JPH02131143A - Low temperature physical property testing device - Google Patents

Low temperature physical property testing device

Info

Publication number
JPH02131143A
JPH02131143A JP28348088A JP28348088A JPH02131143A JP H02131143 A JPH02131143 A JP H02131143A JP 28348088 A JP28348088 A JP 28348088A JP 28348088 A JP28348088 A JP 28348088A JP H02131143 A JPH02131143 A JP H02131143A
Authority
JP
Japan
Prior art keywords
refrigerator
conduit
gaseous refrigerant
heat exchanger
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28348088A
Other languages
Japanese (ja)
Other versions
JP2645346B2 (en
Inventor
Yoshikage Oda
祺景 小田
Hiroshi Asami
宏 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP28348088A priority Critical patent/JP2645346B2/en
Publication of JPH02131143A publication Critical patent/JPH02131143A/en
Application granted granted Critical
Publication of JP2645346B2 publication Critical patent/JP2645346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To ensure that a test sample is easily replaced by accommodating a refrigerating section and a storage chamber for a test sample in separate vacuum containers respectively after refrigeration and arranging a duct between these containers. CONSTITUTION:A test sample is placed in a standstill condition in a storage chamber 12 and the storage chamber is tightly closed with a cover 13. Next the air in the storage chamber and each duct is replaced with helium gas supplied from a helium gas container 26, and vacuum containers 1, 11 are evacuated. After a refrigerator 2 is cooled to a desired level, valves V1, V2, V3, V4 are opened, and the valves V3, V4 are closed to start a circulation pump 19. The helium gas discharged from the circulation pump is suppled to to a heat exchanger 5 adjacent to the refrigeration section of the refrigerator through a gas/gas heat exchanger 8 and then is cooled. After this, the gas is further cooled, passing through the second heat exchanger 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種の物質の物理的性質、特に低温度に於ける
物性を調べる際に使用される試験装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a testing device used to examine the physical properties of various substances, particularly physical properties at low temperatures.

[従来の技術] 超電導材料の開発競争は、近年目覚ましいものがあるが
、超電導材料を開発するに当っては、新たに調製された
物質の低温物性を調べることが必須である。従来、物質
の低温物性を調べるための試験装置としては、ギフオー
ド・マクマホン冷凍機又はその改良型冷凍機の冷却部に
、被験体収容室を隣接させて冷凍機の冷却部と被験体収
容室を真空断熱容器に収めた装置が知られている。この
装置では、冷凍機の冷却部で発生する寒冷は、ガス又は
固体を介して収容室内の被験体に伝達される。
[Prior Art] Competition in the development of superconducting materials has been remarkable in recent years, but in developing superconducting materials, it is essential to investigate the low-temperature physical properties of newly prepared substances. Conventionally, test equipment for investigating the low-temperature physical properties of substances has been constructed by placing a subject accommodation chamber adjacent to the cooling section of a Gifford-McMahon refrigerator or an improved version thereof, and connecting the cooling section of the refrigerator and the subject accommodation chamber. A device housed in a vacuum insulated container is known. In this device, the cold generated in the cooling section of the refrigerator is transmitted to the subject in the containment chamber via gas or solid.

この試験装置は組み立てが比較的容易であるものの、収
容室内の被験体を別の被験体に交換する場合には、その
都度装置の断熱真空を破壊しなければならず、従ってま
た、前回の試験で実現されている収容室内の低温雰囲気
を、次回の試験に受は継ぐことができない不都合があっ
た。
Although this test device is relatively easy to assemble, each time the test subject in the containment chamber is replaced with another, the device's adiabatic vacuum must be broken, and therefore the previous test There was an inconvenience that the low-temperature atmosphere inside the containment chamber, which had been achieved in the previous test, could not be carried over to the next test.

上記のような低温物性試験装置の欠点を改良した装置と
して、特願昭62−213329号には、単一の真空容
器内に冷凍機の冷却部と被験体収容室を挿入すると共に
、当該収容室の一部を真空容器外に開口させ、適当な循
環ポンプとパイプを介して、ガス状冷媒を冷凍機の冷却
部と被験体収容室との間で循環させることによって、被
験体を冷却する装置が記載されている。この装置では、
被験体収容室の一部が真空容器外に開口され、この開口
部から被験体を容器内に出し入れできるので、真空容器
の断熱真空を破壊することなく被験体を交換することが
できる。
Japanese Patent Application No. 62-213329 proposes an apparatus that improves the shortcomings of the low-temperature physical property testing apparatus as described above, in which the cooling part of the refrigerator and the test subject storage chamber are inserted into a single vacuum container. The subject is cooled by opening a part of the chamber to the outside of the vacuum container and circulating a gaseous refrigerant between the cooling part of the refrigerator and the subject accommodation chamber via a suitable circulation pump and pipes. The equipment is described. With this device,
A part of the test subject storage chamber is opened to the outside of the vacuum container, and the test object can be taken in and out of the container through this opening, so that the test object can be replaced without breaking the adiabatic vacuum of the vacuum container.

[発明が解決しようとする課題] しかしながら、これら従来の低温物性試験装置のなかに
あって、前者は被験体収容室を冷凍機の冷却部に隣接さ
せているために、また後者は被験体収容室と冷凍機の冷
却部を同一の真空容器内に設置しているために、冷凍機
を運転した際に発生する振動によって、被験体収容室ま
で振動してしまうのを回避することができない。
[Problems to be Solved by the Invention] However, among these conventional low-temperature physical property testing devices, the former has a subject storage chamber adjacent to the cooling section of the refrigerator, and the latter has a Since the cooling part of the chamber and the refrigerator are installed in the same vacuum container, it is impossible to avoid vibrations generated when the refrigerator is operated from extending to the subject accommodation chamber.

被験体収容室の振動は、例えば光実験、メスバウワー分
光分析法、X線回折分析法、電子顕微鏡分析法等の如く
、被験体にある種の光線を照射してその物性を分析する
場合には、極めて都合が悪い。
Vibrations in the test subject storage chamber are used when a certain type of light is irradiated onto the test subject to analyze its physical properties, such as in optical experiments, Mössbauer spectroscopy, X-ray diffraction analysis, electron microscopy, etc. , extremely inconvenient.

これに加えて、従来の低温物性試験装置は。In addition to this, conventional low temperature physical property testing equipment.

被験体収容室の設置個所に関係する構造上の制約から、
被験体収容室の周辺に磁石などを付設できない欠点もあ
った。
Due to structural constraints related to the location of the test subject storage room,
There was also the drawback that magnets could not be attached around the subject containment chamber.

従って、本発明の目的は、断熱真空を破壊することなく
被験体を交換することができるばかりでなく、冷凍機の
振動が被験体収容室に伝わることもなく、しかも必要に
応じて磁石その他の付帯設備を被験体収容室の周辺に設
けることができる低温物性試験装置を提供することにあ
る。
Therefore, it is an object of the present invention to not only be able to exchange a test subject without destroying the adiabatic vacuum, but also to prevent the vibrations of the refrigerator from being transmitted to the test containment chamber, and to use magnets or other devices as necessary. An object of the present invention is to provide a low-temperature physical property testing device in which ancillary equipment can be provided around a test subject accommodation chamber.

[課題を解決するための手段] 本発明に係る低温物性試験装置は、基本的には、冷凍機
の冷却部と被験体収容室とをそれぞれ別個の真空容器内
に収めると共に、循環ポンプを介してガス状冷媒を冷凍
機の冷却部と被験体収容室との間で循環させるための導
管を配置した構成にある。
[Means for Solving the Problems] Basically, the low-temperature physical property testing device according to the present invention houses the cooling part of the refrigerator and the test subject storage chamber in separate vacuum containers, and connects them via a circulation pump. The structure includes a conduit for circulating a gaseous refrigerant between the cooling section of the refrigerator and the subject accommodation chamber.

すなわち、本発明の低温物性試験装置は、(a)ガス状
冷媒を冷却するための熱交換器が隣接された冷却部が第
1真空容器内に位置する冷凍機と、(b)第1真空容器
外に位置し、ガス状冷媒を循環するためのポンプと、(
C)ガス状冷媒の入口及び出口を具えて前記第1真空容
器とは別の第2真空容器内にほぼ全体が収められ、蓋を
有する開口部が第2真空容器外に位置する被験体収容室
と、(d)前記ポンプの吐出側に接続され、ポンプから
吐出されたガス状冷媒を、前記冷凍機の冷却部に隣接さ
れた熱交換を経由して、前記被験体収容室の冷媒入口に
供給するためのガス状冷媒移送用第1導管と、(8)前
記被験体収容室の冷媒出口に接続され、当該収容室内の
冷媒を前記ポンプの吸引側に戻すためのガス状冷媒移送
用第2導管とから構成されることを特徴とする。
That is, the low-temperature physical property testing apparatus of the present invention includes (a) a refrigerator in which a cooling section adjacent to a heat exchanger for cooling a gaseous refrigerant is located in a first vacuum container; (b) a first vacuum container; a pump located outside the vessel for circulating the gaseous refrigerant;
C) A test subject housing that is substantially entirely contained within a second vacuum container separate from the first vacuum container, including an inlet and an outlet for a gaseous refrigerant, and an opening with a lid located outside the second vacuum container. (d) connected to the discharge side of the pump, the gaseous refrigerant discharged from the pump is passed through a heat exchanger adjacent to the cooling section of the refrigerator to the refrigerant inlet of the subject accommodation chamber; (8) a first conduit for transferring a gaseous refrigerant for supplying the refrigerant to the subject storage chamber; and (8) a first conduit for transferring the gaseous refrigerant for returning the refrigerant in the storage chamber to the suction side of the pump, which is connected to the refrigerant outlet of the subject storage chamber. and a second conduit.

そして、本発明の低温物性試験装置に於いては、前記の
ポンプから吐出されて第1導管を流れるガス状冷媒を、
冷凍機の冷却部に隣接された熱交換器に供給するのに先
立って、前記第2導管を流れるガス状冷媒と間接的に熱
交換させるためのガス/ガス熱交換器を、所望に応じて
前記の第1真空容器内に設けることができる。
In the low-temperature physical property testing apparatus of the present invention, the gaseous refrigerant discharged from the pump and flowing through the first conduit is
Optionally, a gas/gas heat exchanger for indirectly exchanging heat with the gaseous refrigerant flowing through the second conduit prior to supplying the heat exchanger adjacent to the cooling section of the refrigerator. It can be provided within the first vacuum container.

[作   用コ 本発明の低温物性試験装置では、前記したガス/ガス熱
交換器の設置が、必ずしも必須ではないが、これを設置
した態様では、循環ポンプから吐出されたガス状冷媒は
、導管を通って第1真空容器内に設けられたガス/ガス
熱交換器に供給され、ここで循環ポンプの吸引側に戻る
ガス状冷媒と熱交換後、冷凍機の冷却部に隣接された熱
交換器に導入されて冷却される。冷却されたガス状冷媒
は、導管に案内されて第1真空容器から第2真空容器内
に挿設された被験体収容室の、好ましくは底部に供給さ
れ、収容室内の被験体を冷却する。被験体から熱を奪っ
たガス状冷媒は、導管を介して収容室から第1真空容器
内に導かれ、前記のガス/ガス熱交換器を経て循環ポン
プの吸引側に戻される。
[Function] Although the installation of the gas/gas heat exchanger described above is not necessarily essential in the low-temperature physical property testing apparatus of the present invention, in an embodiment in which this is installed, the gaseous refrigerant discharged from the circulation pump is After heat exchange with the gaseous refrigerant, which is supplied to the gas/gas heat exchanger provided in the first vacuum vessel through which the gaseous refrigerant returns to the suction side of the circulation pump, the heat exchanger adjacent to the cooling section of the refrigerator It is introduced into a container and cooled. The cooled gaseous refrigerant is guided by a conduit and is supplied from the first vacuum vessel to the bottom of the subject accommodation chamber, which is inserted into the second vacuum vessel, to cool the subject within the accommodation chamber. The gaseous refrigerant, which has taken heat from the subject, is led from the storage chamber into the first vacuum vessel via a conduit and returned to the suction side of the circulation pump via the gas/gas heat exchanger.

従って、冷凍機を運転しながらガス状冷媒を上記のよう
に循環させることにより、収容室内の被験体を室温から
所望の低温まで冷却することができる。そして、所望の
温度に冷却された以後は、冷凍機の運転を停止して、循
環ポンプの運転を継続させると、ガス状冷媒は周囲の熱
を次第に吸収して加温されるので、収容室内の冷被験体
の温度を上昇させることができる。この場合、ガス状冷
媒用導管の適当な個所にヒーターを付設す五ば、加温速
度を増大できるばかりでなく、被験体を室温以上に加熱
することもできる。
Therefore, by circulating the gaseous refrigerant as described above while operating the refrigerator, the subject in the housing chamber can be cooled from room temperature to a desired low temperature. Once cooled to the desired temperature, if the refrigerator is stopped and the circulation pump continues to operate, the gaseous refrigerant gradually absorbs the surrounding heat and becomes warmer inside the storage room. The temperature of a cold subject can be increased. In this case, by attaching a heater to an appropriate location in the gaseous refrigerant conduit, it is possible not only to increase the heating rate but also to heat the subject above room temperature.

第2真空容器に挿設される被験体収容室は、その一部が
第2真空容器の外側に開口し、その開口部に設置された
蓋を開くことによって、収容室だけを大気圧下に開放し
、蓋を閉じることによって、収容室を気密に保持するこ
とができる。従って、収容室に被験体を出し入れするに
際して、第2真空容器の断熱真空が破壊されることがな
い。
A part of the subject storage chamber inserted into the second vacuum container opens to the outside of the second vacuum container, and by opening the lid installed in the opening, only the storage chamber is brought under atmospheric pressure. By opening the lid and closing the lid, the storage chamber can be kept airtight. Therefore, the adiabatic vacuum of the second vacuum container is not destroyed when the subject is taken into or out of the storage chamber.

本発明の冷凍機には当業界で公知の任意の冷凍機が、例
えば、ギフオード・マクマホンサイクルを利用する単段
式又は2段式ヘリウム冷凍機が使用可能であって、冷却
目標温度に応じて使用冷凍機は選択される。ちなみに、
単段式ヘリウム冷凍機では40Kに、2段式ヘリウム冷
凍機では10Kにそれぞれガス状冷媒を冷却することが
できる。また、小型ヘリウム液化装置を併設すれば、4
Kに近い温度まで冷却することができる。ガス状冷媒と
しては、冷却目標温度で固化しないガスが使用され、典
型的にはヘリウムガス、窒素ガスが使用される。
Any refrigerator known in the art can be used as the refrigerator of the present invention, for example, a single-stage or two-stage helium refrigerator using the Gifford-McMahon cycle, and depending on the cooling target temperature, The refrigerator to be used is selected. By the way,
A single-stage helium refrigerator can cool the gaseous refrigerant to 40K, and a two-stage helium refrigerator can cool the gaseous refrigerant to 10K. In addition, if a small helium liquefaction device is installed, 4
It can be cooled to temperatures close to K. As the gaseous refrigerant, a gas that does not solidify at the cooling target temperature is used, typically helium gas or nitrogen gas.

[実 施 例] 第1図は本発明に係る低温物性試験装置の一実施例を示
すものであって、第1真空容器1には2段式ヘリウム冷
凍機2が挿設され、その第1冷却部3及び第2冷却部4
が真空容器内に位置せしめられる。そして、第1冷却部
3及び第2冷却部4にはそれぞれこれに隣接して、典型
的には冷却コイルからなる第1熱交換器5及び第2熱交
換器6が設置され、第2冷却部4は輻射熱シールド7で
遮蔽される。第1真空容器内にはまた、ガスlガス熱交
換器8が設けられ、真空容器自体はバルブ9を介して真
空ポンプ10に接続される。
[Embodiment] FIG. 1 shows an embodiment of the low-temperature physical property testing apparatus according to the present invention, in which a two-stage helium refrigerator 2 is inserted into the first vacuum vessel 1, and the first Cooling section 3 and second cooling section 4
is placed in a vacuum vessel. A first heat exchanger 5 and a second heat exchanger 6, which are typically composed of cooling coils, are installed adjacent to the first cooling section 3 and the second cooling section 4, respectively, and the second cooling section The portion 4 is shielded by a radiant heat shield 7. Also provided within the first vacuum vessel is a gas/gas heat exchanger 8 , which itself is connected via a valve 9 to a vacuum pump 10 .

一方、第2真空容器11には通常円筒状容器からなる被
験体収容室12のほぼ全体が挿設され。
On the other hand, almost the entirety of a subject storage chamber 12, which is usually a cylindrical container, is inserted into the second vacuum container 11.

蓋13を有する収容室の開口部は真空容器の外に位置せ
しめられる。そして、蓋13にはガス状冷媒の導入管及
び排出管の取付具14及び15が設けられる。第2真空
容器11は第1真空容器1と同様、バルブ9′を介して
真空ポンプ10′に接続される。また、収容室12の冷
媒出入口を蓋13に設ける代わりに、冷媒入口を収容室
の下部イに置き、冷媒の出し入れを図中の符号22’、
14″、イ。
The opening of the receiving chamber with the lid 13 is located outside the vacuum vessel. The lid 13 is provided with fittings 14 and 15 for an inlet pipe and a discharge pipe for the gaseous refrigerant. Like the first vacuum container 1, the second vacuum container 11 is connected to a vacuum pump 10' via a valve 9'. In addition, instead of providing the refrigerant inlet and outlet of the storage chamber 12 in the lid 13, the refrigerant inlet is placed in the lower part A of the storage chamber, and the refrigerant is inserted and removed with reference numeral 22' in the figure.
14″, i.

口、15′及び24で示す経路で行なうこともできる。It is also possible to use the routes shown at 15' and 24.

この場合、冷媒導管の取付具14′及び15′は、第2
真空容器11の側壁に設けても差し支えない。
In this case, the fittings 14' and 15' of the refrigerant conduits are
It may also be provided on the side wall of the vacuum container 11.

バルブV□を有する導管16、同じくv2を有する導管
17a、導管17b、17c、バルブv3を有する導管
18及びバルブ■、を有する導管19は、それぞれ真空
容器の外側に設けた循環ポンプ20が吐出されるガス状
冷媒を、第1真空容器1内に通して第2真空容器11に
挿設された被験体収容室12に供給するための導管であ
って、導管17aは循環ポンプの吐出側を、導管16及
びガス/ガス熱交換器8を介して第1熱交換器5に接続
させる。
Conduit 16 having valve V □, conduit 17a, conduit 17b, 17c also having v2, conduit 18 having valve v3, and conduit 19 having valve ■ are each discharged by a circulation pump 20 provided outside the vacuum container. The conduit 17a is a conduit for supplying a gaseous refrigerant through the first vacuum container 1 to the subject accommodation chamber 12 inserted in the second vacuum container 11, and the conduit 17a is connected to the discharge side of the circulation pump. It is connected to the first heat exchanger 5 via a conduit 16 and a gas/gas heat exchanger 8 .

導管17bは第1熱交換器5と第2熱交換器6を接続さ
せ、導管17cは第2熱交換器6と第1真空容器の冷媒
取り出し管取付具21とを接続させている。また、導管
19は導管16に吐出される冷媒を、直接導管17cに
合流させ、導管18は導管16に吐出される冷媒をガス
/ガス熱交換器8に通して導管17cに合流させるもの
である。従って、導管17aを流れる冷媒と、導管18
又は19を流れる冷媒の流量比を変えることにより、導
管17cに流れる冷媒の温度を調節することができる。
The conduit 17b connects the first heat exchanger 5 and the second heat exchanger 6, and the conduit 17c connects the second heat exchanger 6 and the refrigerant extraction pipe fitting 21 of the first vacuum vessel. Further, the conduit 19 allows the refrigerant discharged to the conduit 16 to directly join the conduit 17c, and the conduit 18 allows the refrigerant discharged to the conduit 16 to pass through the gas/gas heat exchanger 8 and join the conduit 17c. . Therefore, the refrigerant flowing through the conduit 17a and the conduit 18
Alternatively, by changing the flow rate ratio of the refrigerant flowing through the conduit 17c, the temperature of the refrigerant flowing through the conduit 17c can be adjusted.

第1真空容器1の冷媒取り出し管取付具21と、被験体
収容室12の蓋13に設けた冷媒導入管取付具14とは
導管22によって接続され、蓋13の冷媒排出管取付具
15と第1真空容器1の冷媒取り入れ管取付具23とは
導管24によって接続される。
The refrigerant outlet pipe fitting 21 of the first vacuum container 1 and the refrigerant introduction pipe fitting 14 provided on the lid 13 of the subject accommodation chamber 12 are connected by a conduit 22, and the refrigerant discharge pipe fitting 15 of the lid 13 and 1 is connected to the refrigerant intake pipe fitting 23 of the vacuum vessel 1 by a conduit 24.

この導管22及び24にはここを通過する冷媒の熱吸収
を最少にするために、断熱真空層を有する二重パイプが
通常使用される。また、導管22及び24を一本の断熱
真空管の中に固定した構造のパイプを使用することもで
きる。第1真空容器1の冷媒取り入れ管取付具23は、
バルブV、、V。
The conduits 22 and 24 are typically double pipes with an insulating vacuum layer to minimize heat absorption of the refrigerant passing therethrough. It is also possible to use a pipe structure in which the conduits 22 and 24 are fixed within a single insulated vacuum tube. The refrigerant intake pipe fitting 23 of the first vacuum container 1 is
Valve V,,V.

を有する導管25によりガス/ガス熱交換器8を介して
、循環ポンプ20の吸引側に接続される。
It is connected to the suction side of the circulation pump 20 via the gas/gas heat exchanger 8 by a conduit 25 having a .

尚、第1図において、26はヘリウムガスボンベ、27
.28は圧力計、29は放熱器、30は流量計、31は
冷媒導入管、32は冷媒排出管、33.34はヒーター
、35は温度計を示す。
In addition, in Fig. 1, 26 is a helium gas cylinder, and 27 is a helium gas cylinder.
.. 28 is a pressure gauge, 29 is a radiator, 30 is a flow meter, 31 is a refrigerant inlet pipe, 32 is a refrigerant discharge pipe, 33, 34 is a heater, and 35 is a thermometer.

上記のような構成の低温物性試験装置に於いて、例えば
被験体の臨界温度を測定するに際しては、収容室12内
に適当な手段で被験体を静置して蓋13で収容室を密閉
する。しかる後、ヘリウムガスボンベ26から供給され
るヘリウムガスにて、収容室内及び各導管内の空気を置
換しつつ、あるいは置換終了後、真空ポンプ10.10
’を作動させて第1真空容器1及び第2真空容器11内
を減圧させる。各真空容器内の圧力が例えば5 X 1
0−”Torr程度以下に減圧してから、冷凍機2を起
動させる。冷凍機が所望の冷凍レベルに到達した後は、
通常バルブ9,9′を閉じで真空ポンプ10.10’の
運転を停止する。
In the low-temperature physical property testing apparatus configured as described above, for example, when measuring the critical temperature of a subject, the subject is left still in the holding chamber 12 by an appropriate means, and the holding chamber is sealed with the lid 13. . Thereafter, while replacing the air in the storage chamber and each conduit with helium gas supplied from the helium gas cylinder 26, or after the replacement is completed, the vacuum pump 10.10
' is operated to reduce the pressure inside the first vacuum container 1 and the second vacuum container 11. For example, the pressure inside each vacuum container is 5 x 1
After reducing the pressure to about 0-” Torr or less, start the refrigerator 2. After the refrigerator reaches the desired freezing level,
Normally, the valves 9 and 9' are closed to stop the operation of the vacuum pumps 10 and 10'.

冷凍機2が所望のレベルに冷却されれば、バルブV1.
V2.V、及びV、を開放し、バルブV、、V、を閉じ
て循環ポンプ19の運転を開始する。循環ポンプから吐
出されるヘリウムガス(ガス状冷媒)は、ガス/ガス熱
交換器8を経て冷凍機の冷却部に隣接する第1熱交換器
5に供給されて冷却される。第1熱交換器5を通過した
冷媒は、さらに第2熱交換器6を通過することで一段と
冷却された後、導管17c、22及び冷媒導入管31を
通って被験体収容室12内に、好ましくはその底部に供
給される。冷ヘリウムガスは被験体を冷却し、冷媒排出
管32、導管24及び25を通って循環ポンプ19の吸
引側に戻される。従って、冷媒であるヘリウムガスを冷
凍機の冷却部と被験体収容室との間で、繰返し循環させ
ることにより本実施例の装置では、収容室内の被験体の
温度を約15Kまで低下させることができる。
Once the refrigerator 2 has been cooled to the desired level, valve V1.
V2. V and V are opened, valves V and V are closed, and operation of the circulation pump 19 is started. Helium gas (gaseous refrigerant) discharged from the circulation pump is supplied to the first heat exchanger 5 adjacent to the cooling section of the refrigerator via the gas/gas heat exchanger 8 and is cooled. The refrigerant that has passed through the first heat exchanger 5 is further cooled by passing through the second heat exchanger 6, and then passes through the conduits 17c and 22 and the refrigerant introduction pipe 31 into the subject accommodation chamber 12. Preferably it is fed at the bottom. The cold helium gas cools the subject and is returned to the suction side of the circulation pump 19 through the coolant discharge pipe 32, conduits 24 and 25. Therefore, by repeatedly circulating helium gas, which is a refrigerant, between the cooling part of the refrigerator and the subject accommodation chamber, the apparatus of this embodiment can reduce the temperature of the subject in the accommodation chamber to approximately 15K. can.

一般に超電導材料の臨界温度を測定するに際しては、被
験体を極低温から徐々に昇温させながら臨界温度を測定
する場合と、被験体を任意の温度から徐々に降温させて
臨界温度を測定する場合があるが、本発明の装置はその
いずれにも利用することができる。ちなみに、第1図に
示す装置で被験体を極低温から昇温させる場合には、上
記したような手順で収容室12内の被験体を極低温まで
冷却させた後、循環ポンプの運転を継続して冷凍機の運
転を停止し、収容室12に供給される冷媒の温度を温度
計35でモニターしながら、最も単純にはヒーター33
及び/又は34を働かせる。別法として、冷凍機の運転
を停止することなくバルブv2の開度を減少させると共
に、バルブv3又はv4の開度を増大させ、冷凍機の冷
却部に設けた熱交換器を通過する冷媒対当該熱交換器を
バイパスする冷媒の比率を増大させる手法でも、収容室
内の被験体温度を徐々に上昇させることができる。そし
て、上記のヒ−ターの出力及び/又は上記の冷媒比の増
大速度を適宜調節することで、被験体温度の昇温速度を
調節することができる。本装置は微小振動が問題となる
精密磁気測定等において特に有用と考えられる。
Generally, when measuring the critical temperature of superconducting materials, there are two methods: one is to measure the critical temperature while gradually increasing the temperature of the test object from an extremely low temperature, and the other is to measure the critical temperature by gradually lowering the temperature of the test object from an arbitrary temperature. However, the device of the present invention can be used for any of them. By the way, when raising the temperature of a test subject from a cryogenic temperature using the device shown in Figure 1, the circulation pump continues to operate after cooling the test subject in the containment chamber 12 to a cryogenic temperature using the procedure described above. The simplest method is to stop the operation of the refrigerator and monitor the temperature of the refrigerant supplied to the storage chamber 12 with the thermometer 35.
and/or work 34. Alternatively, the opening degree of valve v2 is decreased and the opening degree of valve v3 or v4 is increased without stopping the operation of the refrigerator, and the refrigerant pair is passed through a heat exchanger provided in the cooling section of the refrigerator. Techniques that increase the proportion of refrigerant that bypasses the heat exchanger can also gradually increase the temperature of the subject within the containment chamber. By appropriately adjusting the output of the heater and/or the rate of increase in the refrigerant ratio, the rate of increase in temperature of the subject can be adjusted. This device is considered to be particularly useful in precision magnetic measurements where minute vibrations are a problem.

第2図は被験体収容室を挿設した第2真空容器の周囲に
、磁石40が設置された本発明の別の実施例を、冷凍機
の冷却部が挿設された第1真空容器を省略して示すもの
であって、第1図と同一部分は第1図と同一番号が付さ
れている。
FIG. 2 shows another embodiment of the present invention in which a magnet 40 is installed around a second vacuum container in which a subject accommodation chamber is inserted, and a first vacuum container in which a cooling section of a refrigerator is inserted. This is omitted and the same parts as in FIG. 1 are given the same numbers as in FIG. 1.

磁石40は鉄芯磁石、超電導磁石(この磁石は別の容器
内に設置され、通常液体ヘリウムに浸されている)のい
ずれであっても差し支えない。
The magnet 40 can be either an iron core magnet or a superconducting magnet (this magnet is placed in a separate container and is typically immersed in liquid helium).

第2図に示す装置は、被験体Mについて核磁気共鳴(N
MR)、電子スピン共鳴(ESR)などの低温物性試験
を実施する際に好適である。
The apparatus shown in FIG.
It is suitable for conducting low-temperature physical property tests such as MR) and electron spin resonance (ESR).

第3図は光分光分析、メスバウワー分光分析(γ−線)
、X−線分光分析等に使用する低温物性試験装置の実施
例を、第1真空容器を省略して示したものである。第1
真空容器には、第2図に示した実施例と同様、第1図に
示した構成の第1真空容器が使用されることが勿論であ
る。
Figure 3 shows optical spectroscopy, Mössbauer spectroscopy (γ-ray)
, an embodiment of a low-temperature physical property testing device used for X-ray spectroscopic analysis, etc., is shown with the first vacuum vessel omitted. 1st
It goes without saying that the first vacuum container having the configuration shown in FIG. 1 is used as the vacuum container, similar to the embodiment shown in FIG. 2.

この実施例では図示の通り、第2真空容器11及び被験
体収容室12の側壁に、光線導入窓51及び52が設け
られる。これらの光線導入窓には、使用する光線の種類
に応じて、石英ガラス(光)、サファイヤ(光)、アル
ミニウム(γ−線)、ベリリウム(X−線)等を適宜使
用することができる。
In this embodiment, as illustrated, light beam introducing windows 51 and 52 are provided on the side walls of the second vacuum container 11 and the subject storage chamber 12. For these light beam introduction windows, quartz glass (light), sapphire (light), aluminum (γ-rays), beryllium (X-rays), etc. can be used as appropriate depending on the type of light beams used.

被験体Mは支持パイプ53及び固定板54を介して、収
容室12内の光線通路上に設置される。固定板には熱伝
導性に優れた銅板などを使用することを可とし、これに
は必要に応じでヒーター、温度計を付設することができ
る。尚、収容室12内で被験体Mを囲繞するチャンバー
55は、冷媒導入管31から収容室内に入り、冷媒排出
管32に向かうガスによって、被験体Mが変位してしま
う不都合を防止する保護チャンバーである。
The subject M is placed on the light path inside the storage chamber 12 via the support pipe 53 and the fixing plate 54 . A copper plate or the like with excellent thermal conductivity can be used as the fixing plate, and a heater and a thermometer can be attached to this plate if necessary. The chamber 55 surrounding the subject M in the accommodation chamber 12 is a protective chamber that prevents the subject M from being displaced by gas that enters the accommodation chamber from the refrigerant introduction pipe 31 and heads toward the refrigerant discharge pipe 32. It is.

第3図に示す第2真空容器の形状、光線導入窓の位置、
被験体の固定手段などは、使用する光線の種類又は実験
の目的に応じて、適宜変更することができ、また第2図
に示す如く、当該第2真空容器に磁石を付設することも
可能である。
The shape of the second vacuum container shown in FIG. 3, the position of the light beam introduction window,
The means for fixing the subject can be changed as appropriate depending on the type of light beam used or the purpose of the experiment, and it is also possible to attach a magnet to the second vacuum container as shown in Figure 2. be.

[発明の効果] 本発明の低温物性試験装置は、被験体収容室が挿設され
る真空容器と、冷凍機の冷却部が挿設される真空容器と
が互いに独立しているため、収容室内の被験体を冷却す
るに際して冷凍機を運転しても、その振動が被験体収容
室に伝達されることがない。また、NMR,ESR1光
実験等で第2真空容器の形状に制限がある場合でも、広
く対応することができる。さらに、第2真空容器に挿設
される被験体収容室は、その−部を第2真空容器外に開
口しているので、冷凍機の冷却部が挿設されている第1
真空容器はもちろん、被験体収容室が挿設されている第
2真空容器についても、その断熱真空を破壊することな
く、被験体の交換を行うことができる。
[Effects of the Invention] In the low-temperature physical property testing device of the present invention, the vacuum container in which the subject storage chamber is inserted and the vacuum container in which the cooling section of the refrigerator is inserted are independent of each other. Even if the refrigerator is operated to cool a subject, its vibrations will not be transmitted to the subject accommodation chamber. Further, even if there are restrictions on the shape of the second vacuum container in NMR, ESR1 optical experiments, etc., it can be widely used. Furthermore, since the test subject accommodation chamber inserted into the second vacuum container has its negative part open to the outside of the second vacuum container, the first part into which the cooling part of the refrigerator is inserted is
The subject can be exchanged not only in the vacuum container but also in the second vacuum container in which the subject storage chamber is inserted without destroying its adiabatic vacuum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である低温物性状=16− 験装置の断面図であり、第2図は本発明の別の実施例で
ある装置を、その一部を省略して示す断面図であり、第
3図は本発明のさらに別の実施例である装置を、その一
部を省略して示す実施例である。 1:第1真空容器、 2:冷凍機、 3:第1冷却部、
 4:第2冷却部、 5:第1熱交換器、 6:第2熱
交換器、 7:輻射熱シールド、 8:ガス/ガス熱交
換器、 io、io″真空ポンプ、 11:第2真空容
器、 12:被験体収容室、 13:蓋、20:循環ポ
ンプ、 26:ヘリウムガスボンベ、 特許出願人  小1)ヰ景 外1名 帛3゛図 特許庁長官 吉 1)文 毅 殿 事件の表示 昭和63年特許願第283480号 発明の名称 低温物性試験装置 補正をする者 事件との関係 特許出願人 大阪府高槻市日吉台1番町9−53 小 1)、棋 景(外1名)
Fig. 1 is a cross-sectional view of a low-temperature physical property = 16- test apparatus which is an embodiment of the present invention, and Fig. 2 shows an apparatus which is another embodiment of the present invention, with some parts omitted. FIG. 3 is a sectional view showing an apparatus according to still another embodiment of the present invention, with some parts thereof omitted. 1: first vacuum container, 2: refrigerator, 3: first cooling section,
4: Second cooling section, 5: First heat exchanger, 6: Second heat exchanger, 7: Radiant heat shield, 8: Gas/gas heat exchanger, io, io'' vacuum pump, 11: Second vacuum vessel , 12: Subject storage chamber, 13: Lid, 20: Circulation pump, 26: Helium gas cylinder, Patent applicant: 1st grade, 1st grade picture, 1st picture, 3rd picture: Director General of the Patent Office, Yoshi 1) Display of Moon Take-don incident, Showa era Patent Application No. 283480 of 1963 Name of the invention Relationship with the case of person who makes amendments to low-temperature physical property testing equipment Patent applicant 1st grade, 9-53 Hiyoshidai 1-cho, Takatsuki City, Osaka Prefecture Kei Kei (1 other person)

Claims (1)

【特許請求の範囲】 1、(a)ガス状冷媒を冷却するための熱交換器が隣接
された冷却部が第1真空容器内に位置する冷凍機と、 (b)第1真空容器外に位置し、ガス状冷媒を循環する
ためのポンプと、 (c)ガス状冷媒の入口及び出口を具えて前記第1真空
容器とは別の第2真空容器内にほぼ全体が収められ、蓋
を有する開口部が第2真空容器外に位置する被験体収容
室と、 (d)前記ポンプの吐出側に接続され、ポンプから吐出
されたガス状冷媒を、前記冷凍機の冷却部に隣接された
熱交換を経由して、前記被験体収容室の冷媒入口に供給
するためのガス状冷媒移送用第1導管と、 (e)前記被験体収容室の冷媒出口に接続され、当該収
容室内の冷媒を前記ポンプの吸引側に戻すためのガス状
冷媒移送用第2導管、から構成される低温物性試験装置
。 2、前記のポンプから吐出されて第1導管を流れるガス
状冷媒を、冷凍機の冷却部に隣接された熱交換器に供給
するのに先立って、前記第2導管を流れるガス状冷媒と
間接的に熱交換させるための熱交換器を、前記の第1真
空容器内に設けたことをさらに特徴とする特許請求の範
囲第1項記載の低温物性試験装置。
[Claims] 1. (a) A refrigerator in which a cooling part adjacent to a heat exchanger for cooling a gaseous refrigerant is located inside a first vacuum vessel; (b) outside the first vacuum vessel. (c) a second vacuum container separate from the first vacuum container, comprising a gaseous refrigerant inlet and an outlet, and having a lid; (d) connected to the discharge side of the pump, the gaseous refrigerant discharged from the pump is connected to the chamber adjacent to the cooling section of the refrigerator; (e) a first conduit for transferring a gaseous refrigerant for supplying the refrigerant to the refrigerant inlet of the subject accommodation chamber via heat exchange; a second conduit for transporting gaseous refrigerant to return the gaseous refrigerant to the suction side of the pump. 2. Before the gaseous refrigerant discharged from the pump and flowing through the first conduit is supplied to the heat exchanger adjacent to the cooling section of the refrigerator, the gaseous refrigerant flowing through the second conduit is indirectly connected to the gaseous refrigerant flowing through the second conduit. 2. The low-temperature physical property testing apparatus according to claim 1, further comprising a heat exchanger provided in said first vacuum container for performing heat exchange.
JP28348088A 1988-11-09 1988-11-09 Low temperature physical property test equipment Expired - Lifetime JP2645346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28348088A JP2645346B2 (en) 1988-11-09 1988-11-09 Low temperature physical property test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28348088A JP2645346B2 (en) 1988-11-09 1988-11-09 Low temperature physical property test equipment

Publications (2)

Publication Number Publication Date
JPH02131143A true JPH02131143A (en) 1990-05-18
JP2645346B2 JP2645346B2 (en) 1997-08-25

Family

ID=17666091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28348088A Expired - Lifetime JP2645346B2 (en) 1988-11-09 1988-11-09 Low temperature physical property test equipment

Country Status (1)

Country Link
JP (1) JP2645346B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430920A (en) * 1990-05-23 1992-02-03 Makino Milling Mach Co Ltd Electric discharging method and device
JPH04126513A (en) * 1990-08-31 1992-04-27 Hitachi Plant Eng & Constr Co Ltd Clean room
CN102288634A (en) * 2010-06-17 2011-12-21 中国科学院理化技术研究所 Thermal physical property measuring device
JP2013140130A (en) * 2011-12-28 2013-07-18 Kookmin University Industry-Academic Cooperation Foundation Moessbauer spectroscopy system for applying magnetic field at cryogenic temperature using refrigerator
CN105675381A (en) * 2016-03-16 2016-06-15 安徽万瑞冷电科技有限公司 Super-low-vibration helium cold accumulation system and control method thereof
CN107213932A (en) * 2017-04-20 2017-09-29 东莞中子科学中心 A kind of Multi-example thermostat tested for small-angle scattering
CN107389455A (en) * 2017-09-05 2017-11-24 中国工程物理研究院流体物理研究所 The heat sink and method of sample initial temperature in being compressed for Magnetic driving oblique wave

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3907120B2 (en) * 2004-02-05 2007-04-18 株式会社リガク Sample support device for X-ray analysis and X-ray analysis device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430920A (en) * 1990-05-23 1992-02-03 Makino Milling Mach Co Ltd Electric discharging method and device
JPH04126513A (en) * 1990-08-31 1992-04-27 Hitachi Plant Eng & Constr Co Ltd Clean room
CN102288634A (en) * 2010-06-17 2011-12-21 中国科学院理化技术研究所 Thermal physical property measuring device
JP2013140130A (en) * 2011-12-28 2013-07-18 Kookmin University Industry-Academic Cooperation Foundation Moessbauer spectroscopy system for applying magnetic field at cryogenic temperature using refrigerator
CN105675381A (en) * 2016-03-16 2016-06-15 安徽万瑞冷电科技有限公司 Super-low-vibration helium cold accumulation system and control method thereof
CN105675381B (en) * 2016-03-16 2018-05-22 安徽万瑞冷电科技有限公司 Extremely low vibration helium cold accumulation system
CN107213932A (en) * 2017-04-20 2017-09-29 东莞中子科学中心 A kind of Multi-example thermostat tested for small-angle scattering
CN107389455A (en) * 2017-09-05 2017-11-24 中国工程物理研究院流体物理研究所 The heat sink and method of sample initial temperature in being compressed for Magnetic driving oblique wave

Also Published As

Publication number Publication date
JP2645346B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
EP2549202B1 (en) Liquid Helium-free cooling system for electron paramagnetic resonance spectrometer
CN108870821B (en) Low-temperature cooling equipment using refrigerator as cold source
US3894403A (en) Vibration-free refrigeration transfer
US7631507B2 (en) Methods and devices for polarized samples for use in MRI
US9494344B2 (en) Method for reconfiguring a cryostat configuration for recirculation cooling
US20170284725A1 (en) Cryostat with a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
US20060225437A1 (en) Ultracryostat and frigidity supplying apparatus
JP2006138851A (en) Nmr spectrometer with refrigerator cooling
JP2008014878A (en) Cryostat, sample mounting apparatus, and temperature control method
JPH02131143A (en) Low temperature physical property testing device
CN105873509A (en) Magnetic resonance imaging apparatus
WO2013172148A1 (en) Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device
US10073153B2 (en) Device for attaching and detaching NMR probe
JP2007051850A (en) Liquid helium recondensation device and method for analytical superconductive magnet
WO2014203826A1 (en) Nmr system
Montoya et al. Methods to simplify cooling of liquid helium cryostats
US20220178497A1 (en) Cryostat for operation with liquid helium and method of operating the same
Chernikov et al. Study of heat inflow using heat exchange gas in a shaft cryostat based on GM cryocooler
JP2004116914A (en) Cooling pipe and cryogenic cryostat using it
Garcia Boiling in liquid hydrogen under gravity compensated with a magnetic field
US6003321A (en) Open flow helium cryostat system and related method of using
US20230110192A1 (en) Superconducting magnet device and method for increasing temperature thereof
Piegsa et al. High-power closed-cycle 4He cryostat with top-loading sample exchange
JP3050830B2 (en) Cryostat
JP2582377B2 (en) Low temperature physical property measurement device