JPH02132741A - Electron beam device - Google Patents

Electron beam device

Info

Publication number
JPH02132741A
JPH02132741A JP63285273A JP28527388A JPH02132741A JP H02132741 A JPH02132741 A JP H02132741A JP 63285273 A JP63285273 A JP 63285273A JP 28527388 A JP28527388 A JP 28527388A JP H02132741 A JPH02132741 A JP H02132741A
Authority
JP
Japan
Prior art keywords
electron beam
anode
electron
sample irradiation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63285273A
Other languages
Japanese (ja)
Other versions
JP2636381B2 (en
Inventor
Setsuo Norioka
節雄 則岡
Toshiaki Miyokawa
御代川 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP63285273A priority Critical patent/JP2636381B2/en
Publication of JPH02132741A publication Critical patent/JPH02132741A/en
Application granted granted Critical
Publication of JP2636381B2 publication Critical patent/JP2636381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain a scan electron microscope image having high resolution and picture quality by controlling the excitation of an electron lens based on the signal showing the voltage applied to a first anode and the signal displaying the voltage applied to a second anode. CONSTITUTION:The means is provided which generates the signal showing the excitation quantity of an electron lens, needed to minimize a sample irradiation electron beam diameter based on the signal displaying the voltage applied to a first anode 2 and the signal showing the voltage applied to a second anode 3, and required to maximize a sample irradiation electron beam current value in the condition of the minimized diameter, and the excitation of the electron lens is controlled based on a signal generated. That is, a table is memorized in a memory 12, the table shows the excitation current value in a focusing lens 10, needed to minimize the sample irradiation electron beam diameter to the various set values of acceleration voltage Va, and required to maximize the sample irradiation electron beam current value in the condition of the minimized diameter. Consequently a scan electron microscope image having high resolution and picture quality can be obtained by even an unskilled operator.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電子線装置に関し、特に電界放出型電子銃を備
えた電子線装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam device, and more particularly to an electron beam device equipped with a field emission type electron gun.

[従来の技術] 従来、熱電子放射型電子銃を備えた走査電子顕微鏡では
熱電子放射型電子銃の光学特性により、試料照射電流の
減少に伴なって試料照射電子線径が縮小するということ
が知られている。そこで、熱電子放射型電子銃を備えた
走査電子顕微鏡においては、高分解能の走査電子顕微鏡
像を得るために、電子顕微鏡の操作者が試料照射電流を
所望の試料照射電流値まで減らすような操作が行なわれ
ている。
[Prior Art] Conventionally, in a scanning electron microscope equipped with a thermionic emission type electron gun, due to the optical characteristics of the thermionic emission type electron gun, the diameter of the electron beam irradiated on the sample decreases as the sample irradiation current decreases. It has been known. Therefore, in a scanning electron microscope equipped with a thermionic emission electron gun, in order to obtain a high-resolution scanning electron microscope image, the electron microscope operator must perform an operation to reduce the sample irradiation current to a desired sample irradiation current value. is being carried out.

[発明が解決しようとする課題] さて、最近では高分解能の高画質の二次電子像を得るた
めに電界放出型電子銃を備えた走査電子顕微鏡が頻繁に
用いられている。しかし、電界放出型電子銃を備えた走
査電子顕微鏡では、試料照射電流を減少させても試料照
射電子線径が減少しない領域が実用上存在するため、前
述のような熱電子放射型電子銃を備えた走査電子顕微鏡
を操作する感覚で、単に試料照射電流を減らすことによ
っては高分解能で高画質の走査電子顕微鏡像を得ること
はできない。
[Problems to be Solved by the Invention] Recently, scanning electron microscopes equipped with field emission electron guns have been frequently used to obtain high-resolution, high-quality secondary electron images. However, in a scanning electron microscope equipped with a field emission electron gun, there is a practical region where the sample irradiation electron beam diameter does not decrease even if the sample irradiation current is reduced. It is not possible to obtain a high-resolution, high-quality scanning electron microscope image simply by reducing the sample irradiation current, as if operating a scanning electron microscope equipped with the scanner.

本発明は、上述した課題を考慮し、熟練しない操作者で
も試料照射電子線径を最小にした上で最大の試料照射電
子線電流値の電子線を簡単に試料に照射できる電子線装
置を提供することを目的としている。
In consideration of the above-mentioned problems, the present invention provides an electron beam device that allows even an unskilled operator to easily irradiate a sample with an electron beam of the maximum sample irradiation electron beam current value while minimizing the sample irradiation electron beam diameter. It is intended to.

[課題を解決するための手段] 本発明は、陰極と、該陰極との間に引出電界を形成する
ための第1陽極と、陰極から放出され第1陽極を通過す
る電子線を加速するための第2陽極と、該第2陽極を通
過した電子線を集束して試料上に照射するための電子レ
ンズとを備えた電子線装置において、前記第1陽極へ印
加される電圧を表す信号と前記第2陽極へ印加される電
圧を表す信号に基づいて試料照射電子線径を最小且つそ
の最小径の状態で試料照射電子線電流値を最大とするの
に必要な前記電子レンズの励磁量を表す信号を発生する
ための手段と、該発生した信号に基づいて前記電子レン
ズの励磁を制御する手段とを設けたことを特徴とする。
[Means for Solving the Problems] The present invention includes a cathode, a first anode for forming an extraction electric field between the cathode, and a cathode for accelerating an electron beam emitted from the cathode and passing through the first anode. In an electron beam apparatus comprising a second anode, and an electron lens for focusing the electron beam that has passed through the second anode and irradiating it onto a sample, a signal representing a voltage applied to the first anode; Based on a signal representing the voltage applied to the second anode, determine the amount of excitation of the electron lens necessary to minimize the diameter of the electron beam irradiating the sample and to maximize the current value of the electron beam irradiating the sample in the state of the minimum diameter. The electronic lens is characterized in that it includes means for generating a representative signal, and means for controlling excitation of the electron lens based on the generated signal.

[作用コ 第1陽極へ印加される電圧を表す信号と前記第2陽極へ
印加される電圧を表す信号に基づいて試料照射電子線径
を最小且つ試料照射電子線電流値を最大とするのに必要
な前記電子レンズの励磁量を表す信号を発生するための
手段を設けると共に、該手段の発生した信号に基づいて
前記電子レンズの励磁を制御するようにして、高分解能
で高画質の走査電子顕微鏡像を得る。
[Operation: To minimize the sample irradiation electron beam diameter and maximize the sample irradiation electron beam current value based on the signal representing the voltage applied to the first anode and the signal representing the voltage applied to the second anode. By providing a means for generating a signal representing the required excitation amount of the electron lens, and by controlling the excitation of the electron lens based on the signal generated by the means, scanning electron beams with high resolution and high image quality can be obtained. Obtain a microscopic image.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の一実施例を説明するための装置構成図、第
2図は電界放出型電子銃を用いた走査電子顕微鏡におけ
る試料照射電流と試料照射電流径の関係を示す図、第3
図は最小試料照射電子線径と加速電圧の関係を示す図、
第4図は加速電圧と引出電圧に基づいて電子レンズの励
磁量を制御するためにメモリに記憶されているテーブル
を説明するための図である。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is an apparatus configuration diagram for explaining one embodiment of the present invention, Figure 2 is a diagram showing the relationship between sample irradiation current and sample irradiation current diameter in a scanning electron microscope using a field emission electron gun, and Figure 3
The figure shows the relationship between the minimum sample irradiation electron beam diameter and acceleration voltage.
FIG. 4 is a diagram for explaining a table stored in the memory for controlling the amount of excitation of the electron lens based on the acceleration voltage and the extraction voltage.

第1図において1は針状陰極、2は第1陽極、3は第2
陽極、4は引出電源、5は加速電源、9は試料、10は
集束レンズ、11は対物レンズ、12はメモリ、13は
電子レンズ制御部である。
In Figure 1, 1 is a needle cathode, 2 is a first anode, and 3 is a second anode.
1 is an anode, 4 is an extraction power source, 5 is an acceleration power source, 9 is a sample, 10 is a focusing lens, 11 is an objective lens, 12 is a memory, and 13 is an electron lens control section.

レンズ制御部13はメモリ12からのデータに基づいて
集束レンズ10の励磁電流値を制御し、指示された試料
照射電流を実現できるように構成されている。
The lens control unit 13 is configured to control the excitation current value of the focusing lens 10 based on the data from the memory 12, and to realize the instructed sample irradiation current.

先ず、電子顕微鏡の操作者により電源4から陰極1一第
1陽極2間に引出し電圧Ve,電源5から陰極1一第2
陽極3間に加速電圧Vaが印加される。ここで、該電圧
値の設定は数種類のVa値及びVe値の組合わせによる
V a / V e比で設定され、該設定された電圧値
は一定値に維持されるように安定化制御されている。
First, the operator of the electron microscope applies a voltage Ve to the power source 4 between the cathode 1 and the first anode 2, and a voltage Ve from the power source 5 between the cathode 1 and the second anode.
An accelerating voltage Va is applied between the anodes 3. Here, the voltage value is set by a Va/Ve ratio based on a combination of several types of Va values and Ve values, and the set voltage value is stabilized and controlled to be maintained at a constant value. There is.

前記引き出し電圧Ve,加速電圧Vaが設定されると、
前記引出し電圧Veによって陰、極1から電子線が放出
される。該陰極1から放出され第1陽極2を通過した電
子線は第2陽極3へ向けて加速されると共に、該2陽極
3の電子線通過孔を通過して集束レンズ10に入射する
。そして、該電子線は該集束レンズ10によって集束さ
れて対物レンズ11に導入され、該対物レンズによって
試料9上に集束照射される。
When the extraction voltage Ve and acceleration voltage Va are set,
An electron beam is emitted from the cathode 1 by the extraction voltage Ve. The electron beam emitted from the cathode 1 and passing through the first anode 2 is accelerated toward the second anode 3, passes through the electron beam passage hole of the two anodes 3, and enters the focusing lens 10. Then, the electron beam is focused by the focusing lens 10 and introduced into the objective lens 11, and is focused and irradiated onto the sample 9 by the objective lens.

さて、引出し電圧Veが一定値例えば、5KVに設定さ
れた場合について、加速電圧Vaをパラメータとして試
料照射電流1pと試料照射電子線径Rの関係について測
定した結果、第2図に示すような関係があることが明ら
かとなった。第2図において縦軸は試料照射電子線径、
横軸は試料照射電子線電流を表しており、曲線aはVa
−IKVの場合、曲線bはVa−5KVの場合、曲線C
ハV a − 4 0 K Vの場合を示している。図
がラ明らかなように、試料照射電子線電流を減少させて
も試料照射電子線径が減少しなくなる点が存在する。各
加速電圧における該領域の開始点P a − PCはビ
ーム径が最も小さくなった場合に、照射電流が最大とな
る点である。これらの点で表された条件はSN比の良い
高分解能な二次電子像が得られる最適な試料照射条件に
一致する。
Now, when the extraction voltage Ve is set to a constant value, for example, 5KV, the relationship between the sample irradiation current 1p and the sample irradiation electron beam diameter R is measured using the acceleration voltage Va as a parameter, and the relationship as shown in FIG. 2 is obtained. It became clear that there is. In Figure 2, the vertical axis is the sample irradiation electron beam diameter;
The horizontal axis represents the sample irradiation electron beam current, and the curve a is Va
- For IKV, curve b is Va - For 5KV, curve C
The case of V a - 40 KV is shown. As is clear from the figure, there is a point at which the diameter of the electron beam irradiating the sample no longer decreases even if the sample irradiation electron beam current is reduced. The starting point P a - PC of the region at each acceleration voltage is the point where the irradiation current is maximum when the beam diameter is the smallest. The conditions expressed by these points correspond to the optimum sample irradiation conditions for obtaining a high-resolution secondary electron image with a good signal-to-noise ratio.

なお、これらの点Pを種々の加速電圧について求めるこ
とにより、同図に点線で示すような曲線が描かれる。そ
してこの曲線について、加速電圧を横軸にとり試料照射
電子線電流を縦軸にとって表わすと、第3図に示すよう
になる。
Note that by determining these points P for various acceleration voltages, a curve as shown by a dotted line in the figure is drawn. When this curve is expressed with the acceleration voltage on the horizontal axis and the sample irradiation electron beam current on the vertical axis, it becomes as shown in FIG. 3.

メモリ12にはこの引出電圧Veが5KVの場合だけで
なく、Veを種々変えた夫々の場合に、加速電圧Vaの
種々の設定値に対して、試料照射電子線径を最小とし、
その最小径の状態で試料照射電子線電流値を最大にする
ために必要な集束レンズ10の励磁電流値Dを表すテー
ブルが記憶されている。これら各データは以下のように
して求められる。即ち、引出電圧をVex,加速電圧を
Vajで電界放出型電子銃を稼動させている最中に、試
料照射電流!pを変化させながら試料照射電流径Rを測
定し、該試料照射電子線径が変化しなくなる開始点にお
ける集束レンズ10の励磁電流Dljを測定して記録す
ることにより1データを得る。そして、加速電圧vaj
をVa1からVa2 + va3 + ・・・,Van
と変化させて上記測定を行ない夫々の場合の集束レンズ
10の励磁電流D11−Dinを求めることにより、一
組のデータ(定電圧VeL時のデータ)を得ることがで
きる。同様の作業を引出電圧Ve1をVelからVe2
,V e 3 ,・・・,Ve.l1まで変化させて全
てのデータを得ることができる。このようにして得られ
たデータをテーブルとして格納したメモリ12の内容を
例示すれば、第4図のようになる。そこで、前記電子レ
ンズ制御部13は引出電源4及び加速電源5の出力信号
(電圧を表す信号)に基づいて、メモリ12内データを
参照し、試料照射電子線径を最小且つ試料照射電子線電
流値を最大とするのに必要な前記集束レンズ10の励磁
量を表す信号を制御部13内に読出す。そして、該電子
レンズ制御部13は読出されたデータに基づいて、集束
レンズ10の励磁量を制御し、試料照射電子線径を最小
且つ試料照射電子線電流値を最大の条件で電子線を試料
に照射するようにしている。
In the memory 12, not only when the extraction voltage Ve is 5 KV, but also when Ve is variously changed, the sample irradiation electron beam diameter is set to the minimum for various set values of the accelerating voltage Va,
A table representing the excitation current value D of the focusing lens 10 necessary to maximize the current value of the electron beam irradiating the sample in the state of the minimum diameter is stored. Each of these data is obtained as follows. That is, while operating the field emission electron gun with the extraction voltage Vex and the acceleration voltage Vaj, the sample irradiation current! One piece of data is obtained by measuring the sample irradiation current diameter R while changing p, and measuring and recording the excitation current Dlj of the focusing lens 10 at the starting point where the sample irradiation electron beam diameter stops changing. And acceleration voltage vaj
from Va1 to Va2 + va3 + ..., Van
A set of data (data at constant voltage VeL) can be obtained by performing the above measurements while changing the voltage and determining the excitation current D11-Din of the focusing lens 10 in each case. Similar work is done to change the extraction voltage Ve1 from Vel to Ve2.
,Ve3,...,Ve. All data can be obtained by varying up to l1. An example of the contents of the memory 12 in which the data obtained in this way is stored as a table is shown in FIG. Therefore, the electron lens control unit 13 refers to the data in the memory 12 based on the output signals (signals representing voltage) of the extraction power source 4 and the acceleration power source 5, and minimizes the sample irradiation electron beam diameter and the sample irradiation electron beam current. A signal representing the amount of excitation of the focusing lens 10 necessary to maximize the value is read into the control section 13. Then, the electron lens control unit 13 controls the excitation amount of the focusing lens 10 based on the read data, and applies the electron beam to the sample under the conditions that the sample irradiation electron beam diameter is the minimum and the sample irradiation electron beam current value is the maximum. I am trying to irradiate it to

上述のような構成において、電子顕微鏡の操作者により
例えばVe−Ve2 、Va−Va3に設定され、電子
銃が稼動状態に入ったとする。制御部13は引出電源4
及び加速電源5からの出力信号に基づいて第4図に示す
ようなメモリに記憶されているテーブル内の(Ve2 
,Va3 )に対応するアドレスを指定してデータD2
3を読み出す。
In the above-described configuration, it is assumed that the operator of the electron microscope sets, for example, Ve-Ve2 and Va-Va3, and the electron gun enters the operating state. The control unit 13 is connected to the power source 4
and (Ve2) in the table stored in the memory as shown in FIG.
, Va3) and specify the address corresponding to the data D2.
Read out 3.

そして、前記制御部13は該読出されたデータに基づい
て集束レンズ11の励磁電流値を制御して試料照射電子
線径を最小とし、その最小径の状態で試料照射電子線電
流値を最大とする条件に設定する。従って、電子線は試
料照射電子線径を最小且つ試料照射電子線電流値を最大
の条件で試料に照射される。また、電子銃の加速電圧を
Valに変化させた場合には、テーブル内の(Ve2,
Va1)に対応するアドレスが指定されてデータD21
が読み出され、該データに基づいて集束レンズ10の励
磁電流が変えられるため、試料には常に試料照射電子線
径を最小且つ試料照射電子線電流値を最大の条件で電子
線が照射される。そのため、常に高分解能な二次電子像
を得ることができる。
Then, the control unit 13 controls the excitation current value of the focusing lens 11 based on the read data to minimize the sample irradiation electron beam diameter, and maximizes the sample irradiation electron beam current value in the state of the minimum diameter. Set the conditions to Therefore, the sample is irradiated with the electron beam under the conditions that the sample irradiation electron beam diameter is the minimum and the sample irradiation electron beam current value is the maximum. In addition, when the acceleration voltage of the electron gun is changed to Val, (Ve2,
The address corresponding to Va1) is specified and the data D21
is read out and the excitation current of the focusing lens 10 is changed based on the data, so that the sample is always irradiated with the electron beam under the conditions that the sample irradiation electron beam diameter is the minimum and the sample irradiation electron beam current value is the maximum. . Therefore, a high-resolution secondary electron image can always be obtained.

[発明の効果] 以上の説明から明らかなように、本発明によれば、第1
陽極へ印加される電圧を表す信号と第2陽極へ印加され
る電圧を表す信号に基づいて試料照射電子線径を最小且
つその最小径の状態で試料照射電子線電流値を最大とす
るのに必要な前記電子レンズの励磁量を表す信号を発生
するための手段と、該発生した信号に基づいて前記電子
レンズの励磁を制御する手段とを設けたことにより、熟
練しない操作者でも試料照射電子線径を最小にした上で
最大の試料照射電子線電流値の電子線を簡単に試料に照
射できる電子線装置を提供することができる。従って、
該装置を走査電子顕微鏡に適用した場合には、熟練しな
い操作者でも高分解能で高画質の走査電子顕微鏡像を得
ることができる。
[Effect of the invention] As is clear from the above explanation, according to the present invention, the first
Minimize the sample irradiation electron beam diameter based on a signal representing the voltage applied to the anode and a signal representing the voltage applied to the second anode, and maximize the sample irradiation electron beam current value in the state of the minimum diameter. By providing a means for generating a signal representing the necessary excitation amount of the electron lens and a means for controlling the excitation of the electron lens based on the generated signal, even an unskilled operator can easily control the sample irradiation electrons. It is possible to provide an electron beam device that can easily irradiate a sample with an electron beam of the maximum sample irradiation electron beam current value while minimizing the wire diameter. Therefore,
When this apparatus is applied to a scanning electron microscope, even an unskilled operator can obtain a high-resolution, high-quality scanning electron microscope image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための装置構成図
、第2図は電界放出型電子銃を用いた走査電子顕微鏡に
おける試料照射電流と試料照射電流径の関係を示す図、
第3図は最小試料照射電子線径と加速電圧の関係を示す
図、第4図は加速電圧と引出電圧に基づいて電子レンズ
の励磁量を制御する際に用いられるテーブルを説明する
ための図である。 1:針状陰極    2:第1陽極 3:第2陽極    4:引出電源 5:加速電源    9:試料 10:集束レンズ  11:対物レンズ〕2:メモリ 
   13:電子レンズ制御部カロ捌こ弓粘L日ヨ V
。−(kV) 第1図
FIG. 1 is an apparatus configuration diagram for explaining an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between sample irradiation current and sample irradiation current diameter in a scanning electron microscope using a field emission electron gun.
Fig. 3 is a diagram showing the relationship between the minimum sample irradiation electron beam diameter and accelerating voltage, and Fig. 4 is a diagram explaining a table used when controlling the excitation amount of the electron lens based on the accelerating voltage and extraction voltage. It is. 1: Needle cathode 2: First anode 3: Second anode 4: Extraction power source 5: Acceleration power source 9: Sample 10: Focusing lens 11: Objective lens] 2: Memory
13:Electronic lens control unit
. -(kV) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 陰極と、該陰極との間に引出電界を形成するための第1
陽極と、陰極から放出され第1陽極を通過する電子線を
加速するための第2陽極と、該第2陽極を通過した電子
線を集束して試料上に照射するための電子レンズとを備
えた電子線装置において、前記第1陽極へ印加される電
圧を表す信号と前記第2陽極へ印加される電圧を表す信
号に基づいて試料照射電子線径を最小且つその最小径の
状態で試料照射電子線電流値を最大とするのに必要な前
記電子レンズの励磁量を表す信号を発生するための手段
と、該発生した信号に基づいて前記電子レンズの励磁を
制御する手段とを設けたことを特徴とする電子線装置。
a cathode and a first electrode for forming an extraction electric field between the cathode and the cathode;
An anode, a second anode for accelerating the electron beam emitted from the cathode and passing through the first anode, and an electron lens for focusing the electron beam passing through the second anode and irradiating it onto the sample. In the electron beam apparatus, the sample irradiation electron beam diameter is minimized based on a signal representing the voltage applied to the first anode and a signal representing the voltage applied to the second anode, and the sample is irradiated in the state of the minimum diameter. Means for generating a signal representing the amount of excitation of the electron lens necessary to maximize the electron beam current value, and means for controlling excitation of the electron lens based on the generated signal. An electron beam device featuring:
JP63285273A 1988-11-11 1988-11-11 Electron beam equipment Expired - Fee Related JP2636381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285273A JP2636381B2 (en) 1988-11-11 1988-11-11 Electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285273A JP2636381B2 (en) 1988-11-11 1988-11-11 Electron beam equipment

Publications (2)

Publication Number Publication Date
JPH02132741A true JPH02132741A (en) 1990-05-22
JP2636381B2 JP2636381B2 (en) 1997-07-30

Family

ID=17689372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285273A Expired - Fee Related JP2636381B2 (en) 1988-11-11 1988-11-11 Electron beam equipment

Country Status (1)

Country Link
JP (1) JP2636381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100309323B1 (en) * 1992-03-19 2001-12-15 가나이 쓰도무 Scanning electron microscopy and scanning electron microscopy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188041A (en) * 1982-04-27 1983-11-02 Shimadzu Corp Probe diameter setting method of charged particle rays
JPS61114453A (en) * 1984-11-08 1986-06-02 Jeol Ltd Charged particle ray device
JPS63166132A (en) * 1986-12-26 1988-07-09 Shimadzu Corp Automatic focusing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188041A (en) * 1982-04-27 1983-11-02 Shimadzu Corp Probe diameter setting method of charged particle rays
JPS61114453A (en) * 1984-11-08 1986-06-02 Jeol Ltd Charged particle ray device
JPS63166132A (en) * 1986-12-26 1988-07-09 Shimadzu Corp Automatic focusing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100309323B1 (en) * 1992-03-19 2001-12-15 가나이 쓰도무 Scanning electron microscopy and scanning electron microscopy

Also Published As

Publication number Publication date
JP2636381B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US4588891A (en) Scanning type electron microscope
US4199681A (en) Method and apparatus for automatically focusing an electron beam in a scanning beam device
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
US3919550A (en) Scanning electron microscopes
EP0811999B1 (en) Scanning electron microscope
US4547669A (en) Electron beam scanning device
JP3524776B2 (en) Scanning electron microscope
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
JP2003151484A (en) Scanning type charged particle beam device
JPH02132741A (en) Electron beam device
JPH0729539A (en) Focused ion beam device
JPH1027563A (en) Scanning electron microscope
US4006357A (en) Apparatus for displaying image of specimen
US7262410B2 (en) Sample observing apparatus and sample observing method
JP3351647B2 (en) Scanning electron microscope
JP2002015691A (en) Scanning electron microscope
JP2633861B2 (en) SEM type inspection equipment
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPS63276856A (en) Electron beam device having electric field radiating electron source
JP3114335B2 (en) Focusing method in scanning electron microscope
JPS6324617Y2 (en)
JP3112541B2 (en) Astigmatism correction method for electron beam device
JPH10321173A (en) Beam position correction device
JPH0636726A (en) Scanning microscope
JPH0619960B2 (en) Electron beam apparatus having thermal field emission electron source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees