WO2013172148A1 - Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device Download PDF

Info

Publication number
WO2013172148A1
WO2013172148A1 PCT/JP2013/061470 JP2013061470W WO2013172148A1 WO 2013172148 A1 WO2013172148 A1 WO 2013172148A1 JP 2013061470 W JP2013061470 W JP 2013061470W WO 2013172148 A1 WO2013172148 A1 WO 2013172148A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
helium
magnetic resonance
resonance imaging
refrigerant
Prior art date
Application number
PCT/JP2013/061470
Other languages
French (fr)
Japanese (ja)
Inventor
津田 宗孝
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2014515549A priority Critical patent/JPWO2013172148A1/en
Publication of WO2013172148A1 publication Critical patent/WO2013172148A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus (Magnetic Resonance Imaging apparatus, hereinafter referred to as an MRI apparatus), and more particularly to an MRI apparatus using a superconducting magnet equipped with a cryocooler.
  • an MRI apparatus Magnetic Resonance Imaging apparatus, hereinafter referred to as an MRI apparatus
  • an MRI apparatus using a superconducting magnet equipped with a cryocooler.
  • the MRI device arranges the subject in a magnetic field space of uniform intensity, detects a nuclear magnetic resonance signal (Nuclear Magnetic Resonance Signal, hereinafter referred to as NMR signal) from the examination site of the subject, and calculates the signal It is a diagnostic device that obtains medical diagnostic information by processing and obtaining a tomographic image of an examination site.
  • NMR signal Nuclear Magnetic Resonance Signal
  • An MRI apparatus using a permanent magnet has the advantages of easy maintenance and low running costs.
  • an MRI apparatus using a superconducting magnet has a merit that a high magnetic field strength (0.5 Tesla or higher) can be obtained, and an advanced diagnostic function can be used by using a high-sensitivity NMR signal.
  • a superconducting magnet can generate a stable high magnetic field semipermanently by passing a current through a coil in a superconducting state. In order to bring this coil into a superconducting state, it is necessary to keep the coil cooled below the critical temperature inherent to the wire used for the coil. Ni 3 Sn and NbTi are generally used as superconducting wires. All of these require liquid helium as a refrigerant.
  • MRI systems using superconducting magnets are installed in areas where a network of refrigerant services for transporting liquid helium from a helium liquefaction base by truck or other means of transportation is established. It becomes necessary to do. For this reason, the area where the MRI apparatus using the superconducting magnet can be installed is limited.
  • Patent Document 1 discloses that a cryocooler is incorporated in a superconducting magnet, vaporized helium gas is cooled, recondensed, and reused as liquid helium. Thereby, reduction of liquid helium in a superconducting magnet can be controlled.
  • a power failure or system failure that causes the cryocooler to lose its cooling capacity
  • helium gas cannot be condensed into liquid helium, and helium gas is released into the atmosphere through the pressure relief valve of the superconducting magnet. Is done. For this reason, a service is also required in which liquid helium is transported by a truck or the like and supplied to the superconducting magnet.
  • Patent Document 2 a large gas tank that stores helium gas released from a superconducting magnet at room temperature in the event of a power outage or system failure is connected to the superconducting magnet, and after recovery from a power outage or system failure, Proposed a configuration in which the helium gas is liquefied and returned to the superconducting magnet for reuse.
  • a huge gas tank is required to store the helium gas released from the superconducting magnet at the time of a power failure or the like in the gas tank.
  • a heat quantity of several hundred milliwatts to 1 watt enters the helium vessel.
  • One watt of heat vaporizes 1.25 liters of liquid helium per hour, resulting in approximately 10 liters of helium gas.
  • the internal pressure of the helium container rises, and when a predetermined pressure is exceeded, the safety valve opens and is released from the helium container into the atmosphere.
  • the helium gas is warmed to room temperature and further expanded, and the volume of 10 liters in the helium container expands to about 700 liters.
  • Patent Document 2 when storing the released helium gas in the gas tank without releasing it all into the atmosphere, prepare a 3 meter square room (18 m 3 as 2 meters in height). In this case, a gas tank must be placed in advance. For this reason, the problem that the room for arrange
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of returning a refrigerant evaporated by a power failure or the like to a superconducting magnet with high efficiency.
  • a gas bag having a structure in which the internal pressure is maintained constant by expanding and contracting according to the amount of gas inside is connected to the refrigerant container, the cooler is stopped during a power failure, and the refrigerant gas generated in the refrigerant container Store.
  • the refrigerant gas is returned to the refrigerant container while the gas bag is contracted, so that all the gas flowing out to the gas bag can be returned to the refrigerant container.
  • the MRI apparatus since the refrigerant vaporized due to a power failure or the like can be returned to the superconducting magnet with high efficiency, the MRI apparatus can be used even in an area where the network of the refrigerant service is not developed.
  • FIG. 2 is a cross-sectional view of the upper cryostat 104 of the superconducting magnet 101 constituting the MRI apparatus of FIG.
  • FIG. 2 is an explanatory diagram showing the connection between the superconducting magnet 101 and the gas back 125 of FIG.
  • the flowchart which shows the operation
  • FIG. 5 is a graph showing the relationship between the pressure of the helium container and the volume of the gas bag during the operation of the flowchart of FIG.
  • FIG. 10 is a view taken in the direction of an arrow A in FIG. 1 showing a mark 801 indicating the position when the gas bag 125 is most expanded in the fifth embodiment.
  • An MRI apparatus includes a superconducting coil, a refrigerant container containing the superconducting coil, a vacuum container covering the refrigerant container, and a cooler having a tip inserted into the refrigerant container.
  • a magnet Use a magnet.
  • the superconducting magnet preferably includes a radiation shield plate between the refrigerant container and the vacuum container.
  • the refrigerant container is connected with a gas bag having a structure that maintains the internal pressure constant by expanding and contracting according to the amount of gas inside.
  • the refrigerant container is connected to an exhaust pipe that guides the refrigerant gas generated in the refrigerant container to the outside of the vacuum container when the cooler is stopped, and the gas bag is connected to the refrigerant container via the exhaust pipe.
  • the gas bag expands and contracts according to the amount of gas inside while maintaining a constant internal pressure, so that all the gas stored in the gas bag can be returned to the refrigerant container.
  • the exhaust pipe is branched into a first transport pipe and a second transport pipe, and each is connected to a gas bag.
  • the first transport pipe is provided with a first one-way valve that opens when the internal pressure of the refrigerant container is higher than the internal pressure of the gas bag by the first pressure difference or more to flow the refrigerant gas from the refrigerant container to the gas bag.
  • the second transport pipe is provided with a second one-way valve that opens when the internal pressure of the gas bag is higher than the internal pressure of the refrigerant container by a second pressure difference or more and allows the refrigerant gas to flow from the gas bag to the refrigerant container.
  • the first pressure difference is set to a pressure difference larger than the second pressure difference.
  • the second transport pipe is preferably connected to the upper part of the gas bag. This is to prevent the impurity gas from returning to the refrigerant container.
  • a part of the exhaust pipe is disposed along the radiation shield plate so as to be in thermal contact with the radiation shield plate over a predetermined length. Thereby, the radiation shield plate can be cooled by the refrigerant gas flowing out of the refrigerant container.
  • the exhaust pipe can be provided with a removal section that separates impurity gas mixed in the refrigerant gas.
  • the removal unit is configured to have a liquid reservoir for collecting an impurity liquid in which the impurity gas is liquefied in the middle of the exhaust pipe.
  • the liquid reservoir is preferably provided in a region where the temperature of the exhaust pipe is not higher than the boiling point where the impurity gas is liquefied and is not lower than the melting point.
  • the liquid reservoir can be provided with a discharge portion for discharging the accumulated impurity liquid to the outside of the superconducting magnet.
  • the discharge unit includes a heater that heats and vaporizes the impurity liquid in the liquid reservoir.
  • the gas bag described above may be divided into a plurality of parts.
  • the exhaust pipe may have a configuration in which a plurality of gas bags are connected in parallel.
  • the first and second transport pipes and the first and second one-way valves are arranged for each of the plurality of gas bags.
  • the first and second one-way valves arranged for each of the plurality of gas bags are configured so that the set first pressure difference and second pressure difference are different for each of the plurality of gas bags arranged. Also good. Thereby, it is possible to rank which gas bag is preferentially stored with the refrigerant gas.
  • the MRI apparatus includes a superconducting magnet including a refrigerant container that houses a superconducting coil, a radiation shield plate that covers the refrigerant container, a vacuum container that covers the radiation shield plate, and a cooler with a tip inserted inside the refrigerant container.
  • the refrigerant container is connected to an exhaust pipe that guides refrigerant gas generated in the refrigerant container to a gas bag outside the vacuum container when the cooler is stopped.
  • the exhaust pipe is provided with a removing unit that separates impurity gas mixed in the refrigerant gas.
  • the exhaust pipe of the MRI apparatus of the second aspect can be provided with a removing unit that separates impurity gas mixed in the refrigerant gas.
  • the removal unit is configured to have a liquid reservoir for collecting an impurity liquid in which the impurity gas is liquefied in the middle of the exhaust pipe.
  • the liquid reservoir is preferably provided in a region where the temperature of the exhaust pipe is not higher than the boiling point where the impurity gas is liquefied and is not lower than the melting point.
  • the liquid reservoir can be provided with a discharge portion for discharging the accumulated impurity liquid to the outside of the superconducting magnet.
  • the discharge unit includes a heater that heats and vaporizes the impurity liquid in the liquid reservoir.
  • an MRI apparatus gas recovery apparatus is provided.
  • This apparatus is connected to a superconducting magnet of the MRI apparatus, and has a transport pipe that guides the refrigerant gas generated from the refrigerant container that houses the superconducting coil, and a gas bag that stores the refrigerant gas connected to the transport pipe.
  • the gas bag is a structure that keeps the internal pressure constant by expanding and contracting according to the amount of gas inside.
  • the transport pipe of the gas recovery device is divided into a first transport pipe and a second transport pipe, and each is connected to a gas bag.
  • the first transport pipe is provided with a first one-way valve that opens when the internal pressure of the refrigerant container is higher than the internal pressure of the gas bag by a first pressure difference or more to flow the refrigerant gas from the refrigerant container to the gas bag.
  • the second transport pipe is provided with a second one-way valve that opens when the internal pressure of the gas bag is higher than the internal pressure of the refrigerant container by a second pressure difference or more and allows the refrigerant gas to flow from the gas bag to the refrigerant container. Yes.
  • a method for operating an MRI apparatus provided with a superconducting magnet is provided.
  • the cooler provided in the superconducting magnet stops, the first step of stopping the photographing operation, and if the internal pressure of the refrigerant container rises and reaches a predetermined pressure, the refrigerant gas in the refrigerant container
  • the photographing operation can be performed in parallel with the liquefaction by the cooler.
  • the refrigerant gas in the refrigerant container is preferably guided to the gas bag through the one-way valve
  • the refrigerant gas in the gas bag is preferably returned to the refrigerant container through the one-way valve.
  • the third step it is preferable to correct the variation in the uniformity of the static magnetic field of the superconducting magnet caused by the pressure change in the refrigerant container before performing the photographing operation.
  • FIG. 1 shows an overall configuration in a state where the MRI apparatus of the present embodiment is installed in a medical facility.
  • An open-structure superconducting magnet 101 is used as a magnet for generating a static magnetic field of this MRI apparatus.
  • an upper cryostat 104 and a lower cryostat 105 are disposed opposite to each other across a magnetic field space 103 in which the subject 102 is disposed.
  • Each of the internal spaces of the upper cryostat 104 and the lower cryostat 105 contains a superconducting coil serving as a magnetomotive force source and is filled with liquid helium as a refrigerant.
  • the upper cryostat 104 is connected to the lower cryostat 105 by a connecting pipe 106 and is supported by the connecting pipe 106 as a support, thereby forming an open structure in which the front, rear, right and left of the magnetic field space 103 are vacant. As a result, the feeling of pressure applied to the subject 102 is relieved and a gentle examination environment is provided.
  • Detailed configurations of the upper cryostat 104 and the lower cryostat 105 will be described in detail later.
  • a cold head 107 is incorporated in the superconducting magnet 101.
  • a compressor unit 108 is connected to the cold head 107, and compressed refrigerant gas (hereinafter also referred to as helium gas) is supplied from the compressor unit 108.
  • the cold head 107 and the compressor unit 108 constitute a cooler for the superconducting magnet 101 (hereinafter also referred to as a cryocooler).
  • the cold head 107 cools the superconducting magnet 101 by a cooling effect during adiabatic expansion of the compressed refrigerant gas.
  • the cold head 107 cools a radiation shield, which will be described later, in the superconducting magnet 101, and in the upper cryostat 104 and the lower cryostat 105, the refrigerant gas (helium gas) generated by the vaporization of the refrigerant (liquid helium). It is cooled, condensed again into liquid helium, and returned to the upper cryostat 104.
  • a radiation shield which will be described later
  • the cold head 107 is controlled so as to have a cooling capacity necessary for recondensing the helium vaporized by the amount of heat that has entered the upper cryostat 104 and the lower cryostat 105 without excess or deficiency. Therefore, since the vaporized helium gas is not released into the atmosphere, a closed type superconducting magnet is realized.
  • the superconducting magnet 101 is provided with a control system including various sensors and circuits. Specifically, the superconducting magnet 101 incorporates a plurality of temperature sensors and pressure sensors for monitoring its operating state, and its sensor connection terminal 109 is connected to the magnet control unit 110.
  • the magnet control unit 110 monitors the operating state of the superconducting magnet 101 and outputs a signal necessary for controlling the cryocooler to a heater and a compressor unit 108 incorporated in the superconducting magnet 101.
  • a stable static magnetic field having a high magnetic field strength (for example, 1 Tesla) is generated in the magnetic field space 103.
  • This stable magnetic field is realized by flowing a permanent current (for example, 450 amperes) through a superconducting coil cooled to a temperature lower than the critical temperature at which it becomes a superconducting state by liquid helium (temperature 4.2 Kelvin).
  • a pair of shim plates 111 are attached to the surfaces of the upper cryostat 104 and the lower cryostat 105 on the magnetic field space 103 side of the superconducting magnet 101.
  • the shim plate 111 generates a magnetic field that improves the magnetic field uniformity of a spherical space (for example, 40 centimeters in diameter) in the center of the magnetic field space 103.
  • the shim plate 111 includes a plate member having a plurality of screw holes and magnetic small screws embedded in predetermined screw holes among the plurality of screw holes.
  • the magnetic field uniformity of the above-mentioned spherical space can be adjusted to a target value (eg, 3 ppm or less).
  • a pair of gradient magnetic field coils 112 that generate a gradient magnetic field are arranged on the surface of the magnetic field space 103 of the shim plate 111.
  • the gradient coil 112 has a flat plate structure so as not to hinder the open structure of the superconducting magnet 101.
  • Each of the pair of upper and lower gradient magnetic field coils 112 includes three types of stacked coils of x, y, and z, and these generate gradient magnetic fields in three axial directions orthogonal to each other.
  • a gradient magnetic field power supply 113 for applying a current independently is connected to each of the x coil, the y coil, and the z coil.
  • the upper z coil When a positive current is applied to the z coil from the gradient power amplifier 113, the upper z coil generates a magnetic flux in the same direction as the magnetic flux generated by the superconducting magnet 101, and the lower z coil generates a magnetic flux in the opposite direction. To do. As a result, a gradient in which the magnetic flux density gradually decreases from the top to the bottom of the z-axis (vertical axis) of the magnetic field space 103 can be formed.
  • the x coil and the y coil give a gradient magnetic field that makes the magnetic flux density generated by the superconducting magnet 101 gradient along the x axis and the y axis (both horizontal axes), respectively.
  • These x coils, y coils, and z coils can also function as shim coils of primary components of x, y, and z with non-uniform magnetic fields, respectively.
  • the gradient magnetic field power supply 113 can output the current for generating the gradient by superimposing the shim current for improving the magnetic field uniformity.
  • the gradient coil 112 In addition to the x coil, the y coil, and the z coil, the gradient coil 112 generates a Bo coil that adjusts the magnetic field intensity generated by the superconducting magnet 101 and a high-order mode magnetic field in the x, y, and z directions.
  • a shim coil for example, a coil that generates a magnetic field of x 2 , y 2 , x 3 , x 2 + y 2 is provided.
  • a shim power source 114 is connected to these coils and a current is applied thereto.
  • a pair of high-frequency coils 115 are attached to the magnetic field space 103 side of the gradient coil 112.
  • the high-frequency coil 115 is also a flat-plate coil so as not to hinder the open structure of the superconducting magnet 101.
  • a high frequency power source 116 is connected to the pair of upper and lower high frequency coils 115, and a high frequency current is supplied.
  • a high-frequency magnetic field necessary for nuclear magnetic resonance of the nuclear spin at the inspection site of the subject 102 is generated. For example, it generates a 42 megahertz high-frequency magnetic field in which hydrogen nuclei cause nuclear magnetic resonance with a static magnetic field strength of 1 Tesla.
  • a detection coil 117 for detecting an NMR signal is disposed at substantially the center position of the magnetic field space 103, that is, at the examination site of the subject 102.
  • This detection coil 117 detects a slight magnetic field fluctuation due to the above-described precession of the nuclear spin as an induced current (electric signal).
  • the NMR signal is passed to the high frequency amplifier 118 connected to the detection coil 117.
  • the high frequency amplifier 118 the NMR signal is subjected to amplification / detection signal processing to be converted into a digital signal suitable for computer arithmetic processing.
  • the computer 119 receives the NMR signal converted into a digital signal from the high-frequency amplifier 118, converts it into an image or spectrum chart for use in medical diagnosis, and stores it in a storage device (not shown in the figure) in the computer 119. ) And displayed on the display 120.
  • the computer 119 stores programs such as an image analysis function useful for diagnosis. Operation instructions to the computer 119 are input via an input device 121 such as a keyboard.
  • the computer 119 stores the control program for controlling the operation of each unit and executing various MRI examination (imaging) modes, for example, the high-speed spin echo method and the diffusion weighted echo planar method. That is, the magnet control unit 110, the gradient magnetic field power supply 113, the shim power supply 114, the high frequency power supply 116, and the high frequency amplifier 118 are connected to the computer 119, respectively, and their operations are controlled with programmed contents. Thereby, a gradient magnetic field or a high-frequency magnetic field is applied at a predetermined timing, and an NMR signal is acquired by a predetermined MRI examination (imaging) method. The operating states of these units can be recorded in the memory of the computer 119. Also, the operation status information of each unit recorded in the computer 119 is transmitted to an external monitoring base via a communication control device (not shown in the figure), enabling remote monitoring from the external monitoring base. .
  • imaging various MRI examination
  • a patient table 122 that transports the subject 102 to the center of the magnetic field space 103 is incorporated in the front surface of the superconducting magnet 101.
  • the superconducting magnet 101 and the patient table 122 are installed in an examination room 123 provided with an electromagnetic shield.
  • the electromagnetic shield prevents electromagnetic waves generated by an external device from entering the detection coil 117 as noise.
  • an extendable gas back 125 is connected to the superconducting magnet 101 via an exhaust pipe (hereinafter referred to as a helium exhaust pipe) 124. Details of the function of the gas bag 125 will be described later.
  • the computer 119 of the MRI apparatus incorporates a function program for analyzing and correcting the magnetic field performance of the magnetic field space 103.
  • This program executes the following steps. (1) The NMR signal of the subject 102 disposed in the magnetic field space 103 is measured in a state where no current is supplied to the gradient magnetic field coil 112, the Bo coil, and all the shim coils (examination mode). (2) The measured NMR signal is Fourier transformed by the computer 119, and the frequency component of the NMR signal is obtained. (3) A magnetic field corresponding to the difference between the nuclear magnetic resonance frequency of 42 megahertz of the hydrogen nuclear spin and the frequency obtained in the above step is obtained by calculation with a magnetic field intensity of 1 Tesla.
  • the shim power supply 114 is controlled to generate a differential magnetic field from the Bo coil.
  • the NMR signal of the subject 102 is measured in a state where a current of, for example, 10 amperes is applied to the x coil.
  • the measured NMR signal is expanded with a spherical harmonic function, and the error magnetic field in the x-axis direction of the imaging space 103 is analyzed.
  • the error magnetic field component is analyzed for the y-axis and the z-axis.
  • Gradient magnetic field power supply 113 so that a shim current that corrects the error magnetic field components of the x-axis, y-axis, and z-axis with the magnetic fields of the x-coil, y-coil, z-coil, and shim coil of the gradient coil 112 flows.
  • the shim power supply 114 is controlled.
  • the static magnetic field in the magnetic field space 103 is kept in an optimum state for MRI examination (imaging).
  • a magnetic field change due to a change in internal pressure of the refrigerant container of the superconducting magnet 101 due to a power failure, a magnetic field change over time, and an error magnetic field due to the magnetic susceptibility of the examination site of the subject 102 for example, It is possible to correct the magnetic medical implant influence).
  • the computer 119 Based on the pressure signal from the magnetic field control unit 110, the computer 119 refers to the relationship measured in advance, controls the gradient magnetic field power supply 113 and the shim power supply 114, and compensates for the magnetic field change accompanying the pressure change.
  • This function is suitable for, for example, an MRI examination of an emergency patient because it is not necessary to measure an NMR signal for magnetic field correction before the MRI examination and can be corrected in real time.
  • FIG. 2 is a diagram showing details of the upper cryostat 104 and the cold head 107 shown in FIG.
  • the internal structure of the upper cryostat 104 and the lower cryostat 105 is basically vertically symmetric about the magnetic field space 103, so only the upper cryostat 104 will be described here.
  • the upper cryostat 104 is covered with a vacuum vessel 201 on the outside.
  • the vacuum vessel 201 is made of stainless steel having a thickness of 10 millimeters, for example, and has rigidity capable of withstanding the weight of the main body and the internal vacuum pressure.
  • a refrigerant container (hereinafter referred to as a helium container) 202 is disposed inside the vacuum container 201.
  • a plurality of superconducting coils 203 (only one is shown in the figure) are arranged inside the helium vessel 202 and fixed to the helium vessel 202.
  • the helium vessel 202 is made of stainless steel having a thickness of 15 millimeters, for example, and has rigidity capable of withstanding the electromagnetic force applied to the superconducting coil 203 and the pressure difference between the inside and outside.
  • the inside of the helium vessel 202 is normally filled with liquid helium 204 to approximately 90% of its volume, and the superconducting coil 203 is immersed in the liquid helium 204. As a result, the superconducting coil 203 is cooled to 4.2 Kelvin ( ⁇ 268.8 ° C.), which is the boiling point temperature of the liquid helium 204, and maintains the superconducting state. Further, a second cooling stage 216 of the cold head 107 is inserted into the helium gas reservoir in the upper part of the helium container 202, and the helium gas in the helium container 202 is directly cooled and liquefied (condensed).
  • the gap between the vacuum vessel 201 and the helium vessel 202 is a vacuum layer, and a radiation shield plate 212 is disposed in the middle.
  • the radiation shield plate 212 is made of, for example, aluminum having a thickness of 5 mm, and its surface is polished to a mirror surface to suppress radiant heat.
  • the radiation shield plate 212 is cooled by being in thermal contact with the first cooling stage 213 of the cold head 107 and functions to further reduce radiant heat.
  • a super insulator 214 (only a part is shown in FIG. 2) is arranged in the gap between the vacuum vessel 201 and the radiation shield plate 212.
  • the super insulator 214 is composed of, for example, multiple layers of polyethylene sheets on which an aluminum thin film is deposited, and is effective in reducing radiant heat.
  • load supports 215 are attached at a plurality of locations in order to fix their positions.
  • the load support 215 is reinforced with a material having low heat conductivity, such as stainless steel. It is made of carbon resin or reinforced plastic resin.
  • the amount of heat applied from the vacuum vessel 201 at room temperature (about 300 Kelvin) to the helium vessel 202 at the boiling point of helium (about 4 Kelvin) is suppressed to about 1 watt in total of radiant heat and conduction heat. It has been.
  • the cold head 107 is adjusted so that the cooling capacity is almost in thermal equilibrium with the heat applied to the helium vessel 202.
  • the first cooling stage 213 of the cold head 107 is 43 Kelvin ( ⁇ 230 ° C.), has a cooling capacity of about 45 watts, and cools the radiant heat shield plate 212 as described above.
  • the second cooling stage 216 is 4 Kelvin ( ⁇ 269 ° C.) and has a cooling capacity of about 1.4 watts, and the helium gas is directly cooled and condensed in the helium vessel 202.
  • a liquid level sensor 205 for measuring the liquid level of the liquid helium 204 and a pressure sensor 206 for measuring the pressure of the helium gas evaporated from the liquid helium 204 are incorporated.
  • a heater element 207 for heating liquid helium is also arranged in the helium vessel 202.
  • a predetermined value for example, about 5 KPa
  • liquid helium is slightly added.
  • the pressure is kept constant by heating and vaporizing. This control is performed by the magnet control unit 110.
  • the output signal lines of the sensors 205 and 206 and the heater element 207 are connected from the sensor connection terminal 109 to the magnet control unit 110 via the hermetic seal 208 so as not to cause a vacuum leak.
  • a tubular service port 209 is connected to the upper part of the helium vessel 202.
  • This service port 209 is used when liquid helium transported from the outside is injected into the helium container 202.
  • liquid helium can be injected into the helium vessel 202 by removing the stopper 210 at the top of the service port 209 and inserting a liquid injection pipe (not shown in the figure).
  • the pipe branches from the middle of the service port 209, and a rupture plate 211 that ruptures at a predetermined pressure (for example, 40 KPa) is connected to the branched pipe.
  • the magnet control unit 110 In the normal operation state of the MRI apparatus, the magnet control unit 110 described above supplies a current to the heater element 207 to maintain the pressure of the helium vessel 202 at about 5 KPa.
  • a predetermined pressure for example, 40 KPa
  • the rupture plate 211 is ruptured, and helium gas is safely released to the outside. .
  • no pressure higher than a predetermined pressure is generated in the helium vessel 202, and safety is maintained.
  • the liquid helium gradually vaporizes. This vaporization rate is not as great as during quenching or emergency magnetic field decay.
  • the generated helium gas is allowed to flow through the helium exhaust pipe 124 to the extendable gas bag 125 and stored. Thereby, the pressure of the helium vessel 202 is maintained so as not to exceed a predetermined pressure (for example, 20 KPa).
  • the change in the magnetic field performance of the magnetic field space 103 can be corrected by the gradient coil 112, the Bo coil, and the shim coil. Can do. Further, when the power failure or system failure is recovered and the cold head 107 is restarted, the helium gas stored in the gas bag 125 can be returned to the helium vessel 202 and liquefied. This will be described in detail below.
  • One end of a helium exhaust pipe 124 is connected to the upper portion of the helium vessel 202 as shown in FIG.
  • a portion of the helium exhaust pipe 124 is disposed so as to contact the outer surface of the radiation shield plate 212 over a predetermined length, and constitutes a thermal contact portion 217.
  • the radiation shield plate 212 can be cooled by the latent heat of the helium gas vaporized in the helium vessel 202.
  • the temperature of the radiation shield plate 212 has the lowest temperature at the thermal contact portion of the cold head 107 with the first cooling stage 213, and the temperature increases as the distance from the first cooling stage 213 increases. Since the temperature of the helium exhaust pipe 124 drawn out from the helium vessel 202 is the lowest, the position where the helium exhaust pipe 124 starts to contact the outer surface of the radiation shield plate 212 through the radiation shield plate 212 is as shown in FIG. It is arranged near the position. From this position over a predetermined length, the helium exhaust pipe 124 is disposed along the radiation shield plate 212 so that the outer peripheral surface of the helium exhaust pipe 124 contacts the outer surface of the radiation shield plate 212. It is composed.
  • the helium exhaust pipe 124 is disposed so as to gradually move away from the cold head 107, away from the radiation shield plate 212 at the end of the thermal contact portion 217 farthest from the cold head 107, and In the direction, it passes through the vacuum vessel 201 and is drawn out.
  • the helium exhaust pipe 124 can effectively cool the radiation shield plate 212 with the latent heat of the helium gas at the thermal contact portion 217.
  • the helium exhaust pipe 124 branches in two directions outside the superconducting magnet 101 as shown in FIG.
  • One is a transport pipe (hereinafter referred to as a helium transport pipe) (A) 301, which is connected to a helium transport pipe (B) 303 via a one-way valve (hereinafter referred to as a one-way relief valve) 302, and gas.
  • a transport pipe hereinafter referred to as a helium transport pipe
  • A helium transport pipe
  • B helium transport pipe
  • a one-way valve hereinafter referred to as a one-way relief valve
  • gas Connected to the bottom of the back 125.
  • the other is connected from the helium transport pipe (C) 304 to the helium transport pipe (D) 306 via the one-way relief valve 305.
  • the helium transport pipe (D) 306 is connected to the upper part of the gas bag 125.
  • the one-way relief valve 302 is opened when the gas pressure in the helium transport pipe (A) 301 is higher than the gas pressure in the helium transport pipe (B) 303 by 10 KPa or more, and helium gas is removed from the helium transport pipe ( It is configured to flow in the direction from A) 301 to the helium transport pipe (B) 303. Backflow is not possible with any pressure difference.
  • the one-way relief valve 305 is opened when the gas pressure in the helium transport pipe (D) 306 is higher than the gas pressure in the helium transport pipe (C) 304 by 5 KPa or more, and the helium gas is supplied to the helium transport pipe (D ) 306 to the helium transport pipe (C) 304. Backflow is not possible with any pressure difference.
  • the gas bag 125 has a structure that starts to expand when the internal pressure reaches a predetermined pressure (10 KPa) due to the elastic characteristics of the material, and expands and contracts while maintaining the predetermined pressure (10 KPa) according to the amount of inflowing helium gas. That is, the gas bag 125 is not a fixed volume, but is configured to expand and contract according to the amount of helium gas and the gas pressure inside, and the internal volume changes.
  • a gas bag 125 made of a film material having a high gas barrier property against helium gas and folded in a bellows shape can be used.
  • the internal pressure of the gas bag 125 reaches a predetermined pressure (10 KPa)
  • the volume increases due to the bellows extending.
  • the maximum capacity of the gas bag 125 is set to a capacity that can sufficiently store the helium gas vaporized by the amount of heat that enters the helium vessel 202 during that time based on the predicted time when the cold head 107 stops due to a power failure or system failure. As an example, if it can be predicted that the cold head 107 will stop for 40 hours due to a power failure etc., it will depend on the size and configuration of the helium vessel 202, but about 700 liters of helium gas is generated per hour, so the maximum capacity is 28 m Connect 3 gas bags 125.
  • the gas bag 125 has a compact configuration with the bellows folded in the initial state, but expands to a maximum of 28 m 3 due to the inflow of helium gas, so a 28 m 3 space can be prepared in the direction in which the gas bag 125 expands during a power failure. Place gas bag 125 in place.
  • the gas bag 125 is arranged in the immediate vicinity of the examination room 123, but it is also possible to extend the helium exhaust pipe 124 and arrange the gas bag 125 in a room away from the examination room 123.
  • the amount of heat entering the helium vessel 202 from the vacuum vessel 201 is structurally suppressed to about 1 watt, but this amount of heat is about 1 watt. Then, liquid helium is vaporized and the pressure in the helium vessel 202 starts to rise.
  • Each part operates as follows, and the pressure of the helium vessel 202 is maintained at an allowable pressure of 20 KPa.
  • the one-way relief valve (10 KPa) 302 is opened and helium gas flows out to the gas back 125.
  • the gas bag 125 increases in volume according to the amount of helium gas flowing in. As a result, the helium vessel 202 maintains 20 KPa, and the gas bag 125 maintains 10 KPa.
  • the flow of helium gas comes into contact with the radiation shield plate 212 at the thermal contact portion 217. Therefore, the radiation shield plate 212 is cooled by the latent heat of the helium gas, the radiant heat is lowered, and the liquid helium 204 in the helium vessel 202 is vaporized. Work to prevent. Further, the heat exchange has an effect of reducing the helium gas that has been cooled to the outside of the superconducting magnet 101 and reducing frost on the helium exhaust pipe 124 and the helium transport pipe (A) 301.
  • the operation of the cold head 107 resumes, and helium gas condenses in the gas reservoir at the top of the helium vessel 202 with approximately 1.4 watts of cooling heat from the second cooling stage 216 of the cold head 107. Liquefied.
  • the pressure in the helium vessel 202 that has been maintained at 20 KPa begins to decrease, and the difference from the internal pressure of the gas bag 125 at which 10 KPa is maintained becomes less than 10 KPa.
  • the one-way relief valve 302 is closed and the inflow of gas from the helium vessel 202 to the gas bag 125 is stopped.
  • the pressure difference from the internal pressure 10 KPa of the gas back 125 becomes 5 KPa or more.
  • the valve (5 KPa) 305 is opened, and helium gas flows from the gas back 125 into the helium vessel 202.
  • the one-way relief valve 305 is closed, and the inflow of helium gas from the gas back 125 to the helium vessel 202 is completed.
  • the internal pressure of the gas bag 124 is maintained at 10 KPa, but since it has returned to the size before starting to expand, almost all of the helium gas stored in the gas bag 125 can be returned to the helium container 202. .
  • the helium gas at room temperature comes into contact with the radiation shield plate 212 cooled by the first cooling stage 213 of the cold head 107 at the thermal contact portion 217. Precooled. Therefore, liquefaction of helium gas in the helium vessel 202 is promoted.
  • the MRI system stops and the cooling capacity of the cold head 107 also stops.
  • the operator cancels the MRI inspection in advance by inputting the input device 121 in advance.
  • the operator carries out the subject 102 under examination from the MRI apparatus by manual operation of the patient table 122 (step 401).
  • the internal pressure of the helium vessel 202 increases (step 402). This is because 1.25 liters of liquid helium per hour is vaporized into 10 times (about 10 liters) helium gas with an amount of heat of about 1 watt entering the helium vessel 202 from the vacuum vessel 201.
  • the pressure increase rate depends on the space volume of the gas reservoir at the top of the helium vessel 202, but in the case of the helium vessel 202 filled with the usual 90% liquid helium, it rises at a rate of 4 KPa per hour.
  • the internal pressure of the helium vessel 202 reaches 20 KPa (step 403).
  • the pressure difference with the gas back 125 maintained at the internal pressure of 10 KPa reaches 10 KPa, so the one-way relief valve (10 KPa) 302 is opened.
  • the helium gas in the helium vessel 202 flows out from the helium exhaust pipe 124 through the one-way relief valve (10 KPa) 302 to the gas bag 125 and is stored in the gas bag 125. Thereby, the internal pressure of the helium vessel 202 is maintained at 20 KPa (steps 404 and 405).
  • the helium gas in the helium exhaust pipe 124 is heated by heat exchange between the radiation shield plate 212 and the thermal contact portion 217, and helium having a temperature close to room temperature expanded about 70 times. It flows out as gas.
  • the gas bag 125 expands against the contraction force of the gas bag itself and maintains a gas pressure of about 10 KPa (step 405).
  • the MRI system starts operation.
  • the cold head 107 also resumes cooling (step 406). Even if a part of the liquid helium is vaporized, the superconducting coil 203 is immersed in the liquid helium, and the superconducting state is maintained.
  • the cold head 107 reaches the normal cooling capacity, and the helium gas in the upper gas reservoir of the helium vessel 202 is cooled.
  • the pressure drops from 20 KPa at a rate of about 2 KPa per hour.
  • the differential pressure with respect to the internal pressure 10 KPa of the gas bag 125 is less than 10 KPa, so the one-way relief valve (10 KPa) 302 is closed.
  • the operator can place the subject 102 in the magnetic field space 103 of the MRI apparatus, perform magnetic field correction, and perform an inspection (step 407).
  • the helium tank pressure drops to 5 KPa due to the cooling and condensation of the helium gas in the helium vessel 202. Then, helium gas flows from the gas back 125 into the helium vessel 202 through the one-way relief valve (5 KPa) 305. The pressure in the helium vessel 202 is maintained at 5 KPa. On the other hand, the gas bag 125 contracts in volume corresponding to the volume of the helium gas that has flowed out, and its internal pressure is maintained at 10 KPa (step 408).
  • the internal pressure of the helium vessel 202 is controlled by heat generation of the heater element 207 installed in the helium vessel 202 by applying current controlled by the magnet control unit 110 so that the internal pressure does not become 5 KPa or less.
  • the difference between the internal pressure 10 KPa of the gas bag 125 and the internal pressure of the helium vessel 202 becomes less than 5 KPa, and the one-way relief valve (5 KPa) 505 is closed.
  • the helium vessel 202 maintains a thermal equilibrium state (step 409).
  • the pressure of the helium vessel 202 is maintained at 5 KPa, and the volume of the gas bag 125 is 0% that is the most contracted (pre-expansion state).
  • the pressure in the helium vessel 202 rises at a rate of 4 KPa per hour (the rate at which liquid helium vaporizes due to the amount of heat entering the helium tank of about 1 watt), and toward the time B at 20 KPa. .
  • the one-way relief valve (10 KPa) 302 is opened, so that helium gas is sent to the gas back 125 by 700 liters per hour, and the pressure in the helium vessel 202 is maintained at 20 KPa.
  • the volume of the gas bag 125 starts to expand due to the helium gas sent. Since the upper limit of the volume is 28 m 3 , it is possible to continue to expand by accepting the inflow of helium gas even if the power failure continues for about 40 hours.
  • the pressure in the helium vessel 202 decreases at a rate of 2 KPa / hour (condensation of helium gas due to a difference of about 0.5 watts between the amount of heat entering and the cooling capacity of the cryocooler), and moves toward the point D.
  • helium gas flows from the gas back 125 through the one-way relief valve (5 KPa) 305, and the pressure of the helium vessel 202 is maintained at 5 KPa.
  • the gas bag 125 starts to shrink in accordance with the volume of the helium gas that has flowed out.
  • the gas bag is completely contracted to return to the state before expansion, and the pressure in the helium vessel 202 returns to the normal operation state that maintains 5 KPa.
  • the gas bag 125 that expands and contracts according to the amount of gas flowing in is paired with a pair of different open pressure differences. It is connected to the helium vessel 202 via a directional relief valve.
  • the helium gas stored in the gas bag 125 when the cold head (cryo-cooler) stops due to a power failure or the like is returned to the helium vessel 202 almost completely after restoration. Can do. Therefore, the helium gas in the gas bag 125 can be condensed and reused as a refrigerant without wasting it.
  • the gas bag 125 does not expand, so the space necessary for the gas bag 125 to expand during a power failure should be used for other purposes during a non-power failure. And the use efficiency of the space can be increased.
  • a space necessary for the gas bag to expand can be used as a space for a subject or an operator to prepare an examination.
  • the helium gas is interposed between the gas bag 125 and the helium vessel 202. No convection occurs. Therefore, it is not necessary for the cryocooler to cool the convective helium gas, the load can be reduced, and the cryocooler can have a long life.
  • the helium transport pipe (D) 306 is connected to the uppermost part of the helium gas bag 125, even if an impurity gas such as air is mixed in the gas bag 125, it is the lightest gas.
  • the helium gas accumulates in the upper part of the gas bag 125, and when returning to the helium container, only helium gas not containing impure gas can flow into the helium transport pipe (D) 306. Therefore, it is possible to prevent the impurity gas from freezing in the helium container 202.
  • the helium transport pipe (B) 303 is not limited to the lowermost part of the gas bag 125, and may be connected to any position of the gas bag 125, but is connected to the position of the drain plug 307 at the lowermost part of the gas bag 125.
  • the opening of the gas bag 124 can be reduced as much as possible, and the effect of reducing the failure potential factor such as leakage can be obtained.
  • the inner part of the vacuum vessel 201 of the helium exhaust pipe 124 may be merged with the service port 209 inside the vacuum vessel 201 or may be configured to be shared with the service port 209. is there.
  • the service port 209 is also used as the helium exhaust pipe 124, the thermal contact portion 217 between the helium exhaust pipe 124 and the radiation shield 212 can be omitted.
  • the helium exhaust pipe 124 is branched from the service port 209 again outside the vacuum vessel 201.
  • helium gas can be injected into the gas bag 125 from the drain plug 307. If for some reason the liquid helium in the helium vessel 202 is reduced, instead of injecting liquid helium from the service port 209, helium gas is injected into the gas bag 125 and condensed into liquid helium with the cold head 107. Can do. Liquid helium is difficult to transport and store for a long time, but helium gas packed in a cylinder can be transported and stored for a long time. As a result, the MRI apparatus using the superconducting magnet can be used even in areas outside the liquid helium service network, and the convenience of the MRI apparatus using the superconducting magnet is increased.
  • the pressure in the helium vessel 202 reaches 20 KPa and is maintained until the power failure is restored (step 403).
  • a helium gas back or a helium exhaust pipe is damaged during a power failure or the like, it is possible to detect this and issue an alarm.
  • the helium exhaust pipe 124 or the gas back 125 is damaged, the helium gas leaks and the pressure in the helium vessel 202 becomes 20 KPa or less.
  • the magnet control unit 110 of the superconducting magnet 101 is driven by a battery or the like even during a power failure, and detects the pressure in the helium vessel 202 by the pressure sensor 206.
  • the magnet control unit 110 can notify the operator or administrator by an alarm or the like.
  • the magnet control unit 110 transmits the pressure detection result to the remote monitoring base via the network or the like via the remote monitoring system, it detects a pressure drop at the remote monitoring base and issues an alarm or the like. Is also possible. Since the operation of the magnet control unit 110 detecting the pressure in the helium vessel 202 by the pressure sensor 206 has been performed conventionally, the operation of detecting damage such as a gas back to 20 KPa or less at the time of a power failure is a conventional MRI apparatus. Even so, it can be easily added.
  • Helium gas flows out from the opening to which the transport pipes 303 and 306 of the gas bag 125 are connected by the above (6), and helium also flows from the transport pipes 303 and 306 connected to the superconducting magnet 101 by the above (4). With the gas flowing out, the transport pipes 303 and 306 are connected to the gas bag 125. Thereby, it is possible to prevent the atmosphere from being mixed into the transport pipes 301, 303, 304, 306 and the gas bag 125.
  • Helium gas is injected from the gas cylinder connected to the drain valve 307 until the internal pressure of the gas bag reaches 10 KPa.
  • atmospheric gas is not mixed in the gas bag 125.
  • the gas bag 125 can be installed separately from the installation work of the MRI apparatus.
  • gas bags can be easily added or replaced depending on the power situation.
  • a mechanism for removing impurity gas such as air mixed in the helium gas is provided.
  • the helium transport pipe (D) 306 is connected to the top of the helium gas bag 125, and is configured so that only the lightest helium gas returns to the helium vessel. Yes. However, in the process of returning the helium gas to the helium vessel, the air that has leaked due to a failure in the connection part of the helium transport pipe (D) 306, the gas back 125, or the helium exhaust pipe 124 cannot be separated by this configuration alone. .
  • a liquid reservoir 901 that stores liquid air is disposed in a part of the thermal contact portion 217 in which the helium exhaust pipe 214 exchanges heat with the radiant heat shield plate 212.
  • the liquid reservoir 901 has a configuration in which a part of the helium exhaust pipe 214 is expanded downward.
  • the liquid reservoir 901 is formed of stainless steel having a thickness of 2 mm, for example. In the portion of the liquid reservoir 901, an opening is provided in the radiation shield 212, and the liquid reservoir 901 protrudes from this opening into the space on the helium container 202 side.
  • the thermal contact portion 217 In the thermal contact portion 217, in the process of moving from the side closer to the gas bag 125 to the portion closer to the cold head 107, from room temperature to around 43 Kelvin ( ⁇ 230 ° C.) that is the temperature of the first cooling stage 213 of the cold head 107 To be cooled.
  • the oxygen mixed in the helium gas is liquefied when the boiling point of oxygen is about ⁇ 183 ° C.
  • the nitrogen component is liquefied when the boiling point of nitrogen is about ⁇ 196 ° C.
  • the liquefied air falls into the liquid reservoir 901 and is accumulated. Therefore, only helium gas flows into the helium container 202 and is liquefied in the helium container 202.
  • the sump 901 is higher than the heat contact portion 217 where air is completely liquefied and solidified. Install in the temperature range of -196 ° C to -210 ° C.
  • the liquid helium 204 turns into helium gas and moves back and forth between the helium vessel 202 and the gas bag 125. Therefore, impurity gas such as air is gradually accumulated in the liquid reservoir 901. Therefore, in the second embodiment, a configuration for exhausting the impurity gas accumulated in the liquid reservoir 901 is further provided.
  • the heater 902 of the liquid reservoir 901 is incorporated as a configuration for exhausting the impurity gas.
  • the heater 902 is connected to a wiring 903 that supplies current.
  • the wiring 903 is routed through the helium exhaust pipe 124 to a position outside the vacuum vessel 201, and is drawn out from the helium exhaust pipe 124 through an airtight seal or the like.
  • the wiring 903 is routed to the vicinity of the drain line 307 of the gas back 125.
  • the timing for exhausting the impurity gas is preferably during a periodic inspection of the superconducting magnet 101 once a year.
  • the drain plug 307 and the one-way relief valve (10 KPa) 302 at the bottom of the gas bag 125 are manually opened, and current is applied to the heater 902. With this heat generation, the liquid air is vaporized and expanded, and can be discharged into the atmosphere from the drain plug 307 at the bottom of the gas bag 125 through the helium discharge pipe 124.
  • the liquid reservoir 901 is made of stainless steel having a thickness of 2 mm, heat propagation to the outside is small, and the heat generation action of the heater 902 for a short time is limited to local heat generation inside the liquid reservoir 901. Therefore, even when the liquid air is released, the air (impurity gas) can be exhausted with little influence on the helium vessel 202 and the radiant heat shield plate 212.
  • the liquid reservoir 901 and the heater 902 are provided, even if an impurity gas such as air is slightly involved in the helium gas, it can be removed. Therefore, it is possible to eliminate the trouble that air enters the helium vessel 202, freezes in the vicinity of the opening of the helium discharge pipe 124, and becomes blocked.
  • FIG. 7 shows a part of the MRI apparatus, and various power supply units and the computer 109 are omitted because they have the same configuration as FIG.
  • the gas bag 125 is divided into two gas bags 601,602.
  • the two gas bags 601 and 602 are connected by a helium gas transport pipe 603.
  • the helium exhaust pipe 124 is connected to the first gas back 601.
  • the connection structure between the first gas back 601 and the helium exhaust pipe 124 is the same as the connection structure (FIG. 3) between the gas back 125 and the helium exhaust pipe 124 in the first embodiment.
  • a second gas bag 602 is connected from the first gas bag 601 through a helium gas transport pipe (E) 603.
  • the first gas bag 601 is disposed on the outer side surface of the examination room 123, and the second gas bag 602 is disposed on the ceiling of the examination room 123.
  • the structure of the first gas bag 601 and the second gas bag 602 is a structure in which the volume is expanded when the internal pressure reaches a predetermined pressure (about 10 KPa), and the predetermined pressure is maintained, like the gas bag 125 of the first embodiment. It is.
  • the capacity of the two gas bags 601 and 602 can be combined with the capacity of the gas bag 125, and the combined capacity can be larger than that of the gas bag 125. It is also possible to respond.
  • the use of an empty space such as the back of the ceiling of the examination room 123 for the expansion space of the gas bag makes it easy to secure the expansion space of the gas bag, and has an effect of reducing the space burden on the building.
  • FIG. 8 shows another example of the arrangement of multiple gas bags.
  • the configuration of FIG. 8 is a configuration in which a plurality of gas bags 701, 702, 703,... Are connected in parallel to the helium exhaust pipe 125.
  • a one-way relief valve 302 and a one-way relief valve 305 are disposed between the gas bags 701, 702, 703 and the like and the helium exhaust pipe 124, respectively.
  • the connection structure between the individual gas bags 701, 702, 703, etc. and the helium exhaust pipe 124 is equivalent to the connection structure (FIG. 3) between the gas bag 125 and the helium exhaust pipe 124 of the first embodiment. I have to.
  • helium gas generated in the helium vessel 202 flows out and is stored in the gas bags 701, 702, 703, etc. in the event of a power failure or system failure, and helium gas is transferred from the gas bags 701, 702, 703, etc. to the helium vessel 202 when the power failure is restored. Can be returned and liquefied.
  • the operating pressures of the one-way relief valve 302 and the one-way relief valve 305 arranged for each of the plurality of gas bags 701, 702, 703, etc. are different for each gas bag 701, 702, 703, etc.
  • the operation of the gas bag can be ordered.
  • the operating pressures of the one-way relief valve 302 and the one-way relief valve 305 of the gas bag 701 are set to 9 KPa and 4 KPa, respectively, and the one-way relief valve 302 and the one-way relief valve 305 of the gas bag 702 are set to 10 KPa and 5 KPa, respectively.
  • the operating pressures of the one-way relief valve 302 and the one-way relief valve 305 are set to 11 KPa and 6 KPa.
  • the one-way relief valve 302 opens in the order of the gas back 701, the gas back 702, and the gas back 703, and helium gas is stored. Also at the time of recovery, the one-way relief valve 305 opens in the order of the gas back 701, the gas back 702, and the gas back 703, and the internal gas returns to the helium vessel 202.
  • the drain valve may be provided separately from the drain valve 307, or the drain valve 307 can have the function of the drain valve.
  • the drain valve 307 is configured to leak helium gas when the internal pressure of the gas bag reaches a predetermined pressure (for example, 15 KPa).
  • the predetermined pressure causing the leak is a pressure that the gas bag 125, 601, 602, 701, 702, 703, etc. can withstand structurally, and the connection structure between the gas bag and the helium vessel 202 is Set the pressure to withstand.
  • the gas bag can withstand a pressure of 15 KPa
  • the leak pressure of the exhaust valve can be set to 15 KPa.
  • the leak pressure of the discharge valve is set to 15 KPa
  • the pressure in the helium vessel 202 rises to 25 KPa with the operating pressure of the one-way relief valve 302 added to 10 KPa.
  • the discharge valve leaks. Therefore, the gas bag and the connection structure are not overloaded, and the gas bag can be prevented from being damaged.
  • the helium vessel 202 has a structure capable of withstanding up to a pressure (for example, 40 KPa) at which the rupturable plate 211 bursts, so that the helium vessel 202 is not damaged even if the pressure rises to 25 KPa.
  • a pressure for example, 40 KPa
  • FIG. 9 is a view taken in the direction of arrow A in FIG.
  • the area at the time of maximum expansion is indicated on the floor with the mark 801, so that it is possible to notify the operator and the subject not to enter the area of the mark 801 in the event of a power failure or system failure. Safety can be ensured. In addition, it is possible to prevent acts such as inadvertently placing objects in this area at the time of a power failure, etc., and to recognize that this area can be used at times other than at the time of a power failure, etc., so that the space can be used effectively.
  • FIG. 9 only the floor area is shown, but the area can be shown together with the wall surface.
  • it is also effective to show the expansion region of the gas bag three-dimensionally, such as hanging a chain from the ceiling.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Provided is technology with which a coolant that has gasified due to power stoppage, and the like can be returned to a superconducting magnet with high efficiency. By means of this technology, a gas bag (125) that maintains a constant internal pressure by expanding and contracting in response to the volume of gas on the inside is connected to a coolant vessel of a superconducting magnet (101) and the coolant gas generated when a cooling unit (107) stops during power stoppage is reserved inside the coolant vessel. Thus, when power is restored and the cooling unit (107) is restarted, the coolant gas returns to the coolant vessel as the gas bag (125) contracts and all of the gas that has flowed out to the gas bag can thereby be returned to the coolant vessel. As a result, replenishing of coolant is unnecessary.

Description

磁気共鳴イメージング装置、磁気共鳴イメージング装置用ガス回収装置、および、磁気共鳴イメージング装置の運転方法Magnetic resonance imaging apparatus, gas recovery apparatus for magnetic resonance imaging apparatus, and method of operating magnetic resonance imaging apparatus
 本発明は磁気共鳴イメージング装置(Magnetic Resonance Imaging装置、以下、MRI装置と称する)に係わり、特に、クライオクーラを備えた超電導磁石を用いたMRI装置に関する。 The present invention relates to a magnetic resonance imaging apparatus (Magnetic Resonance Imaging apparatus, hereinafter referred to as an MRI apparatus), and more particularly to an MRI apparatus using a superconducting magnet equipped with a cryocooler.
 MRI装置は、均一な強度の磁場空間に被検体を配設し、被検体の検査部位から核磁気共鳴信号(Nuclear Magnetic Resonance Signal、以下、NMR信号と称する)を検出して、その信号を演算処理し、検査部位の断層画像などを得ることで、医学的な診断情報を得る診断機器である。 The MRI device arranges the subject in a magnetic field space of uniform intensity, detects a nuclear magnetic resonance signal (Nuclear Magnetic Resonance Signal, hereinafter referred to as NMR signal) from the examination site of the subject, and calculates the signal It is a diagnostic device that obtains medical diagnostic information by processing and obtaining a tomographic image of an examination site.
 現在、MRI装置の磁場発生ユニットには、永久磁石と超電導磁石の二つの方式のいずれかが採用されている。永久磁石を用いたMRI装置は、メンテナンスが容易でランニングコストも低く抑えられるメリットがある。一方、超電導磁石を用いたMRI装置は、高い磁場強度(0.5テスラ以上)が得られ、これに伴う高感度のNMR信号を利用して高度な診断機能を用いることができるメリットがある。 Currently, one of the two methods of permanent magnets and superconducting magnets is adopted for the magnetic field generation unit of the MRI apparatus. An MRI apparatus using a permanent magnet has the advantages of easy maintenance and low running costs. On the other hand, an MRI apparatus using a superconducting magnet has a merit that a high magnetic field strength (0.5 Tesla or higher) can be obtained, and an advanced diagnostic function can be used by using a high-sensitivity NMR signal.
 超電導磁石は、超電導状態のコイルに電流を流すことで安定な高磁場が半永久的に発生できる。このコイルを超電導状態にするためには、コイルに用いる線材に固有の臨界温度以下にコイルを冷却保持する必要がある。超電導線としては、Ni3SnとNbTiが一般に用いられる。これらはいずれも冷媒として液体ヘリウムが必要である。 A superconducting magnet can generate a stable high magnetic field semipermanently by passing a current through a coil in a superconducting state. In order to bring this coil into a superconducting state, it is necessary to keep the coil cooled below the critical temperature inherent to the wire used for the coil. Ni 3 Sn and NbTi are generally used as superconducting wires. All of these require liquid helium as a refrigerant.
 液体ヘリウムは、長距離輸送や長期保管が難しいので、超電導磁石を用いたMRI装置は、ヘリウム液化拠点からトラック等の輸送手段で液体ヘリウムを輸送する冷媒サービスのネットワークが確立されている地域に設置することが必要になる。このため、超電導磁石を用いたMRI装置の設置可能な地域が限定される。 Since liquid helium is difficult to transport over long distances or for long periods of time, MRI systems using superconducting magnets are installed in areas where a network of refrigerant services for transporting liquid helium from a helium liquefaction base by truck or other means of transportation is established. It becomes necessary to do. For this reason, the area where the MRI apparatus using the superconducting magnet can be installed is limited.
 特許文献1では、超電導磁石にクライオクーラを組み込み、気化したヘリウムガスを冷却し、再凝縮して液体ヘリウムとして再利用することが開示されている。これにより、超電導磁石内の液体ヘリウムの低減を抑制することができる。しかし、クライオクーラの冷却能力が失われるような停電やシステム障害が発生した場合には、ヘリウムガスを液体ヘリウムに凝縮することができなくなり、超電導磁石の圧力リリーフバルブを通してヘリウムガスが大気中に放出される。このため、やはり液体ヘリウムをトラック等で輸送して超電導磁石に供給するサービスが必要となる。 Patent Document 1 discloses that a cryocooler is incorporated in a superconducting magnet, vaporized helium gas is cooled, recondensed, and reused as liquid helium. Thereby, reduction of liquid helium in a superconducting magnet can be controlled. However, in the event of a power failure or system failure that causes the cryocooler to lose its cooling capacity, helium gas cannot be condensed into liquid helium, and helium gas is released into the atmosphere through the pressure relief valve of the superconducting magnet. Is done. For this reason, a service is also required in which liquid helium is transported by a truck or the like and supplied to the superconducting magnet.
 特許文献2では、停電やシステム障害時に、超電導磁石から放出されるヘリウムガスを室温で蓄える大きなガスタンクを超電導磁石に連結しておき、停電やシステム障害の復旧後に、再稼働したクライオクーラでガスタンク内のヘリウムガスを液化して超電導磁石内に戻して再利用する構成を提案している。 In Patent Document 2, a large gas tank that stores helium gas released from a superconducting magnet at room temperature in the event of a power outage or system failure is connected to the superconducting magnet, and after recovery from a power outage or system failure, Proposed a configuration in which the helium gas is liquefied and returned to the superconducting magnet for reuse.
特開平6-69030号公報JP-A-6-69030 特開2007-134703号公報JP 2007-134703
 特許文献2のように、停電時等に超電導磁石から放出されるヘリウムガスをガスタンクに蓄えるためには、巨大なガスタンクが必要になる。具体的には、クライオクーラの冷却能力が停止すると、数百ミリワット~1ワット程度の熱量がヘリウム容器に侵入する。1ワットの熱量で1時間当たり1.25リットルの液体ヘリウムが気化し、約10リットルのヘリウムガスになる。この体積膨張で、ヘリウム容器の内圧は上昇し、所定の圧力を超えると、安全弁が開き、ヘリウム容器から大気中に放出される。大気中に放出される過程で、ヘリウムガスが室温まで暖められてさらに膨張し、ヘリウム容器内で10リットルであった体積が約700リットルにまで膨らむ。 As in Patent Document 2, a huge gas tank is required to store the helium gas released from the superconducting magnet at the time of a power failure or the like in the gas tank. Specifically, when the cooling capacity of the cryocooler stops, a heat quantity of several hundred milliwatts to 1 watt enters the helium vessel. One watt of heat vaporizes 1.25 liters of liquid helium per hour, resulting in approximately 10 liters of helium gas. With this volume expansion, the internal pressure of the helium container rises, and when a predetermined pressure is exceeded, the safety valve opens and is released from the helium container into the atmosphere. In the process of being released into the atmosphere, the helium gas is warmed to room temperature and further expanded, and the volume of 10 liters in the helium container expands to about 700 liters.
 計画停電によって半日程度頻繁に停電する国は珍しくない。また、システム障害の場合、サービスコール、サービスマンの到着、原因調査、対策復旧までは、通常で半日から一日を要し、この間、クライオクーラの冷却能力が停止する。よって、12時間で8400リットル、24時間で16800リットルのヘリウムガスが大気中に放出されることになる。 国 It is not uncommon for countries to have frequent power outages for about half a day due to planned power outages. In the case of a system failure, the service call, the arrival of a service person, the cause investigation, and the recovery of the countermeasure usually take half a day to one day. During this time, the cooling capacity of the cryocooler stops. Therefore, 8400 liters of helium gas is released into the atmosphere in 12 hours and 16800 liters in 24 hours.
 そのため、特許文献2で提案されているように、放出されたヘリウムガスを全て大気中に放出することなくガスタンクに蓄えるとなると、3メートル平方の部屋(高さ2メートルとして18m3)を用意し、その中に予めガスタンクを配置しておかなければならない。このため、MRI装置を配置する部屋の他に、ガスタンクを配置するための部屋を用意しなければならないという問題が生じる。 Therefore, as proposed in Patent Document 2, when storing the released helium gas in the gas tank without releasing it all into the atmosphere, prepare a 3 meter square room (18 m 3 as 2 meters in height). In this case, a gas tank must be placed in advance. For this reason, the problem that the room for arrange | positioning a gas tank must be prepared besides the room which arrange | positions an MRI apparatus.
 また、常温常圧の固定容積の巨大なガスタンクが、常にクライオクーラに連結されている構造であるため、クライオクーラが正常運転中でも、ガスタンク内には、大気圧のヘリウムガスが蓄えられていることになる。すなわち、ガスタンク内の18m3の大気圧のヘリウムガスは、超電導磁石内には戻らず、ヘリウムガスを有効に使うことができない。 In addition, since a huge gas tank with a fixed volume at normal temperature and pressure is always connected to the cryocooler, helium gas at atmospheric pressure is stored in the gas tank even when the cryocooler is operating normally. become. That is, the 18 m 3 atmospheric pressure helium gas in the gas tank does not return to the superconducting magnet, and the helium gas cannot be used effectively.
 さらに、常温常圧の固定容積のガスタンクが低温のクライオクーラに常に接続されているため、超電導磁石内の空間とガスタンク内の空間の間で自然対流が生じ、常温のヘリウムガスが常にクライオクーラ内に少量ずつ流れ込み、逆にクライオクーラからは低温のヘリウムガスが少量ずつガスタンクに漏れ出る。このため、クライオクーラは、対流で流入する分の常温のヘリウムガスを常に冷却しなければならず、負荷が大きくなって劣化が促進される可能性がある。特許文献2では、接続配管の形状を弓状にすることにより、自然対流を低減しているが、完全になくすことはできない。また、クライオクーラとガスタンクの間に一対の逆並列バルブを使用し、自然対流を低下させることを提案している(段落0020)。しかし、これ以上の具体的な構成の説明は一切ない。 In addition, a fixed volume gas tank at room temperature and normal pressure is always connected to the cryocooler at low temperature, so natural convection occurs between the space in the superconducting magnet and the space in the gas tank, and helium gas at room temperature is always in the cryocooler. A small amount of helium gas leaks from the cryocooler into the gas tank. For this reason, the cryocooler must always cool the normal temperature helium gas that flows in by convection, which may increase the load and promote deterioration. In Patent Document 2, natural convection is reduced by making the shape of the connection pipe into a bow shape, but it cannot be completely eliminated. It has also been proposed to use a pair of anti-parallel valves between the cryocooler and the gas tank to reduce natural convection (paragraph 0020). However, there is no description of a specific configuration beyond this.
 また、常温の固定容積の大きなガスタンクをクライオクーラに接続する構成であるため、ガスタンクとクライオクーラとの接続箇所や、ガスタンクに設けられた安全用リークバルブ等からヘリウムガスに大気が巻き込まれる恐れがある。大気がクライオクーラや超電導磁石の内部に侵入すると、固体となって、ガスタンクとの接続配管を閉塞したり、超電導磁石の内圧制御の妨げになる可能性がある。 In addition, since a gas tank with a large fixed volume at room temperature is connected to the cryocooler, there is a risk that the atmosphere will be trapped in the helium gas from the connection point between the gas tank and the cryocooler, a safety leak valve provided in the gas tank, etc. is there. When the atmosphere enters the cryocooler or the superconducting magnet, it becomes solid and may block the pipe connected to the gas tank or hinder the control of the internal pressure of the superconducting magnet.
 本発明は上記問題に鑑みてなされたもので、停電等により気化した冷媒を高い効率で超電導磁石に戻すことのできる技術を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of returning a refrigerant evaporated by a power failure or the like to a superconducting magnet with high efficiency.
 本発明では、冷媒容器に、内部のガスの量に応じて伸縮することにより内圧を一定に維持する構造のガスバックを接続し、停電時に冷却器が停止し、冷媒容器内に発生した冷媒ガスを蓄える。これにより、停電が復旧し、冷却器が再稼働した場合には、ガスバックが収縮しながら冷媒ガスを冷媒容器に戻すため、ガスバックに流出したガスをすべて冷媒容器に戻すことができる。 In the present invention, a gas bag having a structure in which the internal pressure is maintained constant by expanding and contracting according to the amount of gas inside is connected to the refrigerant container, the cooler is stopped during a power failure, and the refrigerant gas generated in the refrigerant container Store. Thereby, when the power failure is restored and the cooler is restarted, the refrigerant gas is returned to the refrigerant container while the gas bag is contracted, so that all the gas flowing out to the gas bag can be returned to the refrigerant container.
 本発明によれば、停電等により気化した冷媒を高い効率で超電導磁石に戻すことができるため、冷媒サービスのネットワークが発達していない地域でもMRI装置を使用できる。 According to the present invention, since the refrigerant vaporized due to a power failure or the like can be returned to the superconducting magnet with high efficiency, the MRI apparatus can be used even in an area where the network of the refrigerant service is not developed.
第一の実施形態のMRI装置の全体構成を示すブロック図。The block diagram which shows the whole structure of the MRI apparatus of 1st embodiment. 図1のMRI装置を構成する超電導磁石101の上クライオスタット104の断面図。FIG. 2 is a cross-sectional view of the upper cryostat 104 of the superconducting magnet 101 constituting the MRI apparatus of FIG. 図1の超電導磁石101とガスバック125との接続を示す説明図。FIG. 2 is an explanatory diagram showing the connection between the superconducting magnet 101 and the gas back 125 of FIG. 本実施形態のMRI装置の停電前後の動作を示すフローチャート。The flowchart which shows the operation | movement before and after the power failure of the MRI apparatus of this embodiment. 図4のフローチャートの動作中の、ヘリウム容器の圧力とガスバックの容積の関係を示すグラフ。FIG. 5 is a graph showing the relationship between the pressure of the helium container and the volume of the gas bag during the operation of the flowchart of FIG. (a)第二の実施形態のMRI装置を構成する超電導磁石101の上クライオスタット104の断面図、(b)図(a)の一部を拡大した断面図。(a) Cross-sectional view of the upper cryostat 104 of the superconducting magnet 101 constituting the MRI apparatus of the second embodiment, (b) A cross-sectional view enlarging a part of FIG. 第三の実施形態のMRI装置の構成を示すブロック図。The block diagram which shows the structure of the MRI apparatus of 3rd embodiment. 第三の実施形態において、複数のガスバックを並列に接続する構成の例を示す説明図。Explanatory drawing which shows the example of the structure which connects a some gas back | bag in parallel in 3rd embodiment. 第五の実施形態において、ガスバック125の最膨張時の位置を表すマーク801を示す、図1のA矢視図。FIG. 10 is a view taken in the direction of an arrow A in FIG. 1 showing a mark 801 indicating the position when the gas bag 125 is most expanded in the fifth embodiment.
 本発明の第1の態様のMRI装置は、超電導コイルと、超電導コイルを収容する冷媒容器と、冷媒容器を覆う真空容器と、冷媒容器の内部に先端が挿入された冷却器とを備えた超電導磁石を用いる。超電導磁石は、好ましくは、冷媒容器と真空容器との間に輻射シールド板を備える。 An MRI apparatus according to a first aspect of the present invention includes a superconducting coil, a refrigerant container containing the superconducting coil, a vacuum container covering the refrigerant container, and a cooler having a tip inserted into the refrigerant container. Use a magnet. The superconducting magnet preferably includes a radiation shield plate between the refrigerant container and the vacuum container.
 そして、冷媒容器には、内部のガスの量に応じて伸縮することにより内圧を一定に維持する構造のガスバックが接続されている。例えば、冷媒容器には冷却器の停止時に冷媒容器で生じる冷媒ガスを真空容器の外部に導く排気管が接続されており、この排気管を介してガスバックが冷媒容器に接続される構造とする。これにより、ガスバックが、一定の内圧を維持しながら、内部のガス量に応じて伸縮するため、ガスバックに蓄えられたガスをすべて冷媒容器に戻すことができる。 The refrigerant container is connected with a gas bag having a structure that maintains the internal pressure constant by expanding and contracting according to the amount of gas inside. For example, the refrigerant container is connected to an exhaust pipe that guides the refrigerant gas generated in the refrigerant container to the outside of the vacuum container when the cooler is stopped, and the gas bag is connected to the refrigerant container via the exhaust pipe. . As a result, the gas bag expands and contracts according to the amount of gas inside while maintaining a constant internal pressure, so that all the gas stored in the gas bag can be returned to the refrigerant container.
 排気管は、第1の輸送管と第2の輸送管とに分岐し、それぞれがガスバックに接続されている構成とすることが望ましい。この場合、第1の輸送管には、冷媒容器の内圧がガスバックの内圧よりも第1圧力差以上高い場合に開いて、冷媒容器からガスバックに冷媒ガスを流す第1の一方向バルブを配置する。第2の輸送管には、ガスバックの内圧が冷媒容器の内圧よりも第2圧力差以上高い場合に開いて、ガスバックから冷媒容器に冷媒ガスを流す第2の一方向バルブを配置する。 It is desirable that the exhaust pipe is branched into a first transport pipe and a second transport pipe, and each is connected to a gas bag. In this case, the first transport pipe is provided with a first one-way valve that opens when the internal pressure of the refrigerant container is higher than the internal pressure of the gas bag by the first pressure difference or more to flow the refrigerant gas from the refrigerant container to the gas bag. Deploy. The second transport pipe is provided with a second one-way valve that opens when the internal pressure of the gas bag is higher than the internal pressure of the refrigerant container by a second pressure difference or more and allows the refrigerant gas to flow from the gas bag to the refrigerant container.
 例えば、上記第1圧力差は、上記第2圧力差よりも大きい圧力差に設定する。 For example, the first pressure difference is set to a pressure difference larger than the second pressure difference.
 また、上記第2の輸送管は、ガスバックの上部に接続されていることが好ましい。不純物ガスが、冷媒容器に戻るのを防ぐためである。 The second transport pipe is preferably connected to the upper part of the gas bag. This is to prevent the impurity gas from returning to the refrigerant container.
 排気管の一部は、所定の長さに渡って輻射シールド板に熱的に接触するように、輻射シールド板に沿って配置されていることが好ましい。これにより、冷媒容器から流出する冷媒ガスにより輻射シールド板を冷却することができる。 It is preferable that a part of the exhaust pipe is disposed along the radiation shield plate so as to be in thermal contact with the radiation shield plate over a predetermined length. Thereby, the radiation shield plate can be cooled by the refrigerant gas flowing out of the refrigerant container.
 排気管には、冷媒ガスに混入している不純物ガスを分離する除去部を設けることが可能である。例えば、除去部は、排気管の途中で不純物ガスが液化した不純物液を溜める液溜めを有する構成とする。液溜めは、排気管の温度が、不純物ガスが液化する沸点以下で融点以上の領域に設けることが望ましい。さらに、液溜めには、溜まった不純物液を超電導磁石外に排出する排出部を設けることも可能である。例えば排出部は、液溜めの不純物液を加熱し気化させるヒータを含む構成とする。 The exhaust pipe can be provided with a removal section that separates impurity gas mixed in the refrigerant gas. For example, the removal unit is configured to have a liquid reservoir for collecting an impurity liquid in which the impurity gas is liquefied in the middle of the exhaust pipe. The liquid reservoir is preferably provided in a region where the temperature of the exhaust pipe is not higher than the boiling point where the impurity gas is liquefied and is not lower than the melting point. Further, the liquid reservoir can be provided with a discharge portion for discharging the accumulated impurity liquid to the outside of the superconducting magnet. For example, the discharge unit includes a heater that heats and vaporizes the impurity liquid in the liquid reservoir.
 上述のガスバックは、複数に分割されている構成としてもよい。 The gas bag described above may be divided into a plurality of parts.
 排気管には、複数のガスバックが並列に接続された構成としてもよい。この場合、第1および第2の輸送管、ならびに、第1および第2の一方向バルブは、複数のガスバックごとに配置する。複数のガスバックごとに配置した第1および第2の一方向バルブは、設定されている第1圧力差および第2圧力差が、配置されている複数のガスバックごとに異なるように構成してもよい。これにより、どのガスバックに優先的に冷媒ガスが蓄えられるか、序列をつけることができる。 The exhaust pipe may have a configuration in which a plurality of gas bags are connected in parallel. In this case, the first and second transport pipes and the first and second one-way valves are arranged for each of the plurality of gas bags. The first and second one-way valves arranged for each of the plurality of gas bags are configured so that the set first pressure difference and second pressure difference are different for each of the plurality of gas bags arranged. Also good. Thereby, it is possible to rank which gas bag is preferentially stored with the refrigerant gas.
 また、本発明の第2の態様として、以下のようなMRI装置が提供される。MRI装置は、超電導コイルを収容する冷媒容器と、冷媒容器を覆う輻射シールド板と、輻射シールド板を覆う真空容器と、冷媒容器の内部に先端が挿入された冷却器とを備えた超電導磁石を用いる。冷媒容器には、冷却器の停止時に冷媒容器で生じる冷媒ガスを真空容器の外部のガスバックに導く排気管が接続されている。排気管には、冷媒ガスに混入している不純物ガスを分離する除去部が設けられている。 In addition, as a second aspect of the present invention, the following MRI apparatus is provided. The MRI apparatus includes a superconducting magnet including a refrigerant container that houses a superconducting coil, a radiation shield plate that covers the refrigerant container, a vacuum container that covers the radiation shield plate, and a cooler with a tip inserted inside the refrigerant container. Use. The refrigerant container is connected to an exhaust pipe that guides refrigerant gas generated in the refrigerant container to a gas bag outside the vacuum container when the cooler is stopped. The exhaust pipe is provided with a removing unit that separates impurity gas mixed in the refrigerant gas.
 上記第2の態様のMRI装置の排気管には、冷媒ガスに混入している不純物ガスを分離する除去部を設けることが可能である。例えば、除去部は、排気管の途中で不純物ガスが液化した不純物液を溜める液溜めを有する構成とする。液溜めは、排気管の温度が、不純物ガスが液化する沸点以下で融点以上の領域に設けることが望ましい。さらに、液溜めには、溜まった不純物液を超電導磁石外に排出する排出部を設けることも可能である。例えば排出部は、液溜めの不純物液を加熱し気化させるヒータを含む構成とする。 The exhaust pipe of the MRI apparatus of the second aspect can be provided with a removing unit that separates impurity gas mixed in the refrigerant gas. For example, the removal unit is configured to have a liquid reservoir for collecting an impurity liquid in which the impurity gas is liquefied in the middle of the exhaust pipe. The liquid reservoir is preferably provided in a region where the temperature of the exhaust pipe is not higher than the boiling point where the impurity gas is liquefied and is not lower than the melting point. Further, the liquid reservoir can be provided with a discharge portion for discharging the accumulated impurity liquid to the outside of the superconducting magnet. For example, the discharge unit includes a heater that heats and vaporizes the impurity liquid in the liquid reservoir.
 また、本発明の第3の態様として、MRI装置用ガス回収装置が提供される。この装置は、MRI装置の超電導磁石に接続され、超電導コイルを収容する冷媒容器から生じた冷媒ガスを導く輸送管と、輸送管に接続された冷媒ガスを蓄えるガスバックとを有する。ガスバックは、内部のガスの量に応じて伸縮することにより内圧を一定に維持する構造である。 Also, as a third aspect of the present invention, an MRI apparatus gas recovery apparatus is provided. This apparatus is connected to a superconducting magnet of the MRI apparatus, and has a transport pipe that guides the refrigerant gas generated from the refrigerant container that houses the superconducting coil, and a gas bag that stores the refrigerant gas connected to the transport pipe. The gas bag is a structure that keeps the internal pressure constant by expanding and contracting according to the amount of gas inside.
 第3の態様のガス回収装置の輸送管は、第1の輸送管と第2の輸送管とに分岐し、それぞれがガスバックに接続されている構成とすることが望ましい。第1の輸送管には、冷媒容器の内圧がガスバックの内圧よりも第1圧力差以上高い場合に開いて、冷媒容器からガスバックに前記冷媒ガスを流す第1の一方向バルブが備えられている。第2の輸送管には、ガスバックの内圧が冷媒容器の内圧よりも第2圧力差以上高い場合に開いて、ガスバックから冷媒容器に冷媒ガスを流す第2の一方向バルブが備えられている。 It is desirable that the transport pipe of the gas recovery device according to the third aspect is divided into a first transport pipe and a second transport pipe, and each is connected to a gas bag. The first transport pipe is provided with a first one-way valve that opens when the internal pressure of the refrigerant container is higher than the internal pressure of the gas bag by a first pressure difference or more to flow the refrigerant gas from the refrigerant container to the gas bag. ing. The second transport pipe is provided with a second one-way valve that opens when the internal pressure of the gas bag is higher than the internal pressure of the refrigerant container by a second pressure difference or more and allows the refrigerant gas to flow from the gas bag to the refrigerant container. Yes.
 また、本発明の第4の態様として、超電導磁石を備えたMRI装置の運転方法が提供される。超電導磁石に備えられた冷却器が停止した場合、撮影動作を停止する第1工程と、冷媒容器の内圧が上昇し所定の圧力に達したならば、冷媒容器内の冷媒ガスを、一定の内圧を維持しながら冷媒ガスの量に応じて伸縮する構造のガスバックに導いて蓄える第2工程と、冷却器が再稼働し、冷媒容器内の内圧が所定の圧力以下に低下したならば、ガスバック内の冷媒ガスを冷媒容器内に戻し、冷却器の冷却により液化して冷媒容器に蓄える第3工程とを有する運転方法である。 Also, as a fourth aspect of the present invention, a method for operating an MRI apparatus provided with a superconducting magnet is provided. When the cooler provided in the superconducting magnet stops, the first step of stopping the photographing operation, and if the internal pressure of the refrigerant container rises and reaches a predetermined pressure, the refrigerant gas in the refrigerant container The second step of storing and guiding the gas bag with a structure that expands and contracts according to the amount of refrigerant gas while maintaining the temperature, and if the cooler restarts and the internal pressure in the refrigerant container drops below a predetermined pressure, the gas And a third step of returning the refrigerant gas in the bag back to the refrigerant container, liquefying it by cooling of the cooler, and storing it in the refrigerant container.
 第3工程では、撮影動作を冷却器による液化と平行して行うことが可能である。 In the third step, the photographing operation can be performed in parallel with the liquefaction by the cooler.
 第2工程では、冷媒容器内の冷媒ガスを、一方向バルブを通してガスバックに導き、第3工程では、ガスバック内の冷媒ガスを、一方向バルブを通して冷媒容器内に戻すことが好ましい。 In the second step, the refrigerant gas in the refrigerant container is preferably guided to the gas bag through the one-way valve, and in the third step, the refrigerant gas in the gas bag is preferably returned to the refrigerant container through the one-way valve.
 第3工程では、撮影動作を行う前に、冷媒容器内の圧力変化によって生じる超電導磁石の静磁場の均一度の変動を補正することが好ましい。 In the third step, it is preferable to correct the variation in the uniformity of the static magnetic field of the superconducting magnet caused by the pressure change in the refrigerant container before performing the photographing operation.
 上述してきた本発明の各態様によれば、以下のような効果が得られる。
(1)冷媒をほとんど消費しない超電導磁石を用いたMRI装置が提供される。
(2)停電やシステム障害あるいは冷却器の保守時においても、冷媒を補充する必要がない。
(3)冷媒ガスを蓄えるガスバックをフレキシブルに追加できるため、医療施設や地域の電力事情に合わせて、柔軟な運転ができる。
According to each aspect of the present invention described above, the following effects can be obtained.
(1) An MRI apparatus using a superconducting magnet that consumes little refrigerant is provided.
(2) There is no need to replenish the refrigerant even during a power failure, system failure or maintenance of the cooler.
(3) Since a gas bag for storing refrigerant gas can be added flexibly, it can be operated flexibly according to the power situation of medical facilities and the area.
 上記(1)~(3)により、冷媒サービスのネットワークが発達していない地域や、停電が頻繁に生じる地域であっても超電導磁石を用いたMRI装置を設置して画像診断を行うことが可能になる。 By (1) to (3) above, it is possible to perform diagnostic imaging by installing MRI equipment using superconducting magnets even in areas where the refrigerant service network is not developed or where power outages occur frequently become.
 以下、本発明の実施形態を添付図面に基づいて具体的に説明する。なお、実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In all the drawings for explaining the embodiments, parts having the same function are given the same reference numerals, and repeated explanation thereof is omitted.
 (第一の実施形態)
 <本実施形態のMRI装置の全体構成>
 まず、第1の実施形態で運転するMRI装置の全体構成について説明する。
(First embodiment)
<Overall configuration of MRI apparatus of this embodiment>
First, the overall configuration of the MRI apparatus operated in the first embodiment will be described.
 図1は、本実施形態のMRI装置が医療施設に据付けられた状態での全体構成を示す。 FIG. 1 shows an overall configuration in a state where the MRI apparatus of the present embodiment is installed in a medical facility.
 このMRI装置の静磁場を発生する磁石には開放構造の超電導磁石101が用いられている。開放構造の超電導磁石101は、被検体102が配置される磁場空間103を挟んで上下に、上クライオスタット104と下クライオスタット105が対向配置されている。上クライオスタット104と下クライオスタット105の内部空間にはそれぞれ、起磁力源となる超電導コイルがそれぞれ内蔵され、冷媒である液体ヘリウムで満たされている。上クライオスタット104は、下クライオスタット105と連結管106によって連結され、連結管106を支柱として支えられることにより、磁場空間103の前後左右が空いた開放的な構造を形成している。これにより、被検体102に与える圧迫感を和らげ、優しい検査環境を提供している。上クライオスタット104および下クライオスタット105の詳しい構成については、後で詳しく説明する。 An open-structure superconducting magnet 101 is used as a magnet for generating a static magnetic field of this MRI apparatus. In the superconducting magnet 101 having an open structure, an upper cryostat 104 and a lower cryostat 105 are disposed opposite to each other across a magnetic field space 103 in which the subject 102 is disposed. Each of the internal spaces of the upper cryostat 104 and the lower cryostat 105 contains a superconducting coil serving as a magnetomotive force source and is filled with liquid helium as a refrigerant. The upper cryostat 104 is connected to the lower cryostat 105 by a connecting pipe 106 and is supported by the connecting pipe 106 as a support, thereby forming an open structure in which the front, rear, right and left of the magnetic field space 103 are vacant. As a result, the feeling of pressure applied to the subject 102 is relieved and a gentle examination environment is provided. Detailed configurations of the upper cryostat 104 and the lower cryostat 105 will be described in detail later.
 超電導磁石101には、コールドヘッド107が組み込まれている。コールドヘッド107には、圧縮機ユニット108が接続され、圧縮機ユニット108から圧縮された冷媒ガス(以下、ヘリウムガスとも呼ぶ)が供給される。コールドヘッド107と圧縮機ユニット108は、超電導磁石101の冷却器(以下、クライオクーラとも呼ぶ)を構成している。コールドヘッド107は、圧縮された冷媒ガスの断熱膨張時の冷却効果によって超電導磁石101を冷却する。これにより、コールドヘッド107は、超電導磁石101内の後述する輻射シールドを冷却するとともに、上クライオスタット104と下クライオスタット105内で、冷媒(液体ヘリウム)が気化して生じた冷媒ガス(ヘリウムガス)を冷却して、再び液体ヘリウムに凝縮して上クライオスタット104に戻す。 A cold head 107 is incorporated in the superconducting magnet 101. A compressor unit 108 is connected to the cold head 107, and compressed refrigerant gas (hereinafter also referred to as helium gas) is supplied from the compressor unit 108. The cold head 107 and the compressor unit 108 constitute a cooler for the superconducting magnet 101 (hereinafter also referred to as a cryocooler). The cold head 107 cools the superconducting magnet 101 by a cooling effect during adiabatic expansion of the compressed refrigerant gas. As a result, the cold head 107 cools a radiation shield, which will be described later, in the superconducting magnet 101, and in the upper cryostat 104 and the lower cryostat 105, the refrigerant gas (helium gas) generated by the vaporization of the refrigerant (liquid helium). It is cooled, condensed again into liquid helium, and returned to the upper cryostat 104.
 また、コールドヘッド107は、上クライオスタット104と下クライオスタット105に侵入した熱量で気化したヘリウムを、過不足なく再凝縮するのに必要な冷却能力となるように制御されている。よって、気化したヘリウムガスを大気中に放出しないため、クローズドタイプの超電導磁石を実現している。この制御のために、超電導磁石101には、各種センサーと回路からなる制御システムが具備されている。具体的には、超電導磁石101には、その運転状態をモニターするための温度センサーや圧力センサーが複数組み込まれており、そのセンサー接続端子109は、磁石制御ユニット110に接続されている。磁石制御ユニット110は、超電導磁石101の運転状態をモニターするとともに、クライオクーラを制御するのに必要な信号を超電導磁石101に組み込まれたヒータや圧縮機ユニット108に出力している。 Further, the cold head 107 is controlled so as to have a cooling capacity necessary for recondensing the helium vaporized by the amount of heat that has entered the upper cryostat 104 and the lower cryostat 105 without excess or deficiency. Therefore, since the vaporized helium gas is not released into the atmosphere, a closed type superconducting magnet is realized. For this control, the superconducting magnet 101 is provided with a control system including various sensors and circuits. Specifically, the superconducting magnet 101 incorporates a plurality of temperature sensors and pressure sensors for monitoring its operating state, and its sensor connection terminal 109 is connected to the magnet control unit 110. The magnet control unit 110 monitors the operating state of the superconducting magnet 101 and outputs a signal necessary for controlling the cryocooler to a heater and a compressor unit 108 incorporated in the superconducting magnet 101.
 以上のようなクローズドタイプの超電導磁石101の構成で、磁場空間103には高い磁場強度(例えば1テスラ)の安定な静磁場が発生している。この安定な磁場は、液体ヘリウム(温度4.2ケルビン)によって、超電導状態となる臨界温度以下に冷却された超電導コイルに、永久電流(例えば、450アンペア)を流すことで実現している。 With the configuration of the closed-type superconducting magnet 101 as described above, a stable static magnetic field having a high magnetic field strength (for example, 1 Tesla) is generated in the magnetic field space 103. This stable magnetic field is realized by flowing a permanent current (for example, 450 amperes) through a superconducting coil cooled to a temperature lower than the critical temperature at which it becomes a superconducting state by liquid helium (temperature 4.2 Kelvin).
 また、超電導磁石101の上クライオスタット104と下クライオスタット105の磁場空間103側の面には、一対のシムプレート111が取り付けられている。シムプレート111は、磁場空間103の中心の球空間(例えば直径40センチメートル)の磁場均一度を改善する磁場を発生する。シムプレート111は、複数のネジ穴が開けられたプレート部材と、複数のねじ穴のうち所定のネジ穴に埋め込まれた磁性体の小ネジとを備える。磁性体の小ネジの位置を磁場の不均一度に応じて調整することにより、上述の球空間の磁場均一度を目標値(例えば3ppm以下)に調整することができる。 Also, a pair of shim plates 111 are attached to the surfaces of the upper cryostat 104 and the lower cryostat 105 on the magnetic field space 103 side of the superconducting magnet 101. The shim plate 111 generates a magnetic field that improves the magnetic field uniformity of a spherical space (for example, 40 centimeters in diameter) in the center of the magnetic field space 103. The shim plate 111 includes a plate member having a plurality of screw holes and magnetic small screws embedded in predetermined screw holes among the plurality of screw holes. By adjusting the position of the small screw of the magnetic body according to the nonuniformity of the magnetic field, the magnetic field uniformity of the above-mentioned spherical space can be adjusted to a target value (eg, 3 ppm or less).
 シムプレート111の磁場空間103の面には、傾斜磁場を発生する一対の傾斜磁場コイル112が配置されている。この傾斜磁場コイル112は、超電導磁石101の開放的な構造を妨げることがないように平板構造である。上下一対の傾斜磁場コイル112はそれぞれ、積層されたxとyとzの3種類のコイルを備え、これらは互いに直交する3軸方向に傾斜磁場を生じる。xコイル、yコイル、zコイルには、それぞれ独立に電流を印加する傾斜磁場電源113が接続されている。zコイルに傾斜磁場パワーアンプ113よりプラス電流が印加されると、上zコイルは超電導磁石101の発生する磁束と同じ向きの磁束を発生し、下zコイルにはそれとは反対向きの磁束を発生する。この結果、磁場空間103のz軸(垂直軸)の上から下に向けて磁束密度が徐々に小さくなる勾配ができる。 A pair of gradient magnetic field coils 112 that generate a gradient magnetic field are arranged on the surface of the magnetic field space 103 of the shim plate 111. The gradient coil 112 has a flat plate structure so as not to hinder the open structure of the superconducting magnet 101. Each of the pair of upper and lower gradient magnetic field coils 112 includes three types of stacked coils of x, y, and z, and these generate gradient magnetic fields in three axial directions orthogonal to each other. A gradient magnetic field power supply 113 for applying a current independently is connected to each of the x coil, the y coil, and the z coil. When a positive current is applied to the z coil from the gradient power amplifier 113, the upper z coil generates a magnetic flux in the same direction as the magnetic flux generated by the superconducting magnet 101, and the lower z coil generates a magnetic flux in the opposite direction. To do. As a result, a gradient in which the magnetic flux density gradually decreases from the top to the bottom of the z-axis (vertical axis) of the magnetic field space 103 can be formed.
 同様に、xコイルおよびyコイルは、超電導磁石101の発生する磁束の密度をそれぞれx軸、y軸(ともに水平軸)に沿って勾配となるような傾斜磁場を付与する。これらのxコイル、yコイル、zコイルは、それぞれ不均一磁場のx、y、zの一次成分のシムコイルとして機能させることも可能である。すなわち、傾斜磁場電源113は勾配を発生させるための電流に、磁場均一度を改善するためのシム電流を重畳して出力させることができる。 Similarly, the x coil and the y coil give a gradient magnetic field that makes the magnetic flux density generated by the superconducting magnet 101 gradient along the x axis and the y axis (both horizontal axes), respectively. These x coils, y coils, and z coils can also function as shim coils of primary components of x, y, and z with non-uniform magnetic fields, respectively. In other words, the gradient magnetic field power supply 113 can output the current for generating the gradient by superimposing the shim current for improving the magnetic field uniformity.
 また、傾斜磁場コイル112は、xコイル、yコイル、zコイルの他に、超電導磁石101の発生する磁場強度を調整するBoコイルと、x、y、z方向の高次モードの磁場を発生するシムコイル、例えばx2、y2、x3、x2+y2の磁場を発生するコイル等を備えている。これらのコイルには、シム電源114が接続され電流が印加される。 In addition to the x coil, the y coil, and the z coil, the gradient coil 112 generates a Bo coil that adjusts the magnetic field intensity generated by the superconducting magnet 101 and a high-order mode magnetic field in the x, y, and z directions. A shim coil, for example, a coil that generates a magnetic field of x 2 , y 2 , x 3 , x 2 + y 2 is provided. A shim power source 114 is connected to these coils and a current is applied thereto.
 傾斜磁場コイル112の磁場空間103側には一対の高周波コイル115が取り付けられている。この高周波コイル115も超電導磁石101の開放的な構造を妨げることがないように平板構造のコイルが採用されている。上下一対の高周波コイル115には高周波電源116が接続され、高周波電流が供給される。これにより、被検体102検査部位の核スピンを核磁気共鳴させるのに必要な高周波磁場を発生する。例えば、1テスラの静磁場強度で水素原子核が核磁気共鳴を起こす42メガヘルツの高周波磁場を発生する。 A pair of high-frequency coils 115 are attached to the magnetic field space 103 side of the gradient coil 112. The high-frequency coil 115 is also a flat-plate coil so as not to hinder the open structure of the superconducting magnet 101. A high frequency power source 116 is connected to the pair of upper and lower high frequency coils 115, and a high frequency current is supplied. As a result, a high-frequency magnetic field necessary for nuclear magnetic resonance of the nuclear spin at the inspection site of the subject 102 is generated. For example, it generates a 42 megahertz high-frequency magnetic field in which hydrogen nuclei cause nuclear magnetic resonance with a static magnetic field strength of 1 Tesla.
 上述の安定で均一度の高い静磁場と、傾斜磁場と、高周波磁場とを組み合わせることにより、被検体102の検査部位の水素原子核を正確にかつ、選択的に核磁気共鳴現象を起こさせることができる。その後の核スピンの歳差運動過程に傾斜磁場をパルス的に印加することで三次元的位置情報を付加できる。この核スピンの歳差運動を検査部位のNMR信号として検出して、画像等を生成する。以下、検出および画像生成のための構成について説明する。 By combining the above-mentioned stable and highly uniform static magnetic field, gradient magnetic field, and high-frequency magnetic field, it is possible to cause a nuclear magnetic resonance phenomenon to occur accurately and selectively in the hydrogen nuclei at the examination site of the subject 102. it can. Three-dimensional positional information can be added by applying a gradient magnetic field in a pulsed manner to the subsequent precession process of nuclear spins. The precession of the nuclear spin is detected as an NMR signal at the examination site, and an image or the like is generated. A configuration for detection and image generation will be described below.
 磁場空間103のほぼ中心位置、すなわち被検体102の検査部位には、NMR信号を検出する検出コイル117が配置されている。この検出コイル117は、前述の核スピンの歳差運動によるわずかな磁場変動を、誘導電流(電気信号)として検出する。NMR信号は検出コイル117に接続されている高周波増幅器118に受け渡される。高周波増幅器118では、NMR信号に増幅・検波の信号処理を施して、コンピュータ演算処理に適したデジタル信号に変換処理する。 A detection coil 117 for detecting an NMR signal is disposed at substantially the center position of the magnetic field space 103, that is, at the examination site of the subject 102. This detection coil 117 detects a slight magnetic field fluctuation due to the above-described precession of the nuclear spin as an induced current (electric signal). The NMR signal is passed to the high frequency amplifier 118 connected to the detection coil 117. In the high frequency amplifier 118, the NMR signal is subjected to amplification / detection signal processing to be converted into a digital signal suitable for computer arithmetic processing.
 コンピュータ119は、高周波増幅器118からデジタル信号に変換されたNMR信号を受け取って、医学的な診断に供するための画像やスペクトルチャートに変換処理して、コンピュータ119内の記憶装置(図では示してない)に保存するとともに、ディスプレイ120に表示する。また、コンピュータ119には、診断の役に立つ画像解析機能などのプログラムが格納されている。コンピュータ119へのオペレーション指示は、キーボードなどの入力装置121を介して入力される。 The computer 119 receives the NMR signal converted into a digital signal from the high-frequency amplifier 118, converts it into an image or spectrum chart for use in medical diagnosis, and stores it in a storage device (not shown in the figure) in the computer 119. ) And displayed on the display 120. The computer 119 stores programs such as an image analysis function useful for diagnosis. Operation instructions to the computer 119 are input via an input device 121 such as a keyboard.
 また、コンピュータ119は、各ユニットの動作をコントロールし、種々のMRI検査(撮影)モード、例えば高速スピンエコー法や拡散強調エコープレーナー法を実行するための制御プログラムが格納されている。すなわち、上述の磁石制御ユニット110、傾斜磁場電源113、シム電源114、高周波電源116、高周波増幅器118は、それぞれコンピュータ119に接続され、プログラムされた内容で動作をコントロールされる。これにより、所定のタイミングで傾斜磁場や高周波磁場を印加し、所定のMRI検査(撮影)方法によるNMR信号の取得が行われる。これらのユニットの動作状態はコンピュータ119のメモリーに記録することが可能である。またコンピュータ119に記録された各ユニットの動作状態情報は、通信制御装置(図では示してない)を経由して外部の監視拠点に送信され、外部の監視拠点からの遠隔監視を可能にしている。 Further, the computer 119 stores the control program for controlling the operation of each unit and executing various MRI examination (imaging) modes, for example, the high-speed spin echo method and the diffusion weighted echo planar method. That is, the magnet control unit 110, the gradient magnetic field power supply 113, the shim power supply 114, the high frequency power supply 116, and the high frequency amplifier 118 are connected to the computer 119, respectively, and their operations are controlled with programmed contents. Thereby, a gradient magnetic field or a high-frequency magnetic field is applied at a predetermined timing, and an NMR signal is acquired by a predetermined MRI examination (imaging) method. The operating states of these units can be recorded in the memory of the computer 119. Also, the operation status information of each unit recorded in the computer 119 is transmitted to an external monitoring base via a communication control device (not shown in the figure), enabling remote monitoring from the external monitoring base. .
 その他の主要なユニットとして、被検体102を磁場空間103の中心に搬送する患者テーブル122が、超電導磁石101の前面に組み込まれている。超電導磁石101および患者テーブル122は電磁シールドを施した検査室123に設置されている。電磁シールドは、外部機器が発生する電磁波がノイズとして検出コイル117に混入するのを防止する。 As another main unit, a patient table 122 that transports the subject 102 to the center of the magnetic field space 103 is incorporated in the front surface of the superconducting magnet 101. The superconducting magnet 101 and the patient table 122 are installed in an examination room 123 provided with an electromagnetic shield. The electromagnetic shield prevents electromagnetic waves generated by an external device from entering the detection coil 117 as noise.
 さらに超電導磁石101には、排気管(以下、ヘリウム排気管と呼ぶ)124を介して、伸縮可能なガスバック125が接続されている。ガスバック125の機能の詳細は後述する。 Furthermore, an extendable gas back 125 is connected to the superconducting magnet 101 via an exhaust pipe (hereinafter referred to as a helium exhaust pipe) 124. Details of the function of the gas bag 125 will be described later.
 本実施形態のMRI装置のコンピュータ119には、磁場空間103の磁場性能を解析・補正する機能のプログラムが組み込まれている。このプログラムは、下記のステップを実行するものである。
(1)傾斜磁場コイル112、Boコイル、および、全シムコイルに電流が供給されていない状態で、磁場空間103に配設された被検体102のNMR信号を計測する(検査モード)。
(2)計測されたNMR信号を、コンピュータ119でフーリエ変換し、そのNMR信号の周波数成分を求める。
(3)1テスラの磁場強度で水素原子核スピンの核磁気共鳴周波数42メガヘルツと、上記ステップで求めた周波数との差分に対応する磁場を計算により求める。Boコイルから差分磁場を発生するようにシム電源114を制御する。
(4)次に、xコイルに、例えば10アンペアの電流を印加した状態で、被検体102のNMR信号を計測する。
(5)計測されたNMR信号を球面調和関数で展開処理し、撮影空間103のx軸方向の誤差磁場を解析する。
(6)同様に、y軸z軸についても、誤差磁場成分を解析する。
(7)x軸、y軸、z軸の誤差磁場成分を、傾斜磁場コイル112のxコイル、yコイル、zコイル、および、シムコイルの磁場で補正するシム電流が流れるように、傾斜磁場電源113、シム電源114を制御する。
The computer 119 of the MRI apparatus according to the present embodiment incorporates a function program for analyzing and correcting the magnetic field performance of the magnetic field space 103. This program executes the following steps.
(1) The NMR signal of the subject 102 disposed in the magnetic field space 103 is measured in a state where no current is supplied to the gradient magnetic field coil 112, the Bo coil, and all the shim coils (examination mode).
(2) The measured NMR signal is Fourier transformed by the computer 119, and the frequency component of the NMR signal is obtained.
(3) A magnetic field corresponding to the difference between the nuclear magnetic resonance frequency of 42 megahertz of the hydrogen nuclear spin and the frequency obtained in the above step is obtained by calculation with a magnetic field intensity of 1 Tesla. The shim power supply 114 is controlled to generate a differential magnetic field from the Bo coil.
(4) Next, the NMR signal of the subject 102 is measured in a state where a current of, for example, 10 amperes is applied to the x coil.
(5) The measured NMR signal is expanded with a spherical harmonic function, and the error magnetic field in the x-axis direction of the imaging space 103 is analyzed.
(6) Similarly, the error magnetic field component is analyzed for the y-axis and the z-axis.
(7) Gradient magnetic field power supply 113 so that a shim current that corrects the error magnetic field components of the x-axis, y-axis, and z-axis with the magnetic fields of the x-coil, y-coil, z-coil, and shim coil of the gradient coil 112 flows. The shim power supply 114 is controlled.
 この機能を使うことで、磁場空間103の静磁場は、MRI検査(撮影)に最適な状態に保たれる。この機能によれば、停電等で超電導磁石101の冷媒容器の内圧変化が生じたことによる磁場変化や、経時的な磁場変化、さらには被検体102の検査部位の磁化率による誤差磁場(例えば、磁性体医用インプラント影響)を補正することが可能となる。 By using this function, the static magnetic field in the magnetic field space 103 is kept in an optimum state for MRI examination (imaging). According to this function, a magnetic field change due to a change in internal pressure of the refrigerant container of the superconducting magnet 101 due to a power failure, a magnetic field change over time, and an error magnetic field due to the magnetic susceptibility of the examination site of the subject 102 (for example, It is possible to correct the magnetic medical implant influence).
 また、停電等による超電導磁石103の冷媒容器の圧力変化と、磁場空間103の磁場変化との関係を予め計測し、コンピュータ119に入力しておくことも可能である。磁場制御ユニット110からの圧力信号を基に、コンピュータ119は予め計測した上記関係を参照し、傾斜磁場電源113とシム電源114を制御して、圧力変化に伴う磁場変化を補償する。この機能は、MRI検査の前に磁場補正用のNMR信号を計測する必要がなく、かつ、リアルタイムで補正ができるので、例えば、救急患者のMRI検査の場合などに好適である。 It is also possible to measure in advance the relationship between the change in the pressure of the refrigerant container of the superconducting magnet 103 due to a power failure or the like and the change in the magnetic field in the magnetic field space 103 and input it to the computer 119. Based on the pressure signal from the magnetic field control unit 110, the computer 119 refers to the relationship measured in advance, controls the gradient magnetic field power supply 113 and the shim power supply 114, and compensates for the magnetic field change accompanying the pressure change. This function is suitable for, for example, an MRI examination of an emergency patient because it is not necessary to measure an NMR signal for magnetic field correction before the MRI examination and can be corrected in real time.
 <クライオクーラの構造とその機能>
 図2は、図1で示した上クライオスタット104とコールドヘッド107の詳細を示す図である。超電導磁石101は、上クライオスタット104と下クライオスタット105の内部構造は基本的に磁場空間103を中心に上下対称なので、ここでは上クライオスタット104についてのみで説明する。
<Structure and function of cryocooler>
FIG. 2 is a diagram showing details of the upper cryostat 104 and the cold head 107 shown in FIG. In the superconducting magnet 101, the internal structure of the upper cryostat 104 and the lower cryostat 105 is basically vertically symmetric about the magnetic field space 103, so only the upper cryostat 104 will be described here.
 上クライオスタット104は、外側が真空容器201で覆われている。真空容器201は、例えば厚さ10ミリメートルのステンレススチールで構成され、本体の重量と内部の真空圧力にも耐えられる剛性を有している。真空容器201の内部には冷媒容器(以下、ヘリウム容器と呼ぶ)202が配置されている。ヘリウム容器202の内部には複数からなる超電導コイル203(図では1個のみ示す)が配置され、ヘリウム容器202に固定されている。ヘリウム容器202は、例えば厚さ15ミリメートルのステンレススチールで構成され、超電導コイル203に加わる電磁力と内外の圧力差に耐えられる剛性を有している。 The upper cryostat 104 is covered with a vacuum vessel 201 on the outside. The vacuum vessel 201 is made of stainless steel having a thickness of 10 millimeters, for example, and has rigidity capable of withstanding the weight of the main body and the internal vacuum pressure. A refrigerant container (hereinafter referred to as a helium container) 202 is disposed inside the vacuum container 201. A plurality of superconducting coils 203 (only one is shown in the figure) are arranged inside the helium vessel 202 and fixed to the helium vessel 202. The helium vessel 202 is made of stainless steel having a thickness of 15 millimeters, for example, and has rigidity capable of withstanding the electromagnetic force applied to the superconducting coil 203 and the pressure difference between the inside and outside.
 ヘリウム容器202内は、通常時にはその容積のほぼ90%まで液体ヘリウム204が充填され、超電導コイル203が液体ヘリウム204に浸かるようになっている。これにより、超電導コイル203は液体ヘリウム204の沸点温度である4.2ケルビン(-268.8℃)に冷却され、超電導状態を維持する。また、ヘリウム容器202の上部のヘリウムガス溜まり部には、コールドヘッド107の第二冷却ステージ216が挿入され、ヘリウム容器202内のヘリウムガスを直接冷却して液化(凝縮)している。 The inside of the helium vessel 202 is normally filled with liquid helium 204 to approximately 90% of its volume, and the superconducting coil 203 is immersed in the liquid helium 204. As a result, the superconducting coil 203 is cooled to 4.2 Kelvin (−268.8 ° C.), which is the boiling point temperature of the liquid helium 204, and maintains the superconducting state. Further, a second cooling stage 216 of the cold head 107 is inserted into the helium gas reservoir in the upper part of the helium container 202, and the helium gas in the helium container 202 is directly cooled and liquefied (condensed).
 真空容器201とヘリウム容器202の間隙は真空層で、中間には輻射シールド板212が配置されている。輻射シールド板212は、例えば厚さ5ミリメートルのアルミニュームで作られ、その表面は鏡面に磨かれていて、輻射熱を抑えている。この輻射シールド板212はコールドヘッド107の第一冷却ステージ213と熱接触することで冷却され、さらに輻射熱を低減するように機能している。 The gap between the vacuum vessel 201 and the helium vessel 202 is a vacuum layer, and a radiation shield plate 212 is disposed in the middle. The radiation shield plate 212 is made of, for example, aluminum having a thickness of 5 mm, and its surface is polished to a mirror surface to suppress radiant heat. The radiation shield plate 212 is cooled by being in thermal contact with the first cooling stage 213 of the cold head 107 and functions to further reduce radiant heat.
 また、スーパーインシュレータ214(図2では一部のみ記載)が真空容器201と輻射シールド板212の間隙に配置されている。スーパーインシュレータ214は、例えばアルミニューム薄膜が蒸着されたポリエチレンシートの多重層で構成され、輻射熱の低減に効果がある。 Also, a super insulator 214 (only a part is shown in FIG. 2) is arranged in the gap between the vacuum vessel 201 and the radiation shield plate 212. The super insulator 214 is composed of, for example, multiple layers of polyethylene sheets on which an aluminum thin film is deposited, and is effective in reducing radiant heat.
 真空容器201、輻射シールド板212、ヘリウム容器202の間には、これらの互いの位置を固定するために、荷重支持体215が複数箇所に取り付けられている。荷重支持体215を介して真空容器201から輻射シールド板212、輻射シールド板からヘリウム容器202へと伝導する熱を極小に抑えるため、荷重支持体215は熱伝導の低い材料、例えばステンレススチールと強化炭素樹脂や強化プラスチック樹脂で構成されている。 Between the vacuum vessel 201, the radiation shield plate 212, and the helium vessel 202, load supports 215 are attached at a plurality of locations in order to fix their positions. In order to minimize the heat conducted from the vacuum vessel 201 to the radiation shield plate 212 and from the radiation shield plate to the helium vessel 202 via the load support 215, the load support 215 is reinforced with a material having low heat conductivity, such as stainless steel. It is made of carbon resin or reinforced plastic resin.
 この様な構成で、室温(約300ケルビン)である真空容器201からヘリウムの沸点温度(約4ケルビン)であるヘリウム容器202に加わる熱量は、輻射熱と伝導熱の合計で約1ワット程度に抑えられている。 With such a configuration, the amount of heat applied from the vacuum vessel 201 at room temperature (about 300 Kelvin) to the helium vessel 202 at the boiling point of helium (about 4 Kelvin) is suppressed to about 1 watt in total of radiant heat and conduction heat. It has been.
 コールドヘッド107は、冷却能力がヘリウム容器202に加わる熱とほぼ熱平衡状態となるように調整されている。コールドヘッド107の第一冷却ステージ213は43ケルビン(-230℃)で、約45ワットの冷却能力を有し、前述の通り輻射熱シールド板212を冷却する。第二冷却ステージ216は4ケルビン(-269℃)で、約1.4ワットの冷却能力を有し、ヘリウム容器202内でヘリウムガスを直接冷却して、凝縮する。 The cold head 107 is adjusted so that the cooling capacity is almost in thermal equilibrium with the heat applied to the helium vessel 202. The first cooling stage 213 of the cold head 107 is 43 Kelvin (−230 ° C.), has a cooling capacity of about 45 watts, and cools the radiant heat shield plate 212 as described above. The second cooling stage 216 is 4 Kelvin (−269 ° C.) and has a cooling capacity of about 1.4 watts, and the helium gas is directly cooled and condensed in the helium vessel 202.
 ヘリウム容器202の内部には、液体ヘリウム204の液面を計測する液面センサー205と液体ヘリウム204が気化したヘリウムガスの圧力を計測する圧力センサー206が組み込まれている。また、ヘリウム容器202内には、液体ヘリウムを加熱するヒータ素子207も配置され、圧力センサー206の検出した圧力が所定値(例えば約5KPa)よりも低下している場合には、液体ヘリウムをわずかに加熱し、気化させて圧力を一定に維持している。この制御は、磁石制御ユニット110によって行われる。これらのセンサー205,206やヒータ素子207の出力信号線は、真空リークとならないようにハーメチックシール208を介して、センサー接続端子109から磁石制御ユニット110に接続されている。 Inside the helium vessel 202, a liquid level sensor 205 for measuring the liquid level of the liquid helium 204 and a pressure sensor 206 for measuring the pressure of the helium gas evaporated from the liquid helium 204 are incorporated. In addition, a heater element 207 for heating liquid helium is also arranged in the helium vessel 202. When the pressure detected by the pressure sensor 206 is lower than a predetermined value (for example, about 5 KPa), liquid helium is slightly added. The pressure is kept constant by heating and vaporizing. This control is performed by the magnet control unit 110. The output signal lines of the sensors 205 and 206 and the heater element 207 are connected from the sensor connection terminal 109 to the magnet control unit 110 via the hermetic seal 208 so as not to cause a vacuum leak.
 ヘリウム容器202の上部には、管状のサービスポート209が接続されている。このサービスポート209は、ヘリウム容器202に、外部から運搬してきた液体ヘリウムを注入する際に用いられる。具体的には、サービスポート209の上部の栓210を外し、注液パイプ(図には記入していない)を挿入することで、ヘリウム容器202に液体ヘリウムを注入できる。サービスポート209の途中から管は分岐し、分岐した管には、所定の圧力(例えば40KPa)で破裂する破裂板211が接続されている。 A tubular service port 209 is connected to the upper part of the helium vessel 202. This service port 209 is used when liquid helium transported from the outside is injected into the helium container 202. Specifically, liquid helium can be injected into the helium vessel 202 by removing the stopper 210 at the top of the service port 209 and inserting a liquid injection pipe (not shown in the figure). The pipe branches from the middle of the service port 209, and a rupture plate 211 that ruptures at a predetermined pressure (for example, 40 KPa) is connected to the branched pipe.
 通常のMRI装置の運転状態では、上述した磁石制御ユニット110が、ヒータ素子207に電流を供給することにより、ヘリウム容器202の圧力を約5KPaに維持している。クエンチ時や緊急磁場減衰時に、液体ヘリウムが一気に気化し、ヘリウム容器202の内圧が所定の圧力(例えば40KPa)に達した場合には破裂板211が破裂し、外部にヘリウムガスを安全に放出する。これにより、ヘリウム容器202には、所定の圧力以上の圧力が生じず、安全が保たれる。 In the normal operation state of the MRI apparatus, the magnet control unit 110 described above supplies a current to the heater element 207 to maintain the pressure of the helium vessel 202 at about 5 KPa. When quenching or urgent magnetic field decay, liquid helium vaporizes all at once, and when the internal pressure of the helium vessel 202 reaches a predetermined pressure (for example, 40 KPa), the rupture plate 211 is ruptured, and helium gas is safely released to the outside. . As a result, no pressure higher than a predetermined pressure is generated in the helium vessel 202, and safety is maintained.
 一方、停電やシステム障害などでコールドヘッド107の冷却性能が停止したり、ヒータ素子207の制御が機能停止し、発熱し続ける状態となった場合には、液体ヘリウムが徐々に気化する。この気化速度は、クエンチ時や緊急磁場減衰時ほど大きくない。本発明では、発生したヘリウムガスをヘリウム排気管124を介して伸縮可能なガスバック125に流し、蓄える。これにより、ヘリウム容器202の圧力が所定の圧力(例えば20KPa)を超えないように維持する。この20KPa以下の圧力範囲内であれば、磁場空間103の磁場性能の変化は、傾斜磁場コイル112、Boコイル、そしてシムコイルで補正できる範囲であることが確認されているので、撮像動作を行うことができる。また、停電やシステム障害が復旧し、コールドヘッド107が再稼働した場合には、ガスバック125に蓄えられたヘリウムガスをヘリウム容器202に戻して液化することができる。これについて、以下詳細に説明する。 On the other hand, when the cooling performance of the cold head 107 is stopped due to a power failure or a system failure, or when the control of the heater element 207 stops functioning and continues to generate heat, the liquid helium gradually vaporizes. This vaporization rate is not as great as during quenching or emergency magnetic field decay. In the present invention, the generated helium gas is allowed to flow through the helium exhaust pipe 124 to the extendable gas bag 125 and stored. Thereby, the pressure of the helium vessel 202 is maintained so as not to exceed a predetermined pressure (for example, 20 KPa). If it is within the pressure range of 20 KPa or less, it is confirmed that the change in the magnetic field performance of the magnetic field space 103 can be corrected by the gradient coil 112, the Bo coil, and the shim coil. Can do. Further, when the power failure or system failure is recovered and the cold head 107 is restarted, the helium gas stored in the gas bag 125 can be returned to the helium vessel 202 and liquefied. This will be described in detail below.
 〈ヘリウム排気管とガスバックの構成〉
 ヘリウム容器202の上部には、図2のようにヘリウム排気管124の一端が接続されている。ヘリウム排気管124の一部は、輻射シールド板212の外面に所定の長さに渡って接触するように配置され、熱接触部217を構成している。これにより、ヘリウム容器202で気化したヘリウムガスの潜熱で輻射シールド板212を冷却できる構成になっている。
<Configuration of helium exhaust pipe and gas bag>
One end of a helium exhaust pipe 124 is connected to the upper portion of the helium vessel 202 as shown in FIG. A portion of the helium exhaust pipe 124 is disposed so as to contact the outer surface of the radiation shield plate 212 over a predetermined length, and constitutes a thermal contact portion 217. Thus, the radiation shield plate 212 can be cooled by the latent heat of the helium gas vaporized in the helium vessel 202.
 輻射シールド板212の温度は、コールドヘッド107の第一冷却ステージ213との熱接触部位の温度が最も低く、第一冷却ステージ213から遠ざかるにつれて温度が上昇する。ヘリウム排気管124は、ヘリウム容器202から引き出された状態が最も温度が低いため、輻射シールド板212を貫通して輻射シールド板212の外面に接触しはじめる位置が、図2に示すとおりコールドヘッド107に近い位置に配置されている。この位置から所定の長さに渡って、ヘリウム排気管124は、輻射シールド板212の外面にヘリウム排気管124の外周面が接するように輻射シールド板212に沿って配置され、熱接触部217を構成している。熱接触部217においては、ヘリウム排気管124は、コールドヘッド107から次第に離れるように配置され、コールドヘッド107から最も遠い熱接触部217の端部で輻射シールド板212から離れて、真空容器201の方向に向かい、真空容器201を貫通して外部に引き出されている。これにより、ヘリウム排気管124は、熱接触部217においてヘリウムガスの潜熱で輻射シールド板212を効果的に冷却することができる。 The temperature of the radiation shield plate 212 has the lowest temperature at the thermal contact portion of the cold head 107 with the first cooling stage 213, and the temperature increases as the distance from the first cooling stage 213 increases. Since the temperature of the helium exhaust pipe 124 drawn out from the helium vessel 202 is the lowest, the position where the helium exhaust pipe 124 starts to contact the outer surface of the radiation shield plate 212 through the radiation shield plate 212 is as shown in FIG. It is arranged near the position. From this position over a predetermined length, the helium exhaust pipe 124 is disposed along the radiation shield plate 212 so that the outer peripheral surface of the helium exhaust pipe 124 contacts the outer surface of the radiation shield plate 212. It is composed. In the thermal contact portion 217, the helium exhaust pipe 124 is disposed so as to gradually move away from the cold head 107, away from the radiation shield plate 212 at the end of the thermal contact portion 217 farthest from the cold head 107, and In the direction, it passes through the vacuum vessel 201 and is drawn out. Thus, the helium exhaust pipe 124 can effectively cool the radiation shield plate 212 with the latent heat of the helium gas at the thermal contact portion 217.
 図1では、図示を省略しているが、ヘリウム排気管124は超電導磁石101の外部で図3に示すように二方向に分岐している。一方は輸送管(以下、ヘリウム輸送管と呼ぶ)(A)301であり、一方向バルブ(以下、一方向リリーフバルブと呼ぶ)302を介して、ヘリウム輸送管(B)303に接続され、ガスバック125の下部に接続されている。他方は、ヘリウム輸送管(C)304から、一方向リリーフバルブ305を介して、ヘリウム輸送管(D)306に接続される。ヘリウム輸送管(D)306は、ガスバック125の上部に接続されている。 Although not shown in FIG. 1, the helium exhaust pipe 124 branches in two directions outside the superconducting magnet 101 as shown in FIG. One is a transport pipe (hereinafter referred to as a helium transport pipe) (A) 301, which is connected to a helium transport pipe (B) 303 via a one-way valve (hereinafter referred to as a one-way relief valve) 302, and gas. Connected to the bottom of the back 125. The other is connected from the helium transport pipe (C) 304 to the helium transport pipe (D) 306 via the one-way relief valve 305. The helium transport pipe (D) 306 is connected to the upper part of the gas bag 125.
 ここで、一方向リリーフバルブ302は、ヘリウム輸送管(A)301内のガス圧がヘリウム輸送管(B)303内のガス圧より10KPa以上高い時に、バルブが開き、ヘリウムガスをヘリウム輸送管(A)301からヘリウム輸送管(B)303の方向に流すように構成されている。いかなる圧力差であっても逆流はできない。 Here, the one-way relief valve 302 is opened when the gas pressure in the helium transport pipe (A) 301 is higher than the gas pressure in the helium transport pipe (B) 303 by 10 KPa or more, and helium gas is removed from the helium transport pipe ( It is configured to flow in the direction from A) 301 to the helium transport pipe (B) 303. Backflow is not possible with any pressure difference.
 一方、一方向リリーフバルブ305は、ヘリウム輸送管(D)306内のガス圧がヘリウム輸送管(C)304内のガス圧より5KPa以上高い時に、バルブが開き、ヘリウムガスをヘリウム輸送管(D)306からヘリウム輸送管(C)304の方向に流すように構成されている。いかなる圧力差であっても逆流はできない。 On the other hand, the one-way relief valve 305 is opened when the gas pressure in the helium transport pipe (D) 306 is higher than the gas pressure in the helium transport pipe (C) 304 by 5 KPa or more, and the helium gas is supplied to the helium transport pipe (D ) 306 to the helium transport pipe (C) 304. Backflow is not possible with any pressure difference.
 ガスバック125は、その材質の弾性特性から内圧が所定圧(10KPa)に達したならば膨らみ始め、流入するヘリウムガス量に応じて所定圧(10KPa)を維持しながら伸縮を行なう構造である。すなわち、ガスバック125は固定容積ではなく、内部のヘリウムガス量とガス圧に応じて伸縮し、内容積が変化する構成である。例えば、ヘリウムガスに対して高いガス遮断性を有する膜材で構成され、蛇腹状に折りたたまれたガスバック125を用いることができる。ガスバック125の内圧が所定圧(10KPa)に達したならば、蛇腹が伸びていくことにより容積が増加する。ガスバック125の最大容量は、停電やシステム障害等でコールドヘッド107が停止する予測時間に基づき、その間にヘリウム容器202に侵入する熱量で気化したヘリウムガスを十分に蓄えられる容量に設定する。一例としては、停電等で40時間コールドヘッド107が停止することが予測できる場合、ヘリウム容器202のサイズや構成にも依存するが1時間当たり約700リットルのヘリウムガスが発生するため、最大容量28m3のガスバック125を接続する。ガスバック125は、初期状態では蛇腹が折りたたまれコンパクトな構成であるが、ヘリウムガスの流入により最大28m3まで膨張するので、停電時には、ガスバック125が膨張する方向に28m3の空間が用意できる場所にガスバック125を配置する。 The gas bag 125 has a structure that starts to expand when the internal pressure reaches a predetermined pressure (10 KPa) due to the elastic characteristics of the material, and expands and contracts while maintaining the predetermined pressure (10 KPa) according to the amount of inflowing helium gas. That is, the gas bag 125 is not a fixed volume, but is configured to expand and contract according to the amount of helium gas and the gas pressure inside, and the internal volume changes. For example, a gas bag 125 made of a film material having a high gas barrier property against helium gas and folded in a bellows shape can be used. When the internal pressure of the gas bag 125 reaches a predetermined pressure (10 KPa), the volume increases due to the bellows extending. The maximum capacity of the gas bag 125 is set to a capacity that can sufficiently store the helium gas vaporized by the amount of heat that enters the helium vessel 202 during that time based on the predicted time when the cold head 107 stops due to a power failure or system failure. As an example, if it can be predicted that the cold head 107 will stop for 40 hours due to a power failure etc., it will depend on the size and configuration of the helium vessel 202, but about 700 liters of helium gas is generated per hour, so the maximum capacity is 28 m Connect 3 gas bags 125. The gas bag 125 has a compact configuration with the bellows folded in the initial state, but expands to a maximum of 28 m 3 due to the inflow of helium gas, so a 28 m 3 space can be prepared in the direction in which the gas bag 125 expands during a power failure. Place gas bag 125 in place.
 図1では、検査室123のすぐ傍にガスバック125を配置しているが、ヘリウム排気管124を延ばし、ガスバック125を検査室123から離れた部屋に配置することも可能である。 In FIG. 1, the gas bag 125 is arranged in the immediate vicinity of the examination room 123, but it is also possible to extend the helium exhaust pipe 124 and arrange the gas bag 125 in a room away from the examination room 123.
 停電やシステム障害などでコールドヘッド107の冷却性能が機能停止した場合、真空容器201からヘリウム容器202に侵入する熱量は構造的に約1ワット程度に抑えられているが、この約1ワットの熱量で液体ヘリウムが気化し、ヘリウム容器202の圧力が上昇始める。各部は以下のように動作し、ヘリウム容器202の圧力は許容圧力20KPaが維持される。 If the cooling performance of the cold head 107 stops functioning due to a power failure or system failure, the amount of heat entering the helium vessel 202 from the vacuum vessel 201 is structurally suppressed to about 1 watt, but this amount of heat is about 1 watt. Then, liquid helium is vaporized and the pressure in the helium vessel 202 starts to rise. Each part operates as follows, and the pressure of the helium vessel 202 is maintained at an allowable pressure of 20 KPa.
 すなわち、ヘリウム容器202の圧力が20KPaに達すると、一方向リリーフバルブ(10KPa)302が開き、ヘリウムガスがガスバック125に流出する。ガスバック125は流入するヘリウムガス量に応じてその容積を増す。これにより、ヘリウム容器202は20KPaを、ガスバック125は10KPaを維持する。 That is, when the pressure in the helium vessel 202 reaches 20 KPa, the one-way relief valve (10 KPa) 302 is opened and helium gas flows out to the gas back 125. The gas bag 125 increases in volume according to the amount of helium gas flowing in. As a result, the helium vessel 202 maintains 20 KPa, and the gas bag 125 maintains 10 KPa.
 この過程でヘリウムガスの流れは、熱接触部217で輻射シールド板212に接するため、ヘリウムガスが有する潜熱で輻射シールド板212を冷却して、輻射熱を下げ、ヘリウム容器202の液体ヘリウム204の気化を防ぐように働く。また、熱交換をすることで、冷えたままのヘリウムガスが超電導磁石101の外部に導かれ、ヘリウム排気管124やヘリウム輸送管(A)301に霜が付着することを低減する効果もある。 In this process, the flow of helium gas comes into contact with the radiation shield plate 212 at the thermal contact portion 217. Therefore, the radiation shield plate 212 is cooled by the latent heat of the helium gas, the radiant heat is lowered, and the liquid helium 204 in the helium vessel 202 is vaporized. Work to prevent. Further, the heat exchange has an effect of reducing the helium gas that has been cooled to the outside of the superconducting magnet 101 and reducing frost on the helium exhaust pipe 124 and the helium transport pipe (A) 301.
 停電やシステム障害が復旧すると、コールドヘッド107の動作が再開すると、コールドヘッド107の第二冷却ステージ216の約1.4ワットの冷却熱で、ヘリウム容器202の上部のガス溜め部分で、ヘリウムガスが凝縮し液化する。これにより、20KPaに維持されていたヘリウム容器202内の圧力が低下し始め、10KPaが維持されているガスバック125の内圧との差が10KPa未満になる。これにより、一方向リリーフバルブ302が閉じ、ヘリウム容器202からガスバック125へのガスの流入が停止する。 When the power failure or system failure is restored, the operation of the cold head 107 resumes, and helium gas condenses in the gas reservoir at the top of the helium vessel 202 with approximately 1.4 watts of cooling heat from the second cooling stage 216 of the cold head 107. Liquefied. As a result, the pressure in the helium vessel 202 that has been maintained at 20 KPa begins to decrease, and the difference from the internal pressure of the gas bag 125 at which 10 KPa is maintained becomes less than 10 KPa. As a result, the one-way relief valve 302 is closed and the inflow of gas from the helium vessel 202 to the gas bag 125 is stopped.
 さらに、コールドヘッド107がヘリウム容器202のヘリウムガスの液化を継続し、ヘリウム容器202の内圧が5KPa以下まで低下すると、ガスバック125の内圧10KPaとの圧力差が5KPa以上になるため、一方向リリーフバルブ(5KPa)305が開き、ガスバック125からヘリウム容器202にヘリウムガスが流入する。ヘリウム容器202のガス圧が、磁石制御ユニット110の制御下でヒータ素子207により加熱されて5KPa前後で維持されるようになると、10KPaを維持しているガスバック125との圧力差が5KPa未満になった時点で一方向リリーフバルブ305が閉じ、ガスバック125からヘリウム容器202へのヘリウムガスの流入が終了する。この時点で、ガスバック124の内圧は10KPaに保たれているが、膨らみ始める前の大きさまで戻っているため、ガスバック125に蓄えられていたヘリウムガスをほぼすべてヘリウム容器202に戻すことができる。 Furthermore, if the cold head 107 continues to liquefy the helium gas in the helium vessel 202 and the internal pressure of the helium vessel 202 decreases to 5 KPa or less, the pressure difference from the internal pressure 10 KPa of the gas back 125 becomes 5 KPa or more. The valve (5 KPa) 305 is opened, and helium gas flows from the gas back 125 into the helium vessel 202. When the gas pressure in the helium vessel 202 is heated by the heater element 207 under the control of the magnet control unit 110 and is maintained at around 5 KPa, the pressure difference from the gas back 125 that maintains 10 KPa becomes less than 5 KPa. At this point, the one-way relief valve 305 is closed, and the inflow of helium gas from the gas back 125 to the helium vessel 202 is completed. At this time, the internal pressure of the gas bag 124 is maintained at 10 KPa, but since it has returned to the size before starting to expand, almost all of the helium gas stored in the gas bag 125 can be returned to the helium container 202. .
 なお、ガスバック125からヘリウム容器202へヘリウムガスが戻る過程で、室温のヘリウムガスは、コールドヘッド107の第一冷却ステージ213で冷却された輻射シールド板212と熱接触部217で接触することにより予冷される。よって、ヘリウム容器202内でのヘリウムガスの液化が促進される。 In the process of returning the helium gas from the gas bag 125 to the helium vessel 202, the helium gas at room temperature comes into contact with the radiation shield plate 212 cooled by the first cooling stage 213 of the cold head 107 at the thermal contact portion 217. Precooled. Therefore, liquefaction of helium gas in the helium vessel 202 is promoted.
 停電が発生した場合のMRI装置の動作を図4のフローチャートを用いてさらに詳しく説明する。 The operation of the MRI apparatus when a power failure occurs is described in more detail using the flowchart of FIG.
 停電が発生すると、MRI装置は停止し、コールドヘッド107の冷却能力も停止する。計画的な停電の場合は、オペレーターは事前にMRI検査を入力装置121の入力で中止する。不意の停電の場合は、オペレーターは検査中の被検体102を患者テーブル122の手動操作にてMRI装置から搬出する(ステップ401)。 When a power failure occurs, the MRI system stops and the cooling capacity of the cold head 107 also stops. In the case of a planned power outage, the operator cancels the MRI inspection in advance by inputting the input device 121 in advance. In the case of an unexpected power outage, the operator carries out the subject 102 under examination from the MRI apparatus by manual operation of the patient table 122 (step 401).
 停電時間の経過と共に、ヘリウム容器202の内圧が上昇する(ステップ402)。これは、真空容器201からヘリウム容器202に侵入する約1ワットの熱量で、1時間当たり1.25リットルの液体ヘリウムが体積10倍(約10リットル)のヘリウムガスに気化することによる。圧力上昇割合は、ヘリウム容器202の上部のガス溜め部の空間容積に左右されるが、通常の90パーセントの液体ヘリウムを満たしたヘリウム容器202の場合は、1時間に4KPaの割合で上昇する。 As the power failure time elapses, the internal pressure of the helium vessel 202 increases (step 402). This is because 1.25 liters of liquid helium per hour is vaporized into 10 times (about 10 liters) helium gas with an amount of heat of about 1 watt entering the helium vessel 202 from the vacuum vessel 201. The pressure increase rate depends on the space volume of the gas reservoir at the top of the helium vessel 202, but in the case of the helium vessel 202 filled with the usual 90% liquid helium, it rises at a rate of 4 KPa per hour.
 約4時間後には、ヘリウム容器202の内圧は20KPaに達する(ステップ403)。内圧が20KPaに達すると、内圧10KPaに維持されているガスバック125との圧力差が10KPaに達するため、一方向リリーフバルブ(10KPa)302が開く。 After about 4 hours, the internal pressure of the helium vessel 202 reaches 20 KPa (step 403). When the internal pressure reaches 20 KPa, the pressure difference with the gas back 125 maintained at the internal pressure of 10 KPa reaches 10 KPa, so the one-way relief valve (10 KPa) 302 is opened.
 これにより、ヘリウム容器202内のヘリウムガスは、ヘリウム排気管124から一方向リリーフバルブ(10KPa)302を通って、ガスバック125に流出し、ガスバック125内に蓄えられる。これにより、ヘリウム容器202の内圧は、20KPaに維持される(ステップ404、405)。ヘリウム容器202からヘリウムガスが流出する際、ヘリウム排気管124のヘリウムガスは、輻射シールド板212と熱接触部217で熱交換することにより温められ、約70倍に膨張した室温に近い温度のヘリウムガスとして流出する。 Thereby, the helium gas in the helium vessel 202 flows out from the helium exhaust pipe 124 through the one-way relief valve (10 KPa) 302 to the gas bag 125 and is stored in the gas bag 125. Thereby, the internal pressure of the helium vessel 202 is maintained at 20 KPa (steps 404 and 405). When helium gas flows out of the helium vessel 202, the helium gas in the helium exhaust pipe 124 is heated by heat exchange between the radiation shield plate 212 and the thermal contact portion 217, and helium having a temperature close to room temperature expanded about 70 times. It flows out as gas.
 ガスバック125は、内部のヘリウムのガスの体積が増加するにつれ、ガスバック自体の収縮力に抗して膨張し、ガス圧約10KPaを維持する(ステップ405)。 As the internal helium gas volume increases, the gas bag 125 expands against the contraction force of the gas bag itself and maintains a gas pressure of about 10 KPa (step 405).
 停電が復旧すると、MRI装置は稼動を開始する。コールドヘッド107も冷却を再開する(ステップ406)。液体ヘリウムの一部が気化しても、超電導コイル203は液体ヘリウムに浸かっており、超電導状態は維持されている。 When the power failure is restored, the MRI system starts operation. The cold head 107 also resumes cooling (step 406). Even if a part of the liquid helium is vaporized, the superconducting coil 203 is immersed in the liquid helium, and the superconducting state is maintained.
 約30分の運転で、コールドヘッド107は通常の冷却能力に達し、ヘリウム容器202の上部ガス溜め部のヘリウムガスを冷却する。ヘリウムガスは体積比10分の1の液体ヘリウムに凝縮するので、圧力が20KPaから、1時間あたり約2KPaの割合で低下する。ヘリウム容器202の圧力が20KPa未満になると、ガスバック125の内圧10KPaとの差圧が10KPa未満になるため、一方向リリーフバルブ(10KPa)302が閉じる。この間も超電導磁石101の超電導状態は維持されているので、オペレーターは被検体102をMRI装置の磁場空間103に配設し、磁場補正を行ない、検査を実施することができる(ステップ407)。 In about 30 minutes of operation, the cold head 107 reaches the normal cooling capacity, and the helium gas in the upper gas reservoir of the helium vessel 202 is cooled. As helium gas condenses into 1/10 volume ratio of liquid helium, the pressure drops from 20 KPa at a rate of about 2 KPa per hour. When the pressure in the helium vessel 202 is less than 20 KPa, the differential pressure with respect to the internal pressure 10 KPa of the gas bag 125 is less than 10 KPa, so the one-way relief valve (10 KPa) 302 is closed. During this time, since the superconducting state of the superconducting magnet 101 is maintained, the operator can place the subject 102 in the magnetic field space 103 of the MRI apparatus, perform magnetic field correction, and perform an inspection (step 407).
 停電回復から約8時間後には、ヘリウム容器202のヘリウムガスの冷却凝縮により、ヘリウム槽の圧力が5KPaまで低下する。そうすると、ガスバック125から一方向リリーフバルブ(5KPa)305を通して、ヘリウムガスがヘリウム容器202に流れ込む。ヘリウム容器202の圧力は5KPaを維持する。一方、ガスバック125は流出したヘリウムガスの体積に相当する容積の収縮が起こり、その内圧は10KPaを維持する(ステップ408)。 About 8 hours after the power failure recovery, the helium tank pressure drops to 5 KPa due to the cooling and condensation of the helium gas in the helium vessel 202. Then, helium gas flows from the gas back 125 into the helium vessel 202 through the one-way relief valve (5 KPa) 305. The pressure in the helium vessel 202 is maintained at 5 KPa. On the other hand, the gas bag 125 contracts in volume corresponding to the volume of the helium gas that has flowed out, and its internal pressure is maintained at 10 KPa (step 408).
 ガスバック125のヘリウムガスが全て流出し、ガスバック125の体積が膨らみ始める前の最も収縮した状態になる。ヘリウム容器202の内圧は5KPa以下にならないように、磁石制御ユニット110で制御された電流印加で、ヘリウム容器202に設置したヒータ素子207の発熱により制御される。これにより、ガスバック125の内圧10KPaとヘリウム容器202の内圧差が5KPa未満となり、一方向リリーフバルブ(5KPa)505が閉じる。ヘリウム容器202は熱平衡状態を維持する(ステップ409)。 ヘ リ ウ ム All the helium gas in the gas bag 125 flows out, and the gas bag 125 reaches its most contracted state before the volume starts to expand. The internal pressure of the helium vessel 202 is controlled by heat generation of the heater element 207 installed in the helium vessel 202 by applying current controlled by the magnet control unit 110 so that the internal pressure does not become 5 KPa or less. As a result, the difference between the internal pressure 10 KPa of the gas bag 125 and the internal pressure of the helium vessel 202 becomes less than 5 KPa, and the one-way relief valve (5 KPa) 505 is closed. The helium vessel 202 maintains a thermal equilibrium state (step 409).
 図4のフローにおける、ヘリウム容器202の圧力変化とガスバック125の体積変化は図5に示すようになる。 In the flow of FIG. 4, the pressure change of the helium vessel 202 and the volume change of the gas bag 125 are as shown in FIG.
 図5のようにMRI装置は正常運転している時は、ヘリウム容器202の圧力は5KPaを維持し、ガスバック125の体積は最も収縮した0%(膨張前の状態)である。A時点で、停電が発生すると、ヘリウム容器202の圧力は、毎時4KPaの割合(約1ワットのヘリウム槽への侵入する熱量による液体ヘリウム気化する割合)で上昇し、20KPaであるB時点に向かう。B時点では一方向リリーフバルブ(10KPa)302の開放されることによってヘリウムガスがガスバック125に毎時700リットル送られ、ヘリウム容器202の圧力は20KPaを維持する。一方、ガスバック125は送られてきたヘリウムガスによってその体積が膨張始める。体積の上限は28m3であるので、約40時間停電が続いても、ヘリウムガスの流入を受け入れて膨張し続けることが可能である。 As shown in FIG. 5, when the MRI apparatus is operating normally, the pressure of the helium vessel 202 is maintained at 5 KPa, and the volume of the gas bag 125 is 0% that is the most contracted (pre-expansion state). When a power outage occurs at time A, the pressure in the helium vessel 202 rises at a rate of 4 KPa per hour (the rate at which liquid helium vaporizes due to the amount of heat entering the helium tank of about 1 watt), and toward the time B at 20 KPa. . At time B, the one-way relief valve (10 KPa) 302 is opened, so that helium gas is sent to the gas back 125 by 700 liters per hour, and the pressure in the helium vessel 202 is maintained at 20 KPa. On the other hand, the volume of the gas bag 125 starts to expand due to the helium gas sent. Since the upper limit of the volume is 28 m 3 , it is possible to continue to expand by accepting the inflow of helium gas even if the power failure continues for about 40 hours.
 停電が復旧したC時点からは、ヘリウム容器202の圧力は毎時2KPaの割合(侵入する熱量とクライオクーラの冷却能力の差分約0.5ワットによるヘリウムガスの凝縮)で低下して、D時点に向かう。D時点からは、ガスバック125からヘリウムガスが一方向リリーフバルブ(5KPa)305を介して流れ込み、ヘリウム容器202の圧力は5KPa維持する。一方、ガスバック125は流出したヘリウムガスの体積に合わせて、その容積を収縮始める。E時点で、ガスバックは完全に収縮して膨張前の状態に戻り、ヘリウム容器202の圧力も5KPaを維持する正常運転状態に戻る。 From the time point C when the power failure is restored, the pressure in the helium vessel 202 decreases at a rate of 2 KPa / hour (condensation of helium gas due to a difference of about 0.5 watts between the amount of heat entering and the cooling capacity of the cryocooler), and moves toward the point D. From time D, helium gas flows from the gas back 125 through the one-way relief valve (5 KPa) 305, and the pressure of the helium vessel 202 is maintained at 5 KPa. On the other hand, the gas bag 125 starts to shrink in accordance with the volume of the helium gas that has flowed out. At time E, the gas bag is completely contracted to return to the state before expansion, and the pressure in the helium vessel 202 returns to the normal operation state that maintains 5 KPa.
 上述してきたように、本実施形態では、固定容積ではなく、一定の内圧を維持し、流入するガスの量に応じて膨張および収縮するガスバック125を、開放される圧力差の異なる一対の一方向リリーフバルブを介して、ヘリウム容器202に接続している。これにより、ヘリウム容器202とガスバック125との内圧差を利用して、停電等によるコールドヘッド(クライオクーラ)停止時にガスバック125に蓄えたヘリウムガスを復旧後ほぼ完全にヘリウム容器202に戻すことができる。よって、ガスバック125内のヘリウムガスを無駄にすることなく、凝縮して再び冷媒として利用することができる。 As described above, in this embodiment, instead of a fixed volume, a constant internal pressure is maintained, and the gas bag 125 that expands and contracts according to the amount of gas flowing in is paired with a pair of different open pressure differences. It is connected to the helium vessel 202 via a directional relief valve. As a result, using the internal pressure difference between the helium vessel 202 and the gas bag 125, the helium gas stored in the gas bag 125 when the cold head (cryo-cooler) stops due to a power failure or the like is returned to the helium vessel 202 almost completely after restoration. Can do. Therefore, the helium gas in the gas bag 125 can be condensed and reused as a refrigerant without wasting it.
 また、停電等でコールドヘッドが停止していない状態では、ガスバック125は膨張していないので、ガスバック125が停電時に膨張するために必要な空間を、非停電時には別の用途に利用することができ、空間の使用効率を高めることができる。例えば、ガスバックが膨張するために必要な空間を、被検体や操作者が検査を準備するための空間として使用することができる。 In addition, when the cold head is not stopped due to a power failure, etc., the gas bag 125 does not expand, so the space necessary for the gas bag 125 to expand during a power failure should be used for other purposes during a non-power failure. And the use efficiency of the space can be increased. For example, a space necessary for the gas bag to expand can be used as a space for a subject or an operator to prepare an examination.
 また、非停電時にはガスバック125は収縮しており、しかも圧力差の異なる一対の一方向リリーフバルブ302,305は非停電時には閉じているため、ガスバック125とヘリウム容器202との間でヘリウムガスの対流が生じることがない。よって、クライオクーラが対流分のヘリウムガスを冷却する必要がなく、負荷を低減でき、クライオクーラを長寿命化できる。 In addition, since the gas bag 125 is contracted during a non-power failure and the pair of one- way relief valves 302 and 305 having different pressure differences are closed during a non-power failure, the helium gas is interposed between the gas bag 125 and the helium vessel 202. No convection occurs. Therefore, it is not necessary for the cryocooler to cool the convective helium gas, the load can be reduced, and the cryocooler can have a long life.
 なお、上述したようにヘリウム輸送管(D)306は、ヘリウムガスバック125の最上部に接続されているため、ガスバック125内に空気などの不純ガスが混入しても、最も軽い気体であるヘリウムガスはガスバック125の上部に溜まり、ヘリウム容器に戻す時には、不純ガスを含まないヘリウムガスのみをヘリウム輸送管(D)306に流すことが可能となる。よって、不純物ガスがヘリウム容器202で凍結するのを防止することができる。 As described above, since the helium transport pipe (D) 306 is connected to the uppermost part of the helium gas bag 125, even if an impurity gas such as air is mixed in the gas bag 125, it is the lightest gas. The helium gas accumulates in the upper part of the gas bag 125, and when returning to the helium container, only helium gas not containing impure gas can flow into the helium transport pipe (D) 306. Therefore, it is possible to prevent the impurity gas from freezing in the helium container 202.
 一方、ヘリウム輸送管(B)303は、ガスバック125の最下部に限らず、ガスバック125のどの位置に接続しても構わないが、ガスバック125の最下部のドレイン栓307の位置に接続することにより、ガスバック124の開口を極力減らすことができ、リークなどの故障ポテンシャル要因を下げる効果を得られる。 On the other hand, the helium transport pipe (B) 303 is not limited to the lowermost part of the gas bag 125, and may be connected to any position of the gas bag 125, but is connected to the position of the drain plug 307 at the lowermost part of the gas bag 125. By doing so, the opening of the gas bag 124 can be reduced as much as possible, and the effect of reducing the failure potential factor such as leakage can be obtained.
 また、図2の構成では、ヘリウム排気管124の真空容器201の内側部分を、真空容器201の内側でサービスポート209と合流させるか、もしくは、サービスポート209と兼用させる構成にすることも可能である。サービスポート209にヘリウム排気管124を兼用させる場合には、ヘリウム排気管124と輻射シールド212との熱接触部217を省略することも可能である。真空容器201の外側で再びサービスポート209からヘリウム排気管124を分岐させる。これにより、真空容器201から、ヘリウム排気管124とサービスポート209の2本の配管を引き出す必要がなく、1本にすることができるため、真空容器201の気密の維持が容易になる。また、サービスポート209の栓210からヘリウム排気管124へのアクセスが容易になる。 In addition, in the configuration of FIG. 2, the inner part of the vacuum vessel 201 of the helium exhaust pipe 124 may be merged with the service port 209 inside the vacuum vessel 201 or may be configured to be shared with the service port 209. is there. When the service port 209 is also used as the helium exhaust pipe 124, the thermal contact portion 217 between the helium exhaust pipe 124 and the radiation shield 212 can be omitted. The helium exhaust pipe 124 is branched from the service port 209 again outside the vacuum vessel 201. Accordingly, it is not necessary to draw out two pipes of the helium exhaust pipe 124 and the service port 209 from the vacuum container 201, and the number of the pipes can be reduced to one, so that the airtightness of the vacuum container 201 can be easily maintained. In addition, access from the plug 210 of the service port 209 to the helium exhaust pipe 124 is facilitated.
 なお、ドレイン栓307から新しいヘリウムガスをガスバック125内に注入することも可能である。何らかの原因で、ヘリウム容器202の液体ヘリウムが減少した場合は、サービスポート209から液体ヘリウムを注入する代わりに、ヘリウムガスをガスバック125に注入することで、コールドヘッド107で液体ヘリウムに凝縮することができる。液体ヘリウムは輸送や長期保管が困難であるが、シリンダーに詰められたヘリウムガスは輸送や長期保管が可能である。これにより、超電導磁石を用いたMRI装置を液体ヘリウムのサービス・ネットワークから外れた地域でも使用することができるため、超電導磁石を用いたMRI装置の利便性が高まる。 Note that new helium gas can be injected into the gas bag 125 from the drain plug 307. If for some reason the liquid helium in the helium vessel 202 is reduced, instead of injecting liquid helium from the service port 209, helium gas is injected into the gas bag 125 and condensed into liquid helium with the cold head 107. Can do. Liquid helium is difficult to transport and store for a long time, but helium gas packed in a cylinder can be transported and stored for a long time. As a result, the MRI apparatus using the superconducting magnet can be used even in areas outside the liquid helium service network, and the convenience of the MRI apparatus using the superconducting magnet is increased.
 上述してきたように本実施形態では、停電やシステム障害時にコールドヘッド107が停止すると、ヘリウム容器202内の圧力が20KPaに到達し、停電等の復旧まで維持される(ステップ403)。これを利用して、停電時等にヘリウムガスバックやヘリウム排気管の損傷が生じた場合に、これを検出して警報を発することが可能である。具体的には、ヘリウム排気管124やガスバック125に損傷が生じた場合、ヘリウムガスが漏れ出ることにより、ヘリウム容器202の圧力20KPa以下になる。超電導磁石101の磁石制御ユニット110は、停電時であってもバッテリー等で駆動され、ヘリウム容器202内の圧力を圧力センサー206により検出している。 As described above, in this embodiment, when the cold head 107 stops in the event of a power failure or system failure, the pressure in the helium vessel 202 reaches 20 KPa and is maintained until the power failure is restored (step 403). By utilizing this, when a helium gas back or a helium exhaust pipe is damaged during a power failure or the like, it is possible to detect this and issue an alarm. Specifically, when the helium exhaust pipe 124 or the gas back 125 is damaged, the helium gas leaks and the pressure in the helium vessel 202 becomes 20 KPa or less. The magnet control unit 110 of the superconducting magnet 101 is driven by a battery or the like even during a power failure, and detects the pressure in the helium vessel 202 by the pressure sensor 206.
 よって、停電やシステム障害時にヘリウム容器202の圧力が20KPaを下回った場合には、磁石制御ユニット110は、警報等により操作者や管理者に報知することができる。また、磁石制御ユニット110は、遠隔監視システムを介して遠隔監視拠点に圧力の検出結果をネットワーク等を介して送信しているので、遠隔監視拠点で圧力低下を検出して警報等を発令することも可能である。なお、圧力センサー206によりヘリウム容器202内の圧力を磁石制御ユニット110が検出する動作は、従来より行われているため、停電時に20KPa以下にガスバック等の損傷を検出する動作は従来のMRI装置であっても容易に追加することができる。 Therefore, when the pressure in the helium vessel 202 falls below 20 KPa at the time of a power failure or system failure, the magnet control unit 110 can notify the operator or administrator by an alarm or the like. In addition, since the magnet control unit 110 transmits the pressure detection result to the remote monitoring base via the network or the like via the remote monitoring system, it detects a pressure drop at the remote monitoring base and issues an alarm or the like. Is also possible. Since the operation of the magnet control unit 110 detecting the pressure in the helium vessel 202 by the pressure sensor 206 has been performed conventionally, the operation of detecting damage such as a gas back to 20 KPa or less at the time of a power failure is a conventional MRI apparatus. Even so, it can be easily added.
 ここで、本実施の形態のMRI装置を医療施設等に設置する手順を以下簡単に説明する。
(1)従来技術のMRI装置と同じように、ガスバック125以外のMRI装置を医療施設に据付ける。
(2)超電導磁石101の上部の排気管124に、一方向リリーフバルブ302,305が図3のように備えられた輸送管301、303、304、306を接続する。ただし、一方向リリーフバルブ302,305は手動で開放しておく。
(3)収縮した状態のガスバック125を所定の設置位置に配置する。
(4)超電導磁石101のヘリウム容器202から輸送管301、303、304、306を通してヘリウムガスが流れ出るようにする。これは、コールドヘッド107を一定時間停止させ、ヘリウム容器202内圧を10KPaにすることで容易に実現できる。
(5)次に、ガスバック125のドレインバルブ307を開け、ガスバック125上部の輸送管306を接続すべき開口にヘリウムガスボンベを接続し、ヘリウムガスを注入する。十分にガスバック125内の空気がヘリウムガスに置換されるまで10分間継続する。
(6)次に、ガスバック125のドレインバルブ307にヘリウムガスボンベを接続し、輸送管306を接続すべき開口と輸送管303を接続すべき開口からヘリウムガスが流れ出る状態とする。ガスバック125の内圧をヘリウムガスで10KPaより1~2KPa程度を維持することにより実現できる。
(7)上記(6)によりガスバック125の輸送管303,306を接続すべき開口からヘリウムガスが流れ出ており、上記(4)により超電導磁石101に接続された輸送管303,306からもヘリウムガスが流れ出ている状態で、輸送管303と306をガスバック125に接続する。これにより、輸送管301、303、304,306やガスバック125内に大気が混入することを防ぐことができる。
(8)ガスバックの内圧が10KPaになるまで、ドレインバルブ307に接続したガスボンベからヘリウムガスを注入する。
(9)ドレインバルブ307を閉めるとともに、コールドヘッド107の運転を再開する。
(10)コールドヘッド107の冷却能力によって、ガスバック125内のヘリウムガスは、輸送管304,306を経由してヘリウム容器202に移動し、液体ヘリウムとなって蓄積される。
Here, the procedure for installing the MRI apparatus of the present embodiment in a medical facility or the like will be briefly described below.
(1) Install an MRI apparatus other than the gas bag 125 in the medical facility in the same manner as the conventional MRI apparatus.
(2) The transport pipes 301, 303, 304, 306 provided with the one- way relief valves 302, 305 as shown in FIG. 3 are connected to the exhaust pipe 124 at the upper part of the superconducting magnet 101. However, the one- way relief valves 302 and 305 are opened manually.
(3) The gas bag 125 in a contracted state is disposed at a predetermined installation position.
(4) Helium gas flows out from the helium vessel 202 of the superconducting magnet 101 through the transport pipes 301, 303, 304, and 306. This can be easily realized by stopping the cold head 107 for a certain time and setting the internal pressure of the helium vessel 202 to 10 KPa.
(5) Next, the drain valve 307 of the gas bag 125 is opened, a helium gas cylinder is connected to the opening to which the transport pipe 306 above the gas bag 125 is connected, and helium gas is injected. This is continued for 10 minutes until the air in the gas bag 125 is sufficiently replaced with helium gas.
(6) Next, a helium gas cylinder is connected to the drain valve 307 of the gas bag 125 so that helium gas flows out from the opening to which the transport pipe 306 is connected and the opening to which the transport pipe 303 is connected. This can be realized by maintaining the internal pressure of the gas bag 125 with helium gas at about 1 to 2 KPa from 10 KPa.
(7) Helium gas flows out from the opening to which the transport pipes 303 and 306 of the gas bag 125 are connected by the above (6), and helium also flows from the transport pipes 303 and 306 connected to the superconducting magnet 101 by the above (4). With the gas flowing out, the transport pipes 303 and 306 are connected to the gas bag 125. Thereby, it is possible to prevent the atmosphere from being mixed into the transport pipes 301, 303, 304, 306 and the gas bag 125.
(8) Helium gas is injected from the gas cylinder connected to the drain valve 307 until the internal pressure of the gas bag reaches 10 KPa.
(9) Close the drain valve 307 and restart the operation of the cold head 107.
(10) Due to the cooling capacity of the cold head 107, the helium gas in the gas bag 125 moves to the helium vessel 202 via the transport pipes 304 and 306, and is stored as liquid helium.
 上記の手順によって設置することで、ガスバック125内に大気ガスが混入しない。また、MRI装置の据付作業と分離してガスバック125を設置できる。また電力事情に応じて、ガスバックの追加や交換作業も容易に行うことができる。 ¡By installing according to the above procedure, atmospheric gas is not mixed in the gas bag 125. Further, the gas bag 125 can be installed separately from the installation work of the MRI apparatus. In addition, gas bags can be easily added or replaced depending on the power situation.
 (第二の実施形態)
 第二の実施形態のMRI装置について図6(a)、(b)を用いて説明する。
(Second embodiment)
An MRI apparatus according to the second embodiment will be described with reference to FIGS. 6 (a) and 6 (b).
 第二の実施形態では、ガスバック125に蓄えたヘリウムガスをヘリウム容器202に戻す前に、ヘリウムガスに混入している空気等の不純物ガスを除去する機構を備えた。 In the second embodiment, before the helium gas stored in the gas bag 125 is returned to the helium vessel 202, a mechanism for removing impurity gas such as air mixed in the helium gas is provided.
 第一の実施形態で図3で説明したように、ヘリウム輸送管(D)306はヘリウムガスバック125の最上部に接続され、最も質量の軽いヘリウムガスだけがヘリウム容器に戻るように構成されている。しかし、ヘリウムガスをヘリウム容器に戻す過程で、ヘリウム輸送管(D)306、ガスバック125やヘリウム排出管124の接続部の不具合等でリーク混入した空気は、この構成だけでは分離することができない。 As described in FIG. 3 in the first embodiment, the helium transport pipe (D) 306 is connected to the top of the helium gas bag 125, and is configured so that only the lightest helium gas returns to the helium vessel. Yes. However, in the process of returning the helium gas to the helium vessel, the air that has leaked due to a failure in the connection part of the helium transport pipe (D) 306, the gas back 125, or the helium exhaust pipe 124 cannot be separated by this configuration alone. .
 そこで、第二の実施形態は、図6に示すように、ヘリウム排気管214が輻射熱シールド板212と熱交換する熱接触部217の一部に、液体空気を蓄える液溜め901を配置した。液溜め901は、ヘリウム排気管214の一部を下方に膨らませた構成である。液溜め901は、例えば厚さ2ミリメートルのステンレス鋼により形成する。液溜め901の部分には、輻射シールド212に開口が設けられ、液溜め901はこの開口からヘリウム容器202側の空間に突出している。ヘリウムガスにヘリウム排気管124やガスバック125の接続部分等で空気等の不純物ガスがわずかに混入した場合であっても、熱接触部217において空気等の不純物ガスがヘリウムガスよりも先に液化する性質を利用して、液溜め901に溜めて除去することができる。以下、さらに説明する。 Therefore, in the second embodiment, as shown in FIG. 6, a liquid reservoir 901 that stores liquid air is disposed in a part of the thermal contact portion 217 in which the helium exhaust pipe 214 exchanges heat with the radiant heat shield plate 212. The liquid reservoir 901 has a configuration in which a part of the helium exhaust pipe 214 is expanded downward. The liquid reservoir 901 is formed of stainless steel having a thickness of 2 mm, for example. In the portion of the liquid reservoir 901, an opening is provided in the radiation shield 212, and the liquid reservoir 901 protrudes from this opening into the space on the helium container 202 side. Even if a small amount of impurity gas such as air is mixed into the helium gas at the connection part of the helium exhaust pipe 124 or the gas back 125, the impurity gas such as air is liquefied before the helium gas in the thermal contact portion 217. It is possible to collect and remove the liquid in the liquid reservoir 901 using the property of This will be further described below.
 コールドヘッド107の冷却能力が回復して、ガスバック125に蓄えられていたヘリウムガスがヘリウム排気管124を通ってヘリウム容器202に戻るとき、ヘリウムガスと混入した空気は熱接触部217で冷却される。熱接触部217では、ガスバック125に近い側からコールドヘッド107に近い部位に移動する過程で、室温から、コールドヘッド107の第一冷却ステージ213の温度である43ケルビン(-230℃)付近まで冷却される。この過程で、ヘリウムガスに混入した空気は酸素の沸点約-183℃で酸素成分が液化し、窒素の沸点約-196℃で窒素成分が液化する。液化した空気は液溜め901に落下し、蓄積される。よって、ヘリウムガスだけがヘリウム容器202に流入し、ヘリウム容器202内で液化される。 When the cooling capacity of the cold head 107 is restored and the helium gas stored in the gas bag 125 returns to the helium vessel 202 through the helium exhaust pipe 124, the air mixed with the helium gas is cooled by the thermal contact portion 217. The In the thermal contact portion 217, in the process of moving from the side closer to the gas bag 125 to the portion closer to the cold head 107, from room temperature to around 43 Kelvin (−230 ° C.) that is the temperature of the first cooling stage 213 of the cold head 107 To be cooled. In this process, the oxygen mixed in the helium gas is liquefied when the boiling point of oxygen is about −183 ° C., and the nitrogen component is liquefied when the boiling point of nitrogen is about −196 ° C. The liquefied air falls into the liquid reservoir 901 and is accumulated. Therefore, only helium gas flows into the helium container 202 and is liquefied in the helium container 202.
 液体酸素と液体窒素が固化する温度(融点)はそれぞれ約-218℃と-約210℃であるから、液溜め901は、熱接触部217の、空気が完全に液化し、かつ固化するより高い温度である-196℃から-210℃の領域内に設置する。 Since the temperatures (melting points) at which liquid oxygen and liquid nitrogen solidify are about −218 ° C. and −210 ° C., respectively, the sump 901 is higher than the heat contact portion 217 where air is completely liquefied and solidified. Install in the temperature range of -196 ° C to -210 ° C.
 超電導磁石101の長期間運転中に発生する停電やシステム障害の度に、液体ヘリウム204はヘリウムガスとなってヘリウム容器202とガスバック125との間を行き来する。そのため、液溜め901には、空気等の不純物ガスが徐々に蓄積されていく。そこで、第二の実施形態では、液溜め901の内部に蓄積された不純物ガスを排気する構成をさらに設けた。 Whenever a power failure or system failure occurs during the long-term operation of the superconducting magnet 101, the liquid helium 204 turns into helium gas and moves back and forth between the helium vessel 202 and the gas bag 125. Therefore, impurity gas such as air is gradually accumulated in the liquid reservoir 901. Therefore, in the second embodiment, a configuration for exhausting the impurity gas accumulated in the liquid reservoir 901 is further provided.
 図6(b)のように、不純物ガスを排気する構成として、液溜め901のヒータ902が組込まれている。ヒータ902は、電流を供給する配線903が接続されている。配線903は、真空容器201よりも外側の位置までヘリウム排出管124内を引き回され、気密シール等を介してヘリウム排気管124から外部に引き出されている。もしくは、配線903をガスバック125のドレイン線307の近傍まで引き回しておく。 As shown in FIG. 6B, the heater 902 of the liquid reservoir 901 is incorporated as a configuration for exhausting the impurity gas. The heater 902 is connected to a wiring 903 that supplies current. The wiring 903 is routed through the helium exhaust pipe 124 to a position outside the vacuum vessel 201, and is drawn out from the helium exhaust pipe 124 through an airtight seal or the like. Alternatively, the wiring 903 is routed to the vicinity of the drain line 307 of the gas back 125.
 不純物ガスを排気するタイミングとしては、超電導磁石101の年1回実施する定期点検時等が好ましい。このタイミングで、ガスバック125底部のドレイン栓307と一方向リリーフバルブ(10KPa)302を手動で開放し、ヒータ902に電流を印加する。この発熱で、液体空気は気化膨張して、ヘリウム排出管124を通ってガスバック125底部のドレイン栓307から大気中に放出することができる。 The timing for exhausting the impurity gas is preferably during a periodic inspection of the superconducting magnet 101 once a year. At this timing, the drain plug 307 and the one-way relief valve (10 KPa) 302 at the bottom of the gas bag 125 are manually opened, and current is applied to the heater 902. With this heat generation, the liquid air is vaporized and expanded, and can be discharged into the atmosphere from the drain plug 307 at the bottom of the gas bag 125 through the helium discharge pipe 124.
 液溜め901は厚さ2ミリメートルのステンレス鋼で作られているので外部への熱伝搬は少なく、ヒータ902の短時間の発熱作用は液溜め901内部の局所的な発熱に限定される。よって、液体空気の放出作業を実施しても、ヘリウム容器202や輻射熱シールド板212には影響をほとんど与えることなく、空気(不純物ガス)を排気できる。 Since the liquid reservoir 901 is made of stainless steel having a thickness of 2 mm, heat propagation to the outside is small, and the heat generation action of the heater 902 for a short time is limited to local heat generation inside the liquid reservoir 901. Therefore, even when the liquid air is released, the air (impurity gas) can be exhausted with little influence on the helium vessel 202 and the radiant heat shield plate 212.
 液溜め901内の液体空気が完全に気化されて放出されると、ヒータ902の温度が急に上昇し、その電気抵抗が急変するので、作業者は、ヒータ902のリード線の端子に印加する電圧値と電流値を監視することで、液体空気の放出作業が完了したことを把握できる。液体空気(不純物ガス液体)が完全に気化したならば、通電を停止し、ドレイン栓307と一方向リリーフバルブ(10KPa)302を手動で閉じる。 When the liquid air in the liquid reservoir 901 is completely vaporized and released, the temperature of the heater 902 suddenly rises and its electric resistance changes suddenly, so the operator applies it to the terminal of the lead wire of the heater 902. By monitoring the voltage value and the current value, it is possible to grasp that the discharge operation of the liquid air has been completed. When the liquid air (impurity gas liquid) is completely vaporized, the energization is stopped, and the drain plug 307 and the one-way relief valve (10 KPa) 302 are manually closed.
 以上のように、第二の実施形態では、液溜め901とヒータ902を備えたことにより、ヘリウムガスにわずかに空気等の不純物ガスが巻き込まれてもこれを除去することができる。よって、ヘリウム容器202に空気が入り込み、ヘリウム排出管124の開口付近で凍結し、閉塞するトラブルを排除することができる。 As described above, according to the second embodiment, since the liquid reservoir 901 and the heater 902 are provided, even if an impurity gas such as air is slightly involved in the helium gas, it can be removed. Therefore, it is possible to eliminate the trouble that air enters the helium vessel 202, freezes in the vicinity of the opening of the helium discharge pipe 124, and becomes blocked.
 上述した以外の構成および作用・効果は、第一の実施形態と同様であるので、説明を省略する。 Since the configuration, operation, and effects other than those described above are the same as those in the first embodiment, description thereof will be omitted.
 (第三の実施形態)
 第三の実施形態として、ヘリウムガスを蓄えるガスバック125が複数個に分割された超電導MRI装置を図7を用いて説明する。図7は、MRI装置の一部を示し、各種電源ユニットやコンピュータ109は、図1と同じ構成なので省略してある。ガスバック125を分割配置することにより、ガスバック125の膨張時に必要な空間をいくつかに分割して用意することができるため、ガスバック125を配置する空間の自由度が大きくなり、利便性が向上する。
(Third embodiment)
As a third embodiment, a superconducting MRI apparatus in which a gas bag 125 for storing helium gas is divided into a plurality of parts will be described with reference to FIG. FIG. 7 shows a part of the MRI apparatus, and various power supply units and the computer 109 are omitted because they have the same configuration as FIG. By dividing the gas bag 125, the space required when the gas bag 125 is inflated can be divided into several parts. improves.
 図7のように、ガスバック125は、二つのガスバック601,602に分割されている。二つのガスバック601、602はヘリウムガス輸送管603により接続される。ヘリウム排気管124は、第一ガスバック601に接続される。第一ガスバック601とヘリウム排気管124との間の接続構造は、第一の実施形態でガスバック125とヘリウム排気管124との接続構造(図3)と同じである。第一ガスバック601からヘリウムガス輸送管(E)603を介して、第二ガスバック602が接続されている。 As shown in FIG. 7, the gas bag 125 is divided into two gas bags 601,602. The two gas bags 601 and 602 are connected by a helium gas transport pipe 603. The helium exhaust pipe 124 is connected to the first gas back 601. The connection structure between the first gas back 601 and the helium exhaust pipe 124 is the same as the connection structure (FIG. 3) between the gas back 125 and the helium exhaust pipe 124 in the first embodiment. A second gas bag 602 is connected from the first gas bag 601 through a helium gas transport pipe (E) 603.
 図7の例では、第一ガスバック601を検査室123の外側の側面に、第二ガスバック602を検査室123の天井の上に配置している。 In the example of FIG. 7, the first gas bag 601 is disposed on the outer side surface of the examination room 123, and the second gas bag 602 is disposed on the ceiling of the examination room 123.
 第一ガスバック601と第二ガスバック602の構造は、第一の実施形態のガスバック125同様、その内部圧力が所定圧(約10KPa)に達したら容積を膨張させ、所定圧を維持する構造である。二つのガスバック601、602の容量は、合わせてガスバック125の容量と同等とすることも可能であるし、合わせた容量がガスバック125よりも大きくなるようにして、さらに長時間の停電に対応することも可能である。 The structure of the first gas bag 601 and the second gas bag 602 is a structure in which the volume is expanded when the internal pressure reaches a predetermined pressure (about 10 KPa), and the predetermined pressure is maintained, like the gas bag 125 of the first embodiment. It is. The capacity of the two gas bags 601 and 602 can be combined with the capacity of the gas bag 125, and the combined capacity can be larger than that of the gas bag 125. It is also possible to respond.
 本実施形態では、ガスバックの膨張空間を検査室123の天井裏などの空スペースを利用することで、ガスバックの膨張空間を確保が容易になり、建屋のスペース負担を低減する効果がある。また、複数のガスバックを接続することで、容量を大きくすることも容易になるため、停電が長時間に及ぶ施設に対応することができる。 In the present embodiment, the use of an empty space such as the back of the ceiling of the examination room 123 for the expansion space of the gas bag makes it easy to secure the expansion space of the gas bag, and has an effect of reducing the space burden on the building. In addition, it is easy to increase the capacity by connecting a plurality of gas bags, so that it is possible to cope with a facility where a power outage takes a long time.
 図8に複数のガスバックの配置の別の例を示す。図8の構成は、複数のガスバック701、702、703、・・・をヘリウム排気管125に並列に接続した構成である。複数のガスバック701、702、703等とヘリウム排気管124との間にはそれぞれに一方向リリーフバルブ302と一方向リリーフバルブ305が配置されている。これにより、個々のガスバック701、702、703等とヘリウム排気管124との間の接続構造を、第一の実施形態のガスバック125とヘリウム排気管124との接続構造(図3)と同等にしている。よって、停電やシステム障害時にはヘリウム容器202で発生したヘリウムガスをガスバック701、702、703等に流出して蓄え、停電等の復旧時にはガスバック701、702,703等からヘリウム容器202にヘリウムガスを戻して液化させることができる。 Fig. 8 shows another example of the arrangement of multiple gas bags. The configuration of FIG. 8 is a configuration in which a plurality of gas bags 701, 702, 703,... Are connected in parallel to the helium exhaust pipe 125. A one-way relief valve 302 and a one-way relief valve 305 are disposed between the gas bags 701, 702, 703 and the like and the helium exhaust pipe 124, respectively. As a result, the connection structure between the individual gas bags 701, 702, 703, etc. and the helium exhaust pipe 124 is equivalent to the connection structure (FIG. 3) between the gas bag 125 and the helium exhaust pipe 124 of the first embodiment. I have to. Therefore, helium gas generated in the helium vessel 202 flows out and is stored in the gas bags 701, 702, 703, etc. in the event of a power failure or system failure, and helium gas is transferred from the gas bags 701, 702, 703, etc. to the helium vessel 202 when the power failure is restored. Can be returned and liquefied.
 なお、図8の構成において、複数のガスバック701,702、703等ごとに配置された一方向リリーフバルブ302と一方向リリーフバルブ305の動作圧を、ガスバック701,702、703等ごとに異なる動作圧に設定することにより、ガスバックの動作に序列を付けることができる。例えば、ガスバック701の一方向リリーフバルブ302と一方向リリーフバルブ305の動作圧を9KPaと4KPaにそれぞれ設定し、ガスバック702の一方向リリーフバルブ302と一方向リリーフバルブ305は、10KPaと5KPaのままとし、ガスバック703の一方向リリーフバルブ302と一方向リリーフバルブ305の動作圧を11KPaと6KPaに設定する。 In the configuration of FIG. 8, the operating pressures of the one-way relief valve 302 and the one-way relief valve 305 arranged for each of the plurality of gas bags 701, 702, 703, etc. are different for each gas bag 701, 702, 703, etc. By setting the operating pressure, the operation of the gas bag can be ordered. For example, the operating pressures of the one-way relief valve 302 and the one-way relief valve 305 of the gas bag 701 are set to 9 KPa and 4 KPa, respectively, and the one-way relief valve 302 and the one-way relief valve 305 of the gas bag 702 are set to 10 KPa and 5 KPa, respectively. The operating pressures of the one-way relief valve 302 and the one-way relief valve 305 are set to 11 KPa and 6 KPa.
 これにより、停電時にヘリウム容器202からヘリウムガスが発生し、内圧が上昇すると、ガスバック701、ガスバック702、ガスバック703の順に一方向リリーフバルブ302が開き、ヘリウムガスが蓄えられる。復旧時も、ガスバック701、ガスバック702、ガスバック703の順に一方向リリーフバルブ305が開き、内部のガスがヘリウム容器202に戻る。 Thus, when helium gas is generated from the helium vessel 202 at the time of a power failure and the internal pressure rises, the one-way relief valve 302 opens in the order of the gas back 701, the gas back 702, and the gas back 703, and helium gas is stored. Also at the time of recovery, the one-way relief valve 305 opens in the order of the gas back 701, the gas back 702, and the gas back 703, and the internal gas returns to the helium vessel 202.
 図7および図8の構成にすることで、大きなガスバックを設置することが困難な施設でも、目的の容量のガスバックを設置することが可能になる。また、天井裏や床下の僅かな空間も有効に利用できる。さらに、ガスバックの動作に序列を付けることによって、ガスバックを設置したそれぞれの部屋や空間の利用状況に応じて、所望のガスバックからガスを溜めていくことができる。よって、停電が長引いた時のためにガスバックを配置したが、停電が短ければ、できればその部屋(空間)でガスバックを膨らませたくない場合には、そのガスバックの序列を下げておく(リリーフバルブの動作圧を高くしておく)ことで対応できる。 7 and 8 makes it possible to install a gas bag of a desired capacity even in a facility where it is difficult to install a large gas bag. In addition, a small space under the ceiling or under the floor can be used effectively. Further, by adding an order to the operation of the gas bag, it is possible to accumulate gas from a desired gas bag according to the use situation of each room or space where the gas bag is installed. Therefore, the gas bag was arranged for the prolonged power outage, but if the power outage is short, if possible, if you do not want to expand the gas bag in the room (space), lower the order of the gas back (relief) This can be done by increasing the operating pressure of the valve).
 (第四の実施形態)
 第一~第三の実施形態において、システム障害や停電が長時間におよび、結果として超電導磁石101から排出されたヘリウムガスで、ガスバック全てがその動作圧10KPaで満杯となった場合に備えて、第四の実施形態では、ガスバックの一部に所定圧でリークする排出弁を設ける。
(Fourth embodiment)
In the first to third embodiments, in preparation for a case where a system failure or power outage lasts for a long time, and as a result, the helium gas exhausted from the superconducting magnet 101 fills all of the gas back with its operating pressure of 10 KPa. In the fourth embodiment, a discharge valve that leaks at a predetermined pressure is provided in a part of the gas bag.
 排出弁は、ドレインバルブ307とは別に設けてもよいし、ドレインバルブ307に排出弁の機能を併せ持たせることも可能である。具体的には、ガスバックの内圧が予め定めた圧力(例えば15KPa)に達したならば、ドレインバルブ307がヘリウムガスをリークさせるように構成する。 The drain valve may be provided separately from the drain valve 307, or the drain valve 307 can have the function of the drain valve. Specifically, the drain valve 307 is configured to leak helium gas when the internal pressure of the gas bag reaches a predetermined pressure (for example, 15 KPa).
 リークを生じさせる上記予め定めた圧力は、ガスバック125、601、602、701、702、703等が、構造的に耐え得る圧力であって、ガスバックとヘリウム容器202との間の接続構造が耐えうる圧力に設定する。例えば、ガスバックが15KPaの圧力に耐えうるのであれば、排気弁のリーク圧力を15KPaに設定することができる。排出弁のリーク圧力を15KPaに設定した場合、ヘリウム容器202の圧力は、10KPaの一方向リリーフバルブ302の動作圧が加算された25KPaまで上昇し、これを超えるとガスバック内が15KPaを超えるため排出弁がリークする。よって、ガスバックや接続構造には負荷がかかりすぎず、ガスバックの破損等を防止できる。 The predetermined pressure causing the leak is a pressure that the gas bag 125, 601, 602, 701, 702, 703, etc. can withstand structurally, and the connection structure between the gas bag and the helium vessel 202 is Set the pressure to withstand. For example, if the gas bag can withstand a pressure of 15 KPa, the leak pressure of the exhaust valve can be set to 15 KPa. When the leak pressure of the discharge valve is set to 15 KPa, the pressure in the helium vessel 202 rises to 25 KPa with the operating pressure of the one-way relief valve 302 added to 10 KPa. The discharge valve leaks. Therefore, the gas bag and the connection structure are not overloaded, and the gas bag can be prevented from being damaged.
 なお、ヘリウム容器202は、破裂板211が破裂する圧力(例えば40KPa)までは耐えられる構造であるので、25KPaまで圧力が上昇したとしてもヘリウム容器202に損傷は生じない。 The helium vessel 202 has a structure capable of withstanding up to a pressure (for example, 40 KPa) at which the rupturable plate 211 bursts, so that the helium vessel 202 is not damaged even if the pressure rises to 25 KPa.
 上記した以外の構成および作用効果は、第一~第三の実施形態と同様であるので説明を省略する。 Since the configuration and operational effects other than those described above are the same as those in the first to third embodiments, description thereof will be omitted.
 (第五の実施形態)
 第一~第四の実施形態のMRI装置において、ガスバック125、601、602、701、702、703等が設置されている部屋の床に、図9のようにガスバックの最大膨張時の位置を示すマーク801をマーキング用テープ等で示すことが可能である。この図9は、図1のA矢視図である。
(Fifth embodiment)
In the MRI apparatus of the first to fourth embodiments, the position of the gas bag at the maximum expansion as shown in FIG. 9 is placed on the floor of the room where the gas bags 125, 601, 602, 701, 702, 703, etc. are installed. It is possible to indicate the mark 801 indicating the mark with a marking tape or the like. FIG. 9 is a view taken in the direction of arrow A in FIG.
 このように最大膨張時の区域をマーク801で床に示すことで、停電やシステム障害時にはマーク801の区域には立ち入らないように、操作者や被検体に知らせることができるため、操作者等の安全を確保することができる。また、停電時等に不用意にこの区域に物を置くなどの行為を防ぐことができるとともに、停電時等以外にはこの区域を利用できることが認識でき、空間の有効利用が図れる。 In this way, the area at the time of maximum expansion is indicated on the floor with the mark 801, so that it is possible to notify the operator and the subject not to enter the area of the mark 801 in the event of a power failure or system failure. Safety can be ensured. In addition, it is possible to prevent acts such as inadvertently placing objects in this area at the time of a power failure, etc., and to recognize that this area can be used at times other than at the time of a power failure, etc., so that the space can be used effectively.
 図9では、床面の区域のみを示しているが、壁面にも合わせて区域を示すことができる。また、マーキングテープに限らず、天井から鎖を吊るすなど立体的にガスバックの膨張領域を示すことも有効である。 In FIG. 9, only the floor area is shown, but the area can be shown together with the wall surface. In addition to the marking tape, it is also effective to show the expansion region of the gas bag three-dimensionally, such as hanging a chain from the ceiling.
 101 超電導磁石、102 被検体、107 コールドヘッド、110 磁石制御ユニット、112 傾斜磁場コイル、113 傾斜磁場電源、114 シム電源、119 コンピュータ、124 ヘリウム排気管、125 ガスバック、202 ヘリウム容器、204 液体ヘリウム、206 圧力センサー、207 ヒータ素子、212 輻射シールド板、213 第一冷却ステージ、216 第二冷却ステージ、217 熱接触部、301 ヘリウム輸送管(A)、302 一方向リリーフバルブ(10KPa)、303 ヘリウム輸送管(B)、304 ヘリウム輸送管(C)、305 一方向リリーフバルブ(5KPa)、306 ヘリウム輸送管(D)、601 第一ガスバック、602 第二ガスバック。 101 superconducting magnet, 102 subject, 107 cold head, 110 magnet control unit, 112 gradient magnetic field coil, 113 gradient magnetic field power source, 114 shim power source, 119 computer, 124 helium exhaust pipe, 125 gas back, 202 helium container, 204 liquid helium , 206 Pressure sensor, 207 Heater element, 212 Radiation shield plate, 213 First cooling stage, 216 Second cooling stage, 217 Thermal contact section, 301 Helium transport pipe (A), 302 One-way relief valve (10 KPa), 303 Helium Transport pipe (B), 304 Helium transport pipe (C), 305 One-way relief valve (5 KPa), 306 Helium transport pipe (D), 601 First gas bag, 602 Second gas bag.

Claims (15)

  1.  超電導コイルを収容する冷媒容器と、前記冷媒容器を覆う真空容器と、前記冷媒容器の内部に先端が挿入された冷却器と、前記冷媒容器に接続されて前記冷却器の停止時に前記冷媒容器で生じる冷媒ガスを前記真空容器の外部に導く排気管と、を備えた超電導磁石と、
     前記冷媒容器に前記排気管を介して接続され、内部のガスの量に応じて伸縮することにより内圧を一定に維持する構造のガスバックと、
     を備えていることを特徴とする磁気共鳴イメージング装置。
    A refrigerant container that accommodates the superconducting coil, a vacuum container that covers the refrigerant container, a cooler having a tip inserted into the refrigerant container, and the refrigerant container connected to the refrigerant container when the cooler is stopped. An exhaust pipe for guiding the generated refrigerant gas to the outside of the vacuum vessel, and a superconducting magnet,
    A gas bag connected to the refrigerant container via the exhaust pipe and configured to maintain an internal pressure constant by expanding and contracting according to the amount of gas inside;
    A magnetic resonance imaging apparatus comprising:
  2.  請求項1に記載の磁気共鳴イメージング装置において、前記排気管は、第1の輸送管と第2の輸送管とに分岐し、それぞれが前記ガスバックに接続され、
     前記第1の輸送管には、前記冷媒容器の内圧が前記ガスバックの内圧よりも第1圧力差以上高い場合に開いて、前記冷媒容器から前記ガスバックに前記冷媒ガスを流す第1の一方向バルブが備えられ、
     前記第2の輸送管には、前記ガスバックの内圧が前記冷媒容器の内圧よりも第2圧力差以上高い場合に開いて、前記ガスバックから前記冷媒容器に前記冷媒ガスを流す第2の一方向バルブが備えられていることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1, wherein the exhaust pipe branches into a first transport pipe and a second transport pipe, each connected to the gas bag,
    The first transport pipe is opened when the internal pressure of the refrigerant container is higher than the internal pressure of the gas bag by a first pressure difference or more and allows the refrigerant gas to flow from the refrigerant container to the gas bag. A directional valve is provided,
    The second transport pipe opens when the internal pressure of the gas bag is higher than the internal pressure of the refrigerant container by a second pressure difference or more, and causes the refrigerant gas to flow from the gas bag to the refrigerant container. A magnetic resonance imaging apparatus comprising a directional valve.
  3.  請求項2に記載の磁気共鳴イメージング装置において、前記第1圧力差は、前記第2圧力差よりも大きいことを特徴とする磁気共鳴イメージング装置。 3. The magnetic resonance imaging apparatus according to claim 2, wherein the first pressure difference is larger than the second pressure difference.
  4.  請求項2に記載の磁気共鳴イメージング装置において、前記第2の輸送管は、前記ガスバックの上部に接続されていることを特徴とする磁気共鳴イメージング装置。 3. The magnetic resonance imaging apparatus according to claim 2, wherein the second transport pipe is connected to an upper portion of the gas bag.
  5.  請求項1に記載の磁気共鳴イメージング装置において、前記冷媒容器と前記真空容器との間に輻射シールド板を備え、前記排気管の一部は、所定の長さに渡って前記輻射シールド板に熱的に接触するように、前記輻射シールド板に沿って配置されていることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, further comprising a radiation shield plate between the refrigerant container and the vacuum container, wherein a part of the exhaust pipe is heated to the radiation shield plate over a predetermined length. The magnetic resonance imaging apparatus is disposed along the radiation shield plate so as to come into contact with each other.
  6.  請求項1に記載の磁気共鳴イメージング装置において、前記排気管には、前記冷媒ガスに混入している不純物ガスを分離する除去部が設けられていることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the exhaust pipe is provided with a removal unit that separates impurity gas mixed in the refrigerant gas.
  7.  請求項6に記載の磁気共鳴イメージング装置において、前記除去部は、前記排気管の途中で前記不純物ガスが液化した不純物液を溜める液溜めであることを特徴とする磁気共鳴イメージング装置。 7. The magnetic resonance imaging apparatus according to claim 6, wherein the removing unit is a liquid reservoir for collecting an impurity liquid obtained by liquefying the impurity gas in the middle of the exhaust pipe.
  8.  請求項7に記載の磁気共鳴イメージング装置において、前記液溜めには、溜まった不純物液を前記超電導磁石外に排出する排出部が設けられていることを特徴とする磁気共鳴イメージング装置。 8. The magnetic resonance imaging apparatus according to claim 7, wherein the liquid reservoir is provided with a discharge unit for discharging the accumulated impurity liquid to the outside of the superconducting magnet.
  9.  請求項8に記載の磁気共鳴イメージング装置において、前記排出部は、前記液溜めの不純物液を加熱し気化させるヒータを含むことを特徴とする磁気共鳴イメージング装置。 9. The magnetic resonance imaging apparatus according to claim 8, wherein the discharge unit includes a heater that heats and vaporizes the impurity liquid in the liquid reservoir.
  10.  請求項1に記載の磁気共鳴イメージング装置において、前記ガスバックは、複数に分割されていることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the gas bag is divided into a plurality of parts.
  11.  請求項2に記載の磁気共鳴イメージング装置において、前記排気管には、複数のガスバックが並列に接続され、
     前記第1および第2の輸送管、ならびに、第1および第2の一方向バルブは、前記複数のガスバックごとに配置されていることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 2, wherein a plurality of gas backs are connected in parallel to the exhaust pipe,
    The magnetic resonance imaging apparatus, wherein the first and second transport pipes and the first and second one-way valves are arranged for each of the plurality of gas bags.
  12.  請求項11に記載の磁気共鳴イメージング装置において、前記複数のガスバックごとに配置された前記第1および第2の一方向バルブは、設定されている前記第1圧力差および第2圧力差が、配置されている複数のガスバックごとに異なることを特徴とする磁気共鳴イメージング装置。 12. The magnetic resonance imaging apparatus according to claim 11, wherein the first and second one-way valves arranged for each of the plurality of gas bags have the set first pressure difference and second pressure difference, A magnetic resonance imaging apparatus characterized by being different for each of a plurality of gas bags arranged.
  13.  磁気共鳴イメージング装置の超電導磁石に接続され、超電導コイルを収容する冷媒容器から生じた冷媒ガスを導く輸送管と、
     前記輸送管に接続された冷媒ガスを蓄えるガスバックと、
    を有し、
     前記ガスバックは、内部のガスの量に応じて伸縮することにより内圧を一定に維持する構造であることを特徴とする磁気共鳴イメージング装置用ガス回収装置。
    A transport pipe connected to the superconducting magnet of the magnetic resonance imaging apparatus and guiding the refrigerant gas generated from the refrigerant container containing the superconducting coil;
    A gas bag for storing refrigerant gas connected to the transport pipe;
    Have
    The gas recovery device for a magnetic resonance imaging apparatus, wherein the gas bag has a structure that maintains an internal pressure constant by expanding and contracting according to the amount of gas inside.
  14.  請求項13に記載の磁気共鳴イメージング装置用ガス回収装置において、前記輸送管は、第1の輸送管と第2の輸送管とに分岐し、それぞれが前記ガスバックに接続され、
     前記第1の輸送管には、前記冷媒容器の内圧が前記ガスバックの内圧よりも第1圧力差以上高い場合に開いて、前記冷媒容器から前記ガスバックに前記冷媒ガスを流す第1の一方向バルブが備えられ、
     前記第2の輸送管には、前記ガスバックの内圧が前記冷媒容器の内圧よりも第2圧力差以上高い場合に開いて、前記ガスバックから前記冷媒容器に前記冷媒ガスを流す第2の一方向バルブが備えられていることを特徴とする磁気共鳴イメージング装置用ガス回収装置。
    The gas recovery apparatus for a magnetic resonance imaging apparatus according to claim 13, wherein the transport pipe branches into a first transport pipe and a second transport pipe, each connected to the gas bag,
    The first transport pipe is opened when the internal pressure of the refrigerant container is higher than the internal pressure of the gas bag by a first pressure difference or more and allows the refrigerant gas to flow from the refrigerant container to the gas bag. A directional valve is provided,
    The second transport pipe opens when the internal pressure of the gas bag is higher than the internal pressure of the refrigerant container by a second pressure difference or more, and causes the refrigerant gas to flow from the gas bag to the refrigerant container. A gas recovery apparatus for a magnetic resonance imaging apparatus, comprising a directional valve.
  15.  超電導磁石を備えた磁気共鳴イメージング装置の運転方法であって、
     超電導磁石に備えられた冷却器が停止した場合、撮影動作を停止する第1工程と、
     冷媒容器の内圧が上昇し所定の圧力に達したならば、前記冷媒容器内の冷媒ガスを、一定の内圧を維持しながら冷媒ガスの量に応じて伸縮する構造のガスバックに導いて蓄える第2工程と、
     前記冷却器が再稼働し、前記冷媒容器内の内圧が所定の圧力以下に低下したならば、前記ガスバック内の冷媒ガスを前記冷媒容器内に戻し、前記冷却器の冷却により液化して前記冷媒容器に蓄える第3工程と
     を有することを特徴とする磁気共鳴イメージング装置の運転方法。
    An operation method of a magnetic resonance imaging apparatus provided with a superconducting magnet,
    When the cooler provided in the superconducting magnet stops, the first step of stopping the shooting operation,
    When the internal pressure of the refrigerant container rises and reaches a predetermined pressure, the refrigerant gas in the refrigerant container is stored in the gas bag having a structure that expands and contracts according to the amount of the refrigerant gas while maintaining a constant internal pressure. 2 processes,
    When the cooler is restarted and the internal pressure in the refrigerant container drops below a predetermined pressure, the refrigerant gas in the gas bag is returned to the refrigerant container and liquefied by cooling the cooler. And a third step of storing in the refrigerant container. A method for operating the magnetic resonance imaging apparatus.
PCT/JP2013/061470 2012-05-14 2013-04-18 Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device WO2013172148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515549A JPWO2013172148A1 (en) 2012-05-14 2013-04-18 Magnetic resonance imaging apparatus, gas recovery apparatus for magnetic resonance imaging apparatus, and method of operating magnetic resonance imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110853 2012-05-14
JP2012-110853 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172148A1 true WO2013172148A1 (en) 2013-11-21

Family

ID=49583562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061470 WO2013172148A1 (en) 2012-05-14 2013-04-18 Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JPWO2013172148A1 (en)
WO (1) WO2013172148A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174252A (en) * 2014-08-29 2014-12-03 中国科学院武汉物理与数学研究所 Device for eliminating alkali metal vapour in hyperpolarized gas
CN108261198A (en) * 2017-01-04 2018-07-10 株式会社日立制作所 MR imaging apparatus, the control device of cryogenic system and control method
WO2018172200A1 (en) * 2017-03-23 2018-09-27 Koninklijke Philips N.V. Thermal bus heat exchanger for superconducting magnet
CN109442798A (en) * 2018-12-05 2019-03-08 湖南迈太科医疗科技有限公司 Refrigeration system, closed-loop refrigeration cycle circuit and the method for injecting refrigerant
JP2022018074A (en) * 2020-07-14 2022-01-26 ゼネラル・エレクトリック・カンパニイ Auxiliary cryogen storage for magnetic resonance imaging applications
CN114171281A (en) * 2022-02-14 2022-03-11 宁波健信核磁技术有限公司 Superconducting magnet heating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796508A (en) * 1980-12-08 1982-06-15 Hitachi Ltd Superconductive coil
JP2007134703A (en) * 2005-11-10 2007-05-31 General Electric Co <Ge> Cooling system for superconducting magnet
JP2008025938A (en) * 2006-07-24 2008-02-07 Toshiba Corp Low temperature device
JP2011092710A (en) * 2009-10-30 2011-05-12 General Electric Co <Ge> Refrigerant system and method for superconductive magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796508A (en) * 1980-12-08 1982-06-15 Hitachi Ltd Superconductive coil
JP2007134703A (en) * 2005-11-10 2007-05-31 General Electric Co <Ge> Cooling system for superconducting magnet
JP2008025938A (en) * 2006-07-24 2008-02-07 Toshiba Corp Low temperature device
JP2011092710A (en) * 2009-10-30 2011-05-12 General Electric Co <Ge> Refrigerant system and method for superconductive magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174252A (en) * 2014-08-29 2014-12-03 中国科学院武汉物理与数学研究所 Device for eliminating alkali metal vapour in hyperpolarized gas
CN104174252B (en) * 2014-08-29 2016-03-23 中国科学院武汉物理与数学研究所 A kind of device eliminating alkali metal vapour in hyperpolarized gas
CN108261198A (en) * 2017-01-04 2018-07-10 株式会社日立制作所 MR imaging apparatus, the control device of cryogenic system and control method
CN108261198B (en) * 2017-01-04 2021-03-09 株式会社日立制作所 Magnetic resonance imaging apparatus, and control apparatus and control method for cryogenic system
WO2018172200A1 (en) * 2017-03-23 2018-09-27 Koninklijke Philips N.V. Thermal bus heat exchanger for superconducting magnet
CN109442798A (en) * 2018-12-05 2019-03-08 湖南迈太科医疗科技有限公司 Refrigeration system, closed-loop refrigeration cycle circuit and the method for injecting refrigerant
CN109442798B (en) * 2018-12-05 2024-04-09 湖南迈太科医疗科技有限公司 Refrigeration system, closed-loop refrigeration cycle and method for injecting refrigerant
JP2022018074A (en) * 2020-07-14 2022-01-26 ゼネラル・エレクトリック・カンパニイ Auxiliary cryogen storage for magnetic resonance imaging applications
JP7171820B2 (en) 2020-07-14 2022-11-15 ゼネラル・エレクトリック・カンパニイ Auxiliary cryogenic agent storage device for magnetic resonance imaging applications
CN114171281A (en) * 2022-02-14 2022-03-11 宁波健信核磁技术有限公司 Superconducting magnet heating system

Also Published As

Publication number Publication date
JPWO2013172148A1 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2013172148A1 (en) Magnetic resonance imaging device, gas recovery unit for magnetic resonance imaging device, and method for operating magnetic resonance imaging device
US10073155B2 (en) Adjustment method of a magnetic resonance imaging apparatus
US10184711B2 (en) Cryogenic cooling system
JP5016600B2 (en) Superconducting magnet, magnetic resonance imaging apparatus, and cryocooler cooling capacity calculation method
KR101919983B1 (en) Cooling system and method for cooling superconducting magnet devices
US9494344B2 (en) Method for reconfiguring a cryostat configuration for recirculation cooling
EP3523582B1 (en) Passive flow direction biasing of cryogenic thermosiphon
JP5960152B2 (en) Magnetic resonance imaging apparatus and operation method thereof
US20170284725A1 (en) Cryostat with a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
US6332324B1 (en) Cryostat and magnetism measurement apparatus using the cryostat
US20160291104A1 (en) Magnetic resonance imaging apparatus
JP4925826B2 (en) Magnetic resonance imaging apparatus and maintenance method thereof
JP2000331820A (en) Open-ended design superconducting magnet
JP5110872B2 (en) Magnetic resonance imaging apparatus and operation method thereof
JP2013008975A (en) Superconducting magnet systems
Pirotte et al. Upgrade of the cryogenic CERN RF test facility
Fuerst et al. Two low-cost, modular sub-λ test cryostats
Racine et al. Performance of the cryostat for a prototype ILC DC combined function superconducting quadrupole-dipole magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791318

Country of ref document: EP

Kind code of ref document: A1