又捲線比によりOにすること
も出来る。
L), and the current Ir flowing through the rectifier diode DI via the flywheel diode D2 is reduced by IcX compared to the conventional one.
It can be made smaller by NC/NL, and it can also be made O by changing the winding ratio.

従って、整流ダイオードD1の逆回復時間に流れる電流
1rによる可飽和コイル3への影響をなくし、負荷電力
の減少を少なくすることが出来る。
Therefore, it is possible to eliminate the influence on the saturable coil 3 due to the current 1r flowing during the reverse recovery time of the rectifier diode D1, and to reduce the decrease in load power.

父上記の電流1rをOとすると、スイッチング素子Tr
オフ時に、可飽和コイル3に印加される最大電圧は、(
E ,XNS/ND)+Eoとなり、従来に比し負荷電
圧E0の分大となるので、可飽和コイル3のリセット時
間t2を減少出来変換周波数を高周波化することが出来
る。
If the above current 1r is O, then the switching element Tr
The maximum voltage applied to the saturable coil 3 when off is (
E, XNS/ND)+Eo, which is larger than the conventional case by the load voltage E0, so the reset time t2 of the saturable coil 3 can be reduced and the conversion frequency can be increased.

〔作 用〕[For production]

第1図,第2図に示す如く構成すると、スイッチング素
子Trがオフとなり、トランスTの2次側捲綿NSに逆
起電力が発生し、整流ダイオードDIの逆回復時間の時
に、可飽和コイル3に流れる電流I s++’  = 
I c+ (I r−1 cXNC/N〔実施例〕 第1図は本発明の実施例の磁気制御型DC−DCコンバ
ータの回路図、第2図は本発明の他の実施例の磁気制御
型DC−DCコンバータの回路図、第3図は第1図,第
2図の場合の各部の電圧波形及び負荷電流対負荷電圧特
性を示す図である。
When configured as shown in Figures 1 and 2, the switching element Tr is turned off, a back electromotive force is generated in the secondary winding NS of the transformer T, and during the reverse recovery time of the rectifier diode DI, the saturable coil Current flowing through 3 I s++' =
I c+ (I r-1 cXNC/N [Example]) Fig. 1 is a circuit diagram of a magnetically controlled DC-DC converter according to an embodiment of the present invention, and Fig. 2 is a circuit diagram of a magnetically controlled DC-DC converter according to another embodiment of the present invention. The circuit diagram of the DC-DC converter, FIG. 3, is a diagram showing voltage waveforms at various parts and load current versus load voltage characteristics in the case of FIGS. 1 and 2.

第1図,第2図で、第4図の従来例と異なる点は、可飽
和コイル3に制御捲線NCを設け、この制御捲線NCに
制御回路4より制御電流Tcを流し、可飽和コイル3を
制御するようにした点である。
1 and 2, the difference from the conventional example shown in FIG. 4 is that a control winding NC is provided in the saturable coil 3, and a control current Tc is passed through the control winding NC from the control circuit 4. The point is that it is possible to control the

このようにすると、第1図,第2図の場合共、スイッチ
ングトランジスタTrがオフとなり、トランスTの2次
側捲線NSに逆起電力が発生し、整流ダイオードD1の
逆回復時間の時に、可飽和コイル3に流れる電流は、I
 ..’ =Ic+ (Ir−IcXNC/NL)とな
り、フライホイールダイオードD2を介して整流ダイオ
ードD1を流れる電流1rを従来よりもIcXNC/N
L分小さく出来、又捲線比によりOにすることも出来る
In this way, in both the cases of FIGS. 1 and 2, the switching transistor Tr is turned off, a back electromotive force is generated in the secondary winding NS of the transformer T, and during the reverse recovery time of the rectifier diode D1, the switching transistor Tr is turned off. The current flowing through the saturation coil 3 is I
.. .. ' = Ic+ (Ir - IcXNC/NL), and the current 1r flowing through the rectifier diode D1 via the flywheel diode D2 is reduced to IcXNC/N compared to the conventional one.
It can be made smaller by L, and it can also be made O by changing the winding ratio.

従って、整流ダイオードDIの逆回復時間に流れる電流
Irによる可飽和コイル3への影響をなくし、負荷電力
の減少を少なくすることが出来る。
Therefore, it is possible to eliminate the influence on the saturable coil 3 due to the current Ir flowing during the reverse recovery time of the rectifier diode DI, and to reduce the decrease in load power.

よって、負荷電流を増加した時、負荷電圧の低下する点
は、第3図(A)に示す如く、従来の負荷電流■。1の
場合よりも大きい負荷電流I。2の場合とすることが出
来る。
Therefore, when the load current is increased, the point at which the load voltage decreases is the conventional load current ■, as shown in FIG. 3(A). Load current I larger than in case of 1. Case 2 can be used.

又上記の電流Trを0とすると、整流ダイオードD1に
は電流は流れない為、可飽和コイル3の制御捲線NCの
両端の電圧V NC= (E = XNS/ND)十B
.となり、捲線NLに印加される電圧VNL=V NC
X (NC/NL)= C (E = xNS/ND)
+E,)x (NC/NL)となり、例えばNC=NL
とすれば、V NL= (E 6 XNS/ND)+E
0となり、従来の場合に比し負荷電圧E0だけ大きくな
るので、スイッチングトランジスタTrオフ時の可飽和
コイル3のリセット時間を第3図V 9+1のむ2”に
示す如く、減少出来、変換周波数を高周波化することが
出来る。
Also, if the above current Tr is set to 0, no current flows through the rectifier diode D1, so the voltage across the control winding NC of the saturable coil 3 is V NC = (E = XNS/ND) 10B.
.. Therefore, the voltage applied to the winding NL is VNL=V NC
X (NC/NL) = C (E = xNS/ND)
+E, )x (NC/NL), for example, NC=NL
Then, V NL = (E 6 XNS/ND) + E
0, and the load voltage E0 is increased compared to the conventional case, so the reset time of the saturable coil 3 when the switching transistor Tr is turned off can be reduced as shown in FIG. It is possible to increase the frequency.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明せる如く本発明によれば、次に示す如き
効果がある。
As explained in detail above, the present invention has the following effects.

スイッチングトランジスタTrがオフになった時、整流
ダイオードDIの逆回復時間に可飽和コイル3に流れる
電流を小さ《0にすることも出来るので、出力する負荷
電力の減少を小さくすることが出来る。
When the switching transistor Tr is turned off, the current flowing through the saturable coil 3 during the reverse recovery time of the rectifier diode DI can be reduced to a small value <<0, so that the decrease in output load power can be minimized.

又可飽和コイル3にてオフされる時間を従来に比し減少
出来るので、磁束密度の変化も小さく出来、鉄損が減少
しコアの温度上昇が抑圧され小形化することも出来る。
Furthermore, since the time during which the saturable coil 3 is turned off can be reduced compared to the conventional case, changes in magnetic flux density can also be reduced, iron loss is reduced, temperature rise in the core is suppressed, and the device can be made smaller.

又可飽和コイル3のリセット時間を減少出来、変換周波
数を高周波化することが出来る。
Furthermore, the reset time of the saturable coil 3 can be reduced, and the conversion frequency can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の磁気制御型DC−DCコンバ
ータの回路図、 第2図は本発明の他の実施例の磁気制御型DC一DCコ
ンバータの回路図、 第3図は第1図,第2図の場合の各部の電圧波形及び負
荷電流対負荷電圧特性を示す図、第4図は従来例の磁気
制御型DC−DCコンバータの回路図、 第5図は第4図の各部の電圧波形を示す図、第6図は従
来例の磁気制御型DC−DCコンバータの問題点説明図
である。 図において、 1は駆動回路、 2は直流電源、 3は可飽和コイル、 4は制御回路、 5は負荷、 6は平滑フィルタ、 Trはスイッチング素子,スイッチングトランジスタ、 Tはトランス、 D1は整流ダイオード、 D2はフライホイールダイオード、 D3,D4はダイオード、 Lはチョーク、 Cはコンデンサ、 E0は負荷電圧、 NLは主捲線、 NCは制御捲線、 NPは1次捲線、 第 図 ′イ 万Jも蛎の氾の実尻Mケ・」の石a気p」彊p型レC−
DCコンパ−2め口i吾図!2Cコ
FIG. 1 is a circuit diagram of a magnetically controlled DC-DC converter according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a magnetically controlled DC-DC converter according to another embodiment of the present invention, and FIG. 3 is a circuit diagram of a magnetically controlled DC-DC converter according to another embodiment of the present invention. Figure 4 is a circuit diagram of a conventional magnetically controlled DC-DC converter; Figure 5 is a diagram showing the voltage waveforms and load current vs. load voltage characteristics of each part in the case of Figure 2; Figure 5 is a diagram showing each part of Figure 4. FIG. 6 is a diagram illustrating problems in a conventional magnetically controlled DC-DC converter. In the figure, 1 is a drive circuit, 2 is a DC power supply, 3 is a saturable coil, 4 is a control circuit, 5 is a load, 6 is a smoothing filter, Tr is a switching element, a switching transistor, T is a transformer, D1 is a rectifier diode, D2 is a flywheel diode, D3 and D4 are diodes, L is a choke, C is a capacitor, E0 is a load voltage, NL is a main winding, NC is a control winding, NP is a primary winding, Fig. Flood's real ass M ke `` stone a ki p '' jp type le C-
DC Compa-2 Meguchi Azu! 2C co

Claims (1)

【特許請求の範囲】 1、直流電源(2)とトランス(T)の1次捲線(NP
)とスイッチング素子(Tr)が直列に接続され、該ト
ランス(T)の2次捲線(NS)の正極側に可飽和コイ
ル(3)と整流ダイオード(D1)とが順次直列に接続
され、次には、フライホィールダイオード(D2)を有
する平滑フィルタ(6)とが接続され、該スイッチング
素子(Tr)のオンオフにより該トランス(T)の2次
捲線(NS)に出力される電力を該可飽和コイル(3)
により制御し、負荷電圧(E_0)を一定にする磁気制
御型DC−DCコンバータにおいて、前記可飽和コイル
(3)に、一端は主捲線(NL)に接続された制御捲線
(NC)を設け、該主捲線(NL)と該制御捲線(NC
)との接続点には、該負荷電圧(E_0)を入力とし負
荷電圧を一定にするよう出力電流を可変する制御回路(
4)の出力を接続し、又該制御回路(NC)の他端を該
トランス(T)の2次捲線(NS)の正極側に接続し、
該主捲線(NL)の他端を該整流ダイオード(D1)に
接続するようにしたことを特徴とする磁気制御型DC−
DCコンバータ。 2、請求項1記載の、一端は主捲線(NL)に接続され
た制御捲線(NC)を設けた可飽和コイル(3)の、該
主捲線(NL)と該制御捲線(NC)との接続点は、ト
ランス(T)の2次捲線(NS)の正極側に接続し、該
主捲線(NL)の他端は、整流ダイオード(D1)に接
続し、該制御捲線(NC)の他端は、負荷電圧(E_0
)を入力とし負荷電圧を一定にするよう出力電流を可変
する制御回路(4)の出力に接続するようにしたことを
特徴とする磁気制御型DC−DCコンバータ。
[Claims] 1. Primary winding (NP) of DC power supply (2) and transformer (T)
) and a switching element (Tr) are connected in series, a saturable coil (3) and a rectifier diode (D1) are connected in series to the positive electrode side of the secondary winding (NS) of the transformer (T), and then is connected to a smoothing filter (6) having a flywheel diode (D2), which controls the power output to the secondary winding (NS) of the transformer (T) by turning on and off the switching element (Tr). Saturation coil (3)
In the magnetically controlled DC-DC converter that controls the load voltage (E_0) to be constant, the saturable coil (3) is provided with a control winding (NC) whose one end is connected to the main winding (NL), The main winding (NL) and the control winding (NC
) is connected to a control circuit (
4), and connect the other end of the control circuit (NC) to the positive side of the secondary winding (NS) of the transformer (T),
A magnetically controlled DC type characterized in that the other end of the main winding (NL) is connected to the rectifier diode (D1).
DC converter. 2. According to claim 1, the saturable coil (3) is provided with a control winding (NC), one end of which is connected to the main winding (NL), and the control winding (NC) is connected to the main winding (NL). The connection point is connected to the positive side of the secondary winding (NS) of the transformer (T), the other end of the main winding (NL) is connected to the rectifier diode (D1), and the other end of the control winding (NC) is connected to the positive side of the secondary winding (NS) of the transformer (T). The end is the load voltage (E_0
) is connected to the output of a control circuit (4) which takes the input voltage and varies the output current so as to keep the load voltage constant.
JP28705788A 1988-11-14 1988-11-14 Magnetic control type dc-dc converter Pending JPH02133068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28705788A JPH02133068A (en) 1988-11-14 1988-11-14 Magnetic control type dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28705788A JPH02133068A (en) 1988-11-14 1988-11-14 Magnetic control type dc-dc converter

Publications (1)

Publication Number Publication Date
JPH02133068A true JPH02133068A (en) 1990-05-22

Family

ID=17712497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28705788A Pending JPH02133068A (en) 1988-11-14 1988-11-14 Magnetic control type dc-dc converter

Country Status (1)

Country Link
JP (1) JPH02133068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925701A (en) * 1988-05-27 1990-05-15 Xerox Corporation Processes for the preparation of polycrystalline diamond films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925701A (en) * 1988-05-27 1990-05-15 Xerox Corporation Processes for the preparation of polycrystalline diamond films

Similar Documents

Publication Publication Date Title
US6366476B1 (en) Switching power supply apparatus with active clamp circuit
US5781420A (en) Single ended forward DC-to-DC converter providing enhanced resetting for synchronous rectification
JP3199423B2 (en) Resonant type forward converter
JPS59178970A (en) Regulated dc/dc converter
JPS62166777A (en) Dc-dc converter
US6452817B1 (en) Switching power supply circuit
US4829232A (en) Nonlinear resonant switch and converter
US4417153A (en) High frequency switching circuit
JPH02133068A (en) Magnetic control type dc-dc converter
JP2561201B2 (en) Resonant DC-DC converter
JP2003092880A (en) Multi-output dc-dc converter
JPH08228478A (en) Flyback type dc-dc converter
JPH114578A (en) Voltage converter device
JPS61185069A (en) Dc/dc converter
JPH07337012A (en) Multi-output switching power supply circuit
JPH0329988Y2 (en)
JPH0644311Y2 (en) Rectifier circuit including saturable reactor
JPH0312066Y2 (en)
JPH06112064A (en) Electric power converting circuit
JPH05300735A (en) Voltage-resonant switching power supply
JPS6315665A (en) Dc-dc converter
JPH0368631B2 (en)
JP2020137320A (en) Step-down converter
JPS58130772A (en) Constant-voltage power source
JPS63213475A (en) Dc power source circuit