JPH02130925A - Vertical type pressure oxidation equipment - Google Patents

Vertical type pressure oxidation equipment

Info

Publication number
JPH02130925A
JPH02130925A JP28499588A JP28499588A JPH02130925A JP H02130925 A JPH02130925 A JP H02130925A JP 28499588 A JP28499588 A JP 28499588A JP 28499588 A JP28499588 A JP 28499588A JP H02130925 A JPH02130925 A JP H02130925A
Authority
JP
Japan
Prior art keywords
reaction tube
pressure
boat
wafer
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28499588A
Other languages
Japanese (ja)
Other versions
JP2766856B2 (en
Inventor
Katsumi Kidoguchi
木戸口 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Sagami Ltd
Priority to JP63284995A priority Critical patent/JP2766856B2/en
Publication of JPH02130925A publication Critical patent/JPH02130925A/en
Application granted granted Critical
Publication of JP2766856B2 publication Critical patent/JP2766856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To reduce the installation space of equipment, simplify loading mechanism of a wafer to the inside of a reaction tube, and shorten load time by arranging objects to be treated in the vertical direction. CONSTITUTION:A reaction tube 22 accommodating a boat 21 retaining vertically a plurality of wafers 20 is arranged longitudinally in a pressure vessel 23. The wafers 20 are transferred to the boat 21; an outer lid 36 mounting the boat 21 is made to ascend and move as far as a specified position in a reaction tube 22. The outer lid 36 is locked by a flange 35; the temperature of a reaction region in the tube 22 and a water vapor generating part is raised at a specified value by heaters 24, 29; at the same time, gas is introduced from tubes 26 and 32, and pressurized up to a specified high value. When the inside of the tube 22 reaches specified temperature and pressure, an oxidation process is executed. After that, the wafer 20 subjected to treatment is transferred from the boat 21 to a cassette.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は縦型加圧酸化装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a vertical pressure oxidation apparatus.

(従来の技術) 高圧・高温の酸化性雰囲気中のシリコン酸化は、常圧下
に比べ酸化速度を大幅に増大し得る事は一般によく知ら
れている。このため、例えば、半導体ウェハを8気圧程
度の加圧酸化雰囲気の中に置いて900℃程度の温度で
加熱しウェハ表面を酸化する方法がとられている。この
様な横型の高圧酸化装置は例えば特開昭62−6342
号公報に開示されている。
(Prior Art) It is generally well known that silicon oxidation in an oxidizing atmosphere at high pressure and high temperature can significantly increase the oxidation rate compared to that under normal pressure. For this reason, for example, a method is used in which a semiconductor wafer is placed in a pressurized oxidizing atmosphere of about 8 atmospheres and heated to a temperature of about 900° C. to oxidize the wafer surface. Such a horizontal high-pressure oxidation device is known, for example, from Japanese Patent Application Laid-Open No. 62-6342.
It is disclosed in the publication No.

従来の横型高圧酸化装置は第5図に示すように、複数枚
例えば100〜150枚の半導体ウェハ(1)を搭載す
る石英ガラス製ボート(2)を石英ガラス製フォーク(
3)の先端部近くに載せ、石英ガラス製反応管(4)内
ヘウエハ(1)をロード/アンロードするソフトランデ
ィング装置(5)がローディングテーブル(6)に設け
られている。
As shown in Fig. 5, a conventional horizontal high-pressure oxidation apparatus uses a quartz glass boat (2) carrying a plurality of semiconductor wafers (1), for example, 100 to 150 semiconductor wafers, and a quartz glass fork (
A loading table (6) is provided with a soft landing device (5) for loading/unloading the wafer (1) into/from the quartz glass reaction tube (4) near the tip of the quartz glass reaction tube (4).

そしてこのソフトランディング装置(5)はローディン
グテーブル(6)の操作部(A)と反応管(4)の炉芯
位1’(B)とをY軸方向および上下の高さ方向(Z軸
方向)に移動自在に設けられている。また、先端部に反
応管(4)の間口部で嵌合する石英ガラス製キャップ(
7)持ち、高圧容器(8)の蓋となる外蓋(9)がソフ
トランディング装置(5)のフォーク(3)と並列にX
軸方向に移動可能な如くローディングテーブル(6)に
設けられている。そして、外M(9)はY軸方向とX軸
方向にも移動可能となっている。
This soft landing device (5) connects the operating part (A) of the loading table (6) and the furnace core position 1' (B) of the reaction tube (4) in the Y-axis direction and in the vertical height direction (Z-axis direction). ) is movably installed. In addition, a quartz glass cap (
7) Hold the outer lid (9), which serves as the lid of the high-pressure container (8), in parallel with the fork (3) of the soft landing device (5).
It is provided on the loading table (6) so as to be movable in the axial direction. The outer M (9) is also movable in the Y-axis direction and the X-axis direction.

高圧容器(8)内に1よ、反応管(4)を取りまくよう
にヒータ(10)が設けられている。また、前記反応管
(4)の先端部には水素/窒素ガス導入管(11)と酸
素ガス導入管(12)が配置されている。また、反応管
(4)のガス導入側近傍を取り囲むが如く水蒸気ガス発
生用のヒータ(13)が設けられている。そして、高圧
容器(8)内を反応管(4)の内圧より所定量低い圧力
になる如く不活性ガスを導入する不活性ガス導入管く1
4)がもうけられている。
A heater (10) is provided in the high pressure container (8) so as to surround the reaction tube (4). Moreover, a hydrogen/nitrogen gas introduction tube (11) and an oxygen gas introduction tube (12) are arranged at the tip of the reaction tube (4). Further, a heater (13) for generating steam gas is provided so as to surround the vicinity of the gas introduction side of the reaction tube (4). Then, an inert gas introduction pipe 1 for introducing an inert gas into the high pressure container (8) so that the pressure becomes a predetermined amount lower than the internal pressure of the reaction tube (4).
4) is being made.

次に一連の動作の内、ロード/アンロードを中心に説明
する。まず、操作側(A)に位置しているソフトランデ
ィング装置(5)のフォーク(3)の先端部近傍に複数
枚のウェハ(1)を搭載したボート(2)を載せる。石
英ガラス製のキャップ(7)を支持すると共に圧力容器
(8)の蓋となっている外蓋(9)を高圧容器(8)か
ら外す如くローディングテーブル(6)側に下げ(X軸
方向)、キャップ(7)を圧力容器(8)の外側に位置
させた後、外!! (9)を操作側(A)と反対方向(
Y軸方向)に移動し、そしてまた上方向に(X軸方向)
に移動する。このことにより、外蓋(9)を炉芯の位I
t (B)から外れた位置に待避させる0次に、操作側
(A)の位置にあるソフトランディング装置(5)を炉
芯位fil (B)へ移動(Y軸方向)した後、ウェハ
(1)を搭載したボート(2)の重さによるフォーク(
3)のたわみを補正(θ回転方向)し、フォーク(3)
と反応管(4)との平行をとり、反応管(4)内へとフ
ォークを移動(X軸方向)し、反応管(4)内の所定の
場所へボートをソフトランディングさせることにより載
置する。そして、ボート(2)を反応管内(4)に載置
した事によりボートの重量だけ軽くなった分の、前述と
は逆の補正(θ回転方向)をし、フォーク(3)を反応
管(4)に対し水平にし、フォーク(3)を反応管(4
)内から引き出しくX軸方向)、再び元の操作側(A)
位置に戻す(Y軸方向)0次に、待避していた外蓋(9
)を下に降ろしくX軸方向)、ざらに炉芯位置(B)へ
移動する(Y軸方向)そして外!!(9)を反応管(4
)の炉口をキャップ(7)で密閉する如く移動しくX軸
方向)、高圧容器(8)を外!! (9)で蓋をする。
Next, among the series of operations, loading/unloading will be mainly explained. First, a boat (2) carrying a plurality of wafers (1) is placed near the tip of the fork (3) of the soft landing device (5) located on the operating side (A). Lower the outer lid (9), which supports the quartz glass cap (7) and serves as the lid of the pressure vessel (8), toward the loading table (6) as if removing it from the high-pressure vessel (8) (in the X-axis direction). , after positioning the cap (7) on the outside of the pressure vessel (8), outside! ! (9) in the opposite direction from the operating side (A) (
(Y-axis direction) and then upward again (X-axis direction)
Move to. This allows the outer cover (9) to be moved to the position I of the furnace core.
Next, after moving the soft landing device (5) located on the operating side (A) to the core position (B) (in the Y-axis direction), move the wafer ( The fork (
Correct the deflection of 3) (θ rotation direction) and fork (3)
Place the boat in parallel with the reaction tube (4) by moving the fork into the reaction tube (4) (in the X-axis direction) and soft-landing the boat at a predetermined location inside the reaction tube (4). do. Then, by placing the boat (2) in the reaction tube (4), the weight of the boat has been reduced by making the opposite correction (θ rotation direction), and moving the fork (3) into the reaction tube ( 4), and place the fork (3) horizontally on the reaction tube (4).
), pull it out from inside (X-axis direction), and return to the original operation side (A).
Return to position (Y-axis direction) 0 Next, remove the outer cover (9
) down (X-axis direction), roughly move to the furnace core position (B) (Y-axis direction), and then out! ! (9) into the reaction tube (4
) in the X-axis direction so as to seal the furnace mouth with the cap (7)), and remove the high pressure vessel (8)! ! Cover with (9).

そして、ヒータ(lO)および水蒸気発生用ヒータ(1
3)を動作させ、酸素ガス導入管(12)及び水素/窒
素ガス導入管(11)よりガスを導入し、図示しない圧
力制御装置により反応管(4)および高圧容器(8)内
の圧力を制御し、反応管(4)内を所定の温度と圧力に
し、酸化プロセスを所定時間実行する。このような酸化
プロセス終了後、反応管(4)内のウェハ(1)を取り
出すため上述したロード処理と逆の一連の動きを行いア
ンロード処理を行っていた。
Then, a heater (1O) and a water vapor generation heater (1
3), gas is introduced from the oxygen gas introduction pipe (12) and the hydrogen/nitrogen gas introduction pipe (11), and the pressure in the reaction tube (4) and high pressure vessel (8) is controlled by a pressure control device (not shown). The reaction tube (4) is controlled to a predetermined temperature and pressure, and the oxidation process is carried out for a predetermined time. After completion of such an oxidation process, in order to take out the wafer (1) from the reaction tube (4), an unloading process is performed by performing a series of movements in reverse to the above-described loading process.

(発明が解決しようとする課B) しかしながら、ウェハの大口径化や超LSI化に伴い、
横型の高圧酸化Vi置ではゴミ対策の為にもソフトラン
ディング装置を使用するためこの分だけよけいに反応管
の管径も大きくなる。従って反応容器を収納している高
圧容器も大きなものとなり、高圧容器の外蓋(9)も形
状的に大きくなり叉重量も増大してくる。このため外蓋
(9)を保持し叉駆動する駆動系も大きくなり、ソフト
ランディング装置もウェハに対応して大きくなる。
(Problem B that the invention attempts to solve) However, with the increasing diameter of wafers and the use of ultra-LSIs,
In a horizontal high-pressure oxidation Vi device, a soft landing device is used to prevent dust, so the diameter of the reaction tube becomes larger accordingly. Therefore, the high-pressure container housing the reaction container also becomes large, and the outer lid (9) of the high-pressure container also becomes larger in shape and weight. For this reason, the drive system for holding and driving the outer lid (9) also becomes large, and the soft landing device also becomes large in accordance with the size of the wafer.

従って、ローディングテーブル(6)の形状も増大し、
クリーンルーム内でのローディングテーブル(6)の占
有床面積が非常に大きくなると言う間脛が有った。また
、通常の酸化・拡散装置のように占有床面積を節約する
ために炉を複数段上下方向に積み重ねた多段炉にする事
は反応管を収容している高重量・高容積の高圧容器を複
数段上下方向に積み重ねなければならず、安全面や保守
面から非常に難しい、また、反応管内ヘウェハをロード
/アンロードする駆動系はソフトランディング装置系で
4軸、そして、外蓋系で3軸、合計7軸の駆動系から構
成され、これらを順次制御しなければならず、制御・機
構的にも複雑となり、ロード/アンロードに要する時間
が長くかかる例えばロードに20分、アンロードに20
分と言う問題があった。
Therefore, the shape of the loading table (6) also increases,
There was a problem that the loading table (6) occupied a very large floor area in the clean room. In addition, in order to save floor space occupied by ordinary oxidation/diffusion equipment, a multi-stage furnace in which multiple stages are stacked vertically is not possible because the heavy-weight, high-volume, high-pressure vessels housing the reaction tubes are Multiple stages must be stacked vertically, which is extremely difficult from a safety and maintenance standpoint.Furthermore, the drive system for loading/unloading wafers into the reaction tube is a soft landing system with 4 axes, and an outer lid system with 3 axes. It consists of a drive system with a total of 7 axes, and these must be controlled sequentially, making the control and mechanism complicated, and the time required for loading/unloading is long.For example, it takes 20 minutes to load and to unload. 20
There was a problem.

この発明は上記点を改善するためになされたもので、装
置の設置スペースを減少し、反応管内へのウェハの口、
−ド/アンロード機構を単純化し、ロード/アンロード
時間の短い縦型加圧酸化装置を提供しようとするもので
ある。
This invention was made to improve the above-mentioned points, and it reduces the installation space of the equipment, and reduces the amount of wafer entry into the reaction tube.
- It is an object of the present invention to provide a vertical pressurized oxidation device with a simplified loading/unloading mechanism and short loading/unloading times.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は複数枚の被処理体を、耐圧容器内に配置され
た反応″B器内で加圧状態で酸化し、酸化膜を生成する
装置に於て、上記被処理体の配列方向を縦方向に配置し
たことを特徴とする縦型加圧酸化装置、を得るものであ
る。
(Means for Solving the Problems) The present invention provides an apparatus for oxidizing a plurality of objects to be processed under pressure in a reaction "B" placed in a pressure-resistant container to generate an oxide film. The present invention provides a vertical pressure oxidation apparatus characterized in that the objects to be processed are arranged in a vertical direction.

(作用効果) 本発明によれば、複数枚の被処理体を、耐圧容器内に配
置された反応容器内で加圧状態で酸化し、酸化膜を生成
する装置に於て、上記反応容器を縦方向に配置した構成
であるため、ウェハのロード/アンロード機構を縦方向
に構成できると共に、耐圧容器の外蓋も、上記ロード/
アンロード機構に組み込めるため、装置の設置スペース
を減少し、反応管内へのウェハのロード/アンロード機
構を単純化し、ロード/アンロード時間を短かくする効
果が得られる。
(Operation and Effect) According to the present invention, in an apparatus for generating an oxide film by oxidizing a plurality of objects to be processed under pressure in a reaction container disposed in a pressure-resistant container, the reaction container is Since the structure is arranged vertically, the wafer loading/unloading mechanism can be configured vertically, and the outer lid of the pressure container can also be arranged vertically.
Since it can be incorporated into the unloading mechanism, the installation space of the apparatus can be reduced, the loading/unloading mechanism of wafers into the reaction tube can be simplified, and the loading/unloading time can be shortened.

(実施例) 以下本発明縦型加圧酸化装置を縦型高圧酸化装置に適用
した一実施例につき図面を参照して説明する。
(Example) An example in which the vertical pressure oxidation apparatus of the present invention is applied to a vertical high pressure oxidation apparatus will be described below with reference to the drawings.

t!i数枚の被処理体例えば半導体ウェハ(20)を上
下方向に所定の間隔で保持する耐熱性のある例えば縦型
の石英ガラス製ボート(21)を収納する、例えば石英
ガラス製反応管(22)がある。
T! For example, a quartz glass reaction tube (22) houses a heat-resistant, vertical quartz glass boat (21) that holds a number of objects to be processed, such as semiconductor wafers (20), at predetermined intervals in the vertical direction. ).

この反応管(22)は高圧例えば8〜10気圧に耐え防
蝕性のある例えばステンレス製の圧力容器(23)内に
縦方向(M直方向)に配置されている。そして、反応管
(22)を取り囲むように加熱装置例えば抵抗加熱ヒー
タ(24)が設けられ、反応管(22)の上端部には酸
素ガスと水素ガスの燃焼により水蒸気ガスを発生するた
めの酸素ガス導入管(25)と水素ガスあるいは不活性
ガス例えば窒素ガスを導入するH2/N2ガス導入管(
26)が設けられている。そして、この酸素ガスと水素
ガスの燃焼の為の熱を供給する水蒸気発生用ヒータ例え
ば抵抗加熱ヒータ(27)が反応管(22)の上端部近
傍を取り囲むように設けられている。また、処理後の水
蒸気ガス等を排出するガス排気管(28)が反応管(2
2)の下部に設けられている。そして、反応管(22)
の下側間口部(29)内壁には、反応管(22)の蓋体
となる耐熱製材料からなる例えば石英ガラス製のキャッ
プ(30)と嵌合し、気密を保持し、かつ、着脱自在に
なる如くテーバが設けられている。また、キャップ(3
0)は底部が少し広がり、反応管(22)のテーパと嵌
合する如くテーバが設けられている、と共に保温筒の機
能を持つ為キャップ(30)内部に石英ガラスウール等
を充填させている。そして、反応管(22)は耐腐食性
材料からなる例えば円環状ステンレス製支持板(31)
へ着脱自在になるが如く固定されている。また、圧力容
器(23)内を反応管(22)の内圧より所定量例えば
0.15圧程度低い圧力になるが如く図示しない圧力制
御装置により制御し、不活性ガス例えば窒素ガスを導入
する不活性ガス導入孔(32)および排気孔(33)が
圧力容器(23)に設けられている。そして、圧力容器
(23)の下端にはボー)(21)を搭載したキャップ
(30)が通過できる広さの間口部(34)が設けられ
ている。この間口部(34)に沿って円環状の図示しな
い高圧力ロック機構を持ったフランジ(36)が設けら
れている。また、上記フランジ(35)と組合わさり上
記間口部(34)を閉じる、耐腐食性材料かからなる例
えばステンレス製外蓋(36)がボー)(21)を反応
管(22)内へ搬入・搬出する駆動装置(37)へ支持
棒を介し取り付けられている。また、上記外!!(3B
)とキャップ(30)との間にはキャップ(30)を水
平面内で、どの方向にも微動可能な機構と、反応管(2
2)の異常圧力等による破損等の危険を避けるため、キ
ャップ(30)を下方に少し例えば1〜2間待避する機
構を備えた支持部(38)がある。また、反応管(22
)の上部には水素ガスと酸素ガスの燃焼反応による高温
の炎が直接ウェハに当たらないように文生成された水蒸
気ガスを均一にウェハ(20)へ流すため、耐熱材料例
えば石英ガラス製で多数の貫通した穴があいた円板状の
バッフル板(39)が設けられている。なお、このバッ
フル板(39)は着脱自在となっておりプロセスに合わ
せ穴の形状や穴数等を変えたバッフル板(39)と交換
可能となっている。
This reaction tube (22) is arranged in a vertical direction (direction perpendicular to M) in a pressure vessel (23) made of stainless steel, for example, which is corrosion-resistant and can withstand high pressure, for example, 8 to 10 atmospheres. A heating device such as a resistance heater (24) is provided to surround the reaction tube (22), and an oxygen gas is provided at the upper end of the reaction tube (22) to generate steam gas by combustion of oxygen gas and hydrogen gas. A gas introduction pipe (25) and an H2/N2 gas introduction pipe (25) for introducing hydrogen gas or an inert gas such as nitrogen gas.
26) is provided. A water vapor generating heater, such as a resistance heater (27), which supplies heat for combustion of the oxygen gas and hydrogen gas, is provided so as to surround the vicinity of the upper end of the reaction tube (22). In addition, a gas exhaust pipe (28) for discharging water vapor gas etc. after treatment is connected to a reaction pipe (28).
2) is provided at the bottom of. And reaction tube (22)
A cap (30) made of a heat-resistant material, for example quartz glass, which serves as the lid of the reaction tube (22) is fitted onto the inner wall of the lower opening (29) to maintain airtightness and to be detachable. A taber is provided as follows. In addition, the cap (3
0) has a slightly wider bottom and a taper that fits with the taper of the reaction tube (22), and the cap (30) is filled with quartz glass wool etc. to function as a heat-insulating tube. . The reaction tube (22) has a support plate (31) made of a corrosion-resistant material, for example, an annular stainless steel.
It is fixed in such a way that it can be attached and detached at will. Further, the pressure inside the pressure vessel (23) is controlled by a pressure control device (not shown) such that the pressure is lower by a predetermined amount, for example, about 0.15 pressure than the internal pressure of the reaction tube (22), and an inert gas such as nitrogen gas is introduced. An active gas introduction hole (32) and an exhaust hole (33) are provided in the pressure vessel (23). At the lower end of the pressure vessel (23), there is provided a frontage (34) large enough to allow the cap (30) carrying the bow (21) to pass through. An annular flange (36) having a high pressure locking mechanism (not shown) is provided along this opening (34). Further, an outer cover (36) made of a corrosion-resistant material, for example, made of stainless steel, which is combined with the flange (35) to close the opening (34), is carried into the reaction tube (22). It is attached to the unloading drive device (37) via a support rod. Also, not listed above! ! (3B
) and the cap (30), there is a mechanism that allows the cap (30) to move slightly in any direction in a horizontal plane, and a reaction tube (2).
In order to avoid the risk of breakage due to abnormal pressure or the like mentioned in 2), there is a support part (38) equipped with a mechanism for retracting the cap (30) downward for a short distance, for example, 1 to 2 minutes. In addition, a reaction tube (22
) is made of a heat-resistant material, such as quartz glass, in order to prevent the high-temperature flame caused by the combustion reaction of hydrogen gas and oxygen gas from directly hitting the wafer (20) and to uniformly flow the generated water vapor gas to the wafer (20). A disc-shaped baffle plate (39) with a through hole is provided. Note that this baffle plate (39) is detachable and can be replaced with a baffle plate (39) whose hole shape, number of holes, etc. are changed according to the process.

次に動作について第2図および第1図を参照して説明す
る。
Next, the operation will be explained with reference to FIGS. 2 and 1.

図示しないロボット装置によりカセット内の複数枚のウ
ェハ(20)をボート(21)に移し替える。キャップ
(30)上に、上記複数枚のウェハを縦方向に所定の間
隔をもって搭観したボート(21)を載置固定する0次
に駆動装置(37)によりボート(21)を載置した外
蓋(36)を上昇させ、反応管(22)内の所定の位置
まで移動する。このとき、ボート(21)を載せたキャ
ップ(30)は反応管(22)のテーパに合致する如く
挿入嵌合される。また、反応管(22)とキャップ(3
0)との嵌合部に少しの位置ずれが有ったとしても、支
持部(38)の微調整機能により修正される。また、こ
れと同時、に圧力容器(23)の間口部(34)を蓋す
る如くフランジ(35)と外!(36)とが組合わさり
、図示しない高圧力ロック機構により外I!(36)が
フランジ(35)にロックされ、圧力容器(23)は密
閉状態になる。そして、ヒータく24)及び水蒸気発生
用ヒータ(27)で反応管(22)内の反応領域及び水
蒸気発生部の温度を所定の温度例えば反応領域は900
〜1100℃に上昇させる。
A robot device (not shown) transfers the plurality of wafers (20) in the cassette to the boat (21). A boat (21) on which the plurality of wafers are mounted at predetermined intervals in the vertical direction is placed and fixed on the cap (30). Lift the lid (36) and move it to a predetermined position inside the reaction tube (22). At this time, the cap (30) carrying the boat (21) is inserted and fitted so as to match the taper of the reaction tube (22). Also, a reaction tube (22) and a cap (3
Even if there is a slight positional deviation in the fitting part with 0), it can be corrected by the fine adjustment function of the support part (38). At the same time, the flange (35) and the outside cover the frontage (34) of the pressure vessel (23). (36) is combined with the external I! by a high pressure locking mechanism (not shown). (36) is locked to the flange (35), and the pressure vessel (23) is in a sealed state. Then, the temperature of the reaction region and the steam generation part in the reaction tube (22) is adjusted to a predetermined temperature using the heater 24) and the steam generation heater (27), for example, 900℃ for the reaction region.
Increase to ~1100°C.

また同時に、H2/N2ガス導入管(26)および不活
性ガス導入管(32)より例えば窒素ガスを導入し所定
の高圧力に上昇させる。この時図示しない圧力制御Vi
置により反応管(22)内圧より圧力容器(23)内が
所定量例えば0.1気圧程度低圧になる如く制御する。
At the same time, nitrogen gas, for example, is introduced through the H2/N2 gas introduction pipe (26) and the inert gas introduction pipe (32) and raised to a predetermined high pressure. At this time, pressure control Vi (not shown)
The pressure inside the pressure vessel (23) is controlled to be a predetermined amount lower than the internal pressure of the reaction tube (22) by a predetermined amount, for example, about 0.1 atmosphere.

反応管(22)内が所定の温度例えば900〜1100
℃および所定の圧力例えば7〜10%圧になったところ
で、酸素ガス導入管(25)より酸素ガスを流した後、
またH2/N2ガス導入管(2G)から水素ガスを流し
水蒸気発生用ヒータ(27)の加熱により酸素ガスと水
素ガスの燃焼で水蒸気ガスを発生し、この水M気ガスで
ウェハ(20)表面を酸化し、酸化膜を形成する。所定
の酸化反応処理時閉を経過した後、上述した酸素ガスお
よび水素ガスの供給を停止し、図示しない圧力制御装置
でコントロールしながら圧力容器(23)および反応管
(22)の圧力を下げるとともに、ヒータ(24)。
The inside of the reaction tube (22) is at a predetermined temperature, e.g. 900-1100.
℃ and a predetermined pressure, for example, 7 to 10% pressure, after flowing oxygen gas from the oxygen gas introduction pipe (25),
In addition, hydrogen gas is passed through the H2/N2 gas inlet pipe (2G) and heated by the water vapor generation heater (27) to generate water vapor gas by combustion of oxygen gas and hydrogen gas. to form an oxide film. After the predetermined oxidation reaction process has been closed, the supply of the above-mentioned oxygen gas and hydrogen gas is stopped, and the pressure in the pressure vessel (23) and reaction tube (22) is lowered while being controlled by a pressure control device (not shown). , heater (24).

(27)の加熱を停止し、反応管(22)内の圧力およ
び温度を下げる。このような酸化プロセス終了後、反応
管(22)内のウェハ(20)を取り出すため、フラン
ジ(35)と外蓋(36)との図示しない高圧力ロック
機構を外し、外!I(36)およびキャップ(30)と
処理されたウェハ(20)の載ったボー)(21)を駆
動装置1(37)で下方に移動し所定の位置に降ろす。
(27) is stopped, and the pressure and temperature inside the reaction tube (22) are lowered. After the oxidation process is completed, in order to take out the wafer (20) inside the reaction tube (22), the high pressure locking mechanism (not shown) between the flange (35) and the outer cover (36) is removed, and the wafer (20) is removed from the reaction tube (22). The bow (21) on which the I (36), the cap (30) and the processed wafer (20) are placed is moved downward by the drive device 1 (37) and lowered into a predetermined position.

そこで、図示しないロボット装置によりボート(21)
からウェハく20)をカセットに移し替える。
Therefore, the boat (21) was moved by a robot device (not shown).
Transfer the wafer from 20) to a cassette.

以上のように、反応管く22)を縦方向に配置する事に
より、ロード/アンロードを7軸から1軸にする事がで
き、複雑な動きが無くなり、ロード/アンロード時間を
従来の1/3〜1/4に短縮できると共にコスト低減に
もつながっている。
As described above, by arranging the reaction tubes 22) in the vertical direction, loading/unloading can be reduced from 7 axes to 1 axis, eliminating complicated movements and reducing the loading/unloading time from the conventional 1 axis. It can be shortened to 1/3 to 1/4 and also leads to cost reduction.

また、ボート(21)を垂直方向に出し入れする事によ
り反応管(22)と完全に非接触でロード/アンロード
でき、パーティクル等によるウェハ(20)汚染を軽減
できると共に反応管(22)の管径は必要最小限にでき
るためヒータく24)径も小さくでき、従って圧力容器
(23)の容積を小さくする事ができる。また、反応管
(22)。
In addition, by vertically loading and unloading the boat (21), it is possible to load/unload the reaction tube (22) completely without contact, reducing contamination of the wafer (20) by particles, etc. Since the diameter can be minimized, the diameter of the heater (24) can also be made small, and the volume of the pressure vessel (23) can therefore be made small. Also, a reaction tube (22).

圧力容器(23)、  ヒータ(24)等が従来よりも
小型にできることにより、反応管(22)内の温度分布
均一性の向上、圧力容器(23)や反応管(22)内に
流すガス流量を低減することができる。
By making the pressure vessel (23), heater (24), etc. smaller than before, the temperature distribution uniformity inside the reaction tube (22) is improved, and the gas flow rate flowing into the pressure vessel (23) and reaction tube (22) is reduced. can be reduced.

なお、本発明は上記実施例に限定されるものではなく、
本発明の要旨を範囲内で種々の変形が実施が可能である
Note that the present invention is not limited to the above embodiments,
Various modifications can be made within the scope of the invention.

以下の実施例中上述した実施例と同一部分は同一番号で
示し説明は省略する。
In the following embodiments, parts that are the same as those in the above-described embodiments are designated by the same reference numerals and explanations will be omitted.

上記実施例では、水蒸気発生部分を反応管(22)内に
設けた内M燃焼方式を用いているが、第3図のように反
応管(22)外の所で水素ガスと酸素ガスとを燃焼化合
させ水蒸気を発生する外部燃焼装置例えば、先に本出順
人が提案した酸化炉(特願昭63−29335)で使用
した外部燃焼装置を圧力容器(23)内に設け、反応管
(22)と外部燃焼装置(40)とをボールジヨイント
で結合している。この様に圧力容器(23)内で水蒸気
発生部分を反応管(22)外に設けてもよい。
In the above embodiment, an internal M combustion method is used in which the steam generating part is provided inside the reaction tube (22), but as shown in Fig. 3, hydrogen gas and oxygen gas are generated outside the reaction tube (22). An external combustion device that generates steam through combustion and combination. For example, an external combustion device used in the oxidation furnace proposed by Junto Motode (Japanese Patent Application No. 63-29335) is installed inside the pressure vessel (23), and a reaction tube (23) is installed inside the pressure vessel (23). 22) and an external combustion device (40) are connected by a ball joint. In this manner, the steam generating portion may be provided outside the reaction tube (22) within the pressure vessel (23).

次に第4図は縦型の高圧酸化装置の圧力容器の下部に、
加圧ロードロック室を設けた縦型高圧酸化装置の例であ
る。上述の実施例では外11(36)が駆動装置に一体
に設けられていたが、外蓋(36)の替わりにキャップ
(30)の支持板(41)を設けた構造で、駆動装置と
は別離し、圧力容器(23)内の支持板(42)上に1
a置できる構造となっている。反応管(22)の収納さ
れている圧力容器く23)の下部には圧力容器構造の加
圧ロードロック室(43)が設けられている。このロー
ドロック室(4a)内にはキャップの支持板(41)を
!!iせ反応管(22)内へボート(21)を搬送する
搬送台の付いた駆動装置t(44)が設けられている。
Next, Figure 4 shows the lower part of the pressure vessel of the vertical high-pressure oxidizer.
This is an example of a vertical high-pressure oxidizer equipped with a pressurized load-lock chamber. In the above-mentioned embodiment, the outer cover 11 (36) was provided integrally with the drive device, but the structure is such that the support plate (41) of the cap (30) is provided instead of the outer lid (36), and the drive device is different from the outer cover 11 (36). Separate and place one on the support plate (42) inside the pressure vessel (23).
It has a structure that allows it to be placed a. A pressurized load lock chamber (43) having a pressure vessel structure is provided at the bottom of the pressure vessel (23) in which the reaction tube (22) is housed. Inside this load lock chamber (4a) is a support plate (41) for the cap! ! A drive device t (44) with a transport platform is provided for transporting the boat (21) into the reaction tube (22).

また、ロードロック室(43)の一方にはボー)(21
)の出し入れが可能な如く0−リング等のシール機構を
持った扉(45)が設けられている。また、反応管(2
2)の収納されている圧力室ff(23)と加圧ロード
ロック室(43)との間には高圧力に耐えられる仕切り
例えばゲートバルブ(4G)が設けられている。また、
ロードロック室(43)には不活性ガス例えば窒素ガス
の導入口(47)及び排出口(4日)が設けられている
In addition, one side of the load lock chamber (43) is
) is provided with a door (45) having a sealing mechanism such as an O-ring so that it can be taken in and taken out. In addition, the reaction tube (2
A partition capable of withstanding high pressure, such as a gate valve (4G), is provided between the pressure chamber ff (23) in which the pressure chamber 2) is housed and the pressurized load lock chamber (43). Also,
The load lock chamber (43) is provided with an inlet (47) and an outlet (4) for an inert gas such as nitrogen gas.

次に動作について説明する。複数枚のウェハ(20)を
搭載したボート(21)をロードロック室(43)の扉
(45)を開き駆動装置(44)の搬送台上に載置され
ているキャップ(30)上に載置する。ロードロック室
(43)内に不活性ガス例えば窒素ガスを導入し圧力容
器(23)と同じ圧力になる如くコントロールする。こ
れと同時に前述したオペレイジョンで、反応管(22)
内を所定の圧力と温度にする如くコントロールする。は
ぼ所定の温度になったところで、ゲートパルプく46)
を間き、駆動装置(44)を所定量上昇し、ボート(2
1)及びキャップ(30)を反応管(22)内の所定の
位置に載置セットする。
Next, the operation will be explained. The boat (21) carrying a plurality of wafers (20) is placed on the cap (30) placed on the transfer table of the drive device (44) by opening the door (45) of the load lock chamber (43). place An inert gas such as nitrogen gas is introduced into the load lock chamber (43) and controlled so that the pressure is the same as that of the pressure vessel (23). At the same time, in the operation described above, the reaction tube (22)
Control the internal pressure and temperature to a predetermined level. When the temperature reaches the specified temperature, the gate pulp is removed46)
the drive device (44) is raised by a predetermined amount, and the boat (2
1) and the cap (30) are placed and set in predetermined positions within the reaction tube (22).

次に、駆動装置(4−4)を所定の位置まで下げ、ゲー
トバルブ(46)を閉じる。この後、反応管(22)内
を所定の圧力と温度にコントロールし、酸化プロセスを
行う、プロセス終了後ゲートパルプ(46)を間き、駆
動装置(44)を上昇させボー)(21)及びキャップ
(30)を反応管(22)内から取り出し再びロードロ
ック室(43)の所定の位置まで下げる。そしてまた、
ゲートバルブ(46)を閉じ圧力容器(23)内を指定
の温度と圧力に近い値に保持する。一方、ロードロック
室(43)内のウェハ(2o)の温度が下がった所でコ
ードロック室(43)の排気口(48)を聞き大気圧に
戻した後、71(45)を閏きボー)(21)をロード
ロック室(43)外に取り出し、作業を終了する。この
時反応管(22)及び圧力容器(23)の圧力を大気圧
にコントロールしながら戻す必要がなく、これら温度及
び圧力を下げるため、従来では20分程要していた時間
を節約できる。また、次の作業では、圧力容器(23)
内は及び反応管(22)内はほぼ所定の圧力及び温度に
保持されているため、従来、昇温及び昇圧に要していた
時間をほぼ20分の時間をほとんど省く事ができる。即
ち、プロセスを行う圧力容器(23)中の反応管(22
)内は常にプロセス圧力と温度及びプロセスガス雰囲気
に保つことができるため、lブaセス毎に圧力の昇降圧
を行う事なく短時間でプロセスを行うことができる。
Next, the drive device (4-4) is lowered to a predetermined position and the gate valve (46) is closed. Thereafter, the inside of the reaction tube (22) is controlled to a predetermined pressure and temperature to carry out the oxidation process. After the process is completed, the gate pulp (46) is closed and the drive device (44) is raised to raise the bow (21) and The cap (30) is taken out from inside the reaction tube (22) and lowered again to a predetermined position in the load lock chamber (43). and again,
The gate valve (46) is closed to maintain the inside of the pressure vessel (23) at a value close to the specified temperature and pressure. On the other hand, when the temperature of the wafer (2o) in the load lock chamber (43) has dropped, listen to the exhaust port (48) of the code lock chamber (43) to return it to atmospheric pressure, and then move the wafer 71 (45) to the jump board. ) (21) out of the load lock chamber (43), and the work is completed. At this time, there is no need to control and return the pressures of the reaction tube (22) and pressure vessel (23) to atmospheric pressure, and the time required to lower these temperatures and pressures can be saved, which was conventionally about 20 minutes. In addition, in the next work, the pressure vessel (23)
Since the inside and inside of the reaction tube (22) are maintained at substantially predetermined pressure and temperature, the time conventionally required for raising the temperature and pressure can be reduced to approximately 20 minutes. That is, the reaction tube (22) in the pressure vessel (23) in which the process is carried out
) can always maintain the process pressure, temperature, and process gas atmosphere, so the process can be carried out in a short time without increasing or decreasing the pressure every 1 bath.

このためロード/アンロード中で好ましくない酸化膜等
の生成も軽減できる。
Therefore, the formation of undesirable oxide films and the like during loading/unloading can be reduced.

また、上述した実施例では、反応管(22)の反応領域
を加熱する熱源として抵抗加熱ヒータをい使用している
が、温度の追従性や応答性を早める手段として、ランプ
加熱や高周波誘導加熱装置を用いても良い。また、反応
管内の気密を保つため反応管とキャップとの摺袷せ嵌合
を用いているが、反応管間口部下端を一部分平坦にし、
これに合わせキャップの下面も平坦にし、0−リング等
のシーリング方法で気密を保持しても良い。
In addition, in the above-mentioned embodiment, a resistance heater is used as a heat source for heating the reaction region of the reaction tube (22), but lamp heating or high-frequency induction heating can be used as a means to speed up temperature followability and responsiveness. A device may also be used. In addition, in order to maintain airtightness inside the reaction tube, a sliding fit between the reaction tube and the cap is used, but the lower end of the reaction tube opening is partially flattened.
In accordance with this, the lower surface of the cap may also be made flat, and airtightness may be maintained by a sealing method such as an O-ring.

(発明の効果) 以上のように本発明によれば、装置の設置スペースを減
少し、反応管内へのウェハボートのロード/アンロード
制御を単純化し、ロード/アンロードの時間を短かくす
る効果が得られる。
(Effects of the Invention) As described above, according to the present invention, the installation space of the apparatus is reduced, the loading/unloading control of the wafer boat into the reaction tube is simplified, and the loading/unloading time is shortened. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を説明するための縦型高
圧酸化装置の構成図、第2図は第1図のボートを下げた
状態の説明図、第3図は第1図の水蒸気発生部分を外部
燃焼装置にした他の実施例の説明図、第4図は加圧ロー
ドロック室を設けた他の実施例の説明図、 である。 200.ウェハ 2291反応管 308.キャップ 360.外蓋
Fig. 1 is a configuration diagram of a vertical high-pressure oxidation apparatus for explaining one embodiment of the apparatus of the present invention, Fig. 2 is an explanatory diagram of the boat shown in Fig. 1 in a lowered state, and Fig. 3 is an illustration of the state in which the boat shown in Fig. 1 is lowered. FIG. 4 is an explanatory diagram of another embodiment in which an external combustion device is used as the steam generating portion, and FIG. 4 is an explanatory diagram of another embodiment in which a pressurized load lock chamber is provided. 200. Wafer 2291 Reaction tube 308. Cap 360. outer lid

Claims (2)

【特許請求の範囲】[Claims] (1)複数枚の被処理体を、耐圧容器内に配置された反
応容器内で加圧状態で酸化し、酸化膜を生成する装置に
於て、上記被処理体の配列方向を縦方向に配置したこと
を特徴とする縦型加圧酸化装置。
(1) In an apparatus that generates an oxide film by oxidizing a plurality of objects to be processed under pressure in a reaction vessel placed in a pressure-resistant container, the direction in which the objects to be processed are arranged in the vertical direction is A vertical pressurized oxidation device characterized by the following:
(2)上記酸化膜生成用の処理ガスを上記反応管の上部
から導入し、上記反応管の下部から排出する事を特徴と
する請求項1記載の縦型加圧酸化装置。
(2) The vertical pressurized oxidation apparatus according to claim 1, wherein the processing gas for forming the oxide film is introduced from the upper part of the reaction tube and discharged from the lower part of the reaction tube.
JP63284995A 1988-11-11 1988-11-11 Vertical pressure oxidation equipment Expired - Fee Related JP2766856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284995A JP2766856B2 (en) 1988-11-11 1988-11-11 Vertical pressure oxidation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284995A JP2766856B2 (en) 1988-11-11 1988-11-11 Vertical pressure oxidation equipment

Publications (2)

Publication Number Publication Date
JPH02130925A true JPH02130925A (en) 1990-05-18
JP2766856B2 JP2766856B2 (en) 1998-06-18

Family

ID=17685780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284995A Expired - Fee Related JP2766856B2 (en) 1988-11-11 1988-11-11 Vertical pressure oxidation equipment

Country Status (1)

Country Link
JP (1) JP2766856B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710935U (en) * 1993-07-24 1995-02-14 ヤマハ株式会社 Vertical heat treatment furnace
JPH11340230A (en) * 1998-05-21 1999-12-10 Kobe Steel Ltd High-temperature high-pressure treating device for substrate to be treated
JP2009117534A (en) * 2007-11-05 2009-05-28 Hitachi Kokusai Electric Inc Substrate processing apparatus, and manufacturing method of semiconductor device
US8545158B2 (en) 2011-04-07 2013-10-01 Tokyo Electron Limited Loading unit and processing system
CN110574150A (en) * 2017-05-01 2019-12-13 应用材料公司 High pressure annealing chamber with vacuum isolation and pretreatment environment
JPWO2020188857A1 (en) * 2019-03-20 2020-09-24

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165729A (en) * 1984-02-08 1985-08-28 Toshiba Corp Semiconductor high pressure oxidizing apparatus
JPS6291439U (en) * 1985-11-27 1987-06-11
JPS62202524A (en) * 1986-02-28 1987-09-07 Rohm Co Ltd Apparatus for processing semiconductor wafer
JPS63184339A (en) * 1987-01-27 1988-07-29 Tokyo Electron Ltd Oxidizing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165729A (en) * 1984-02-08 1985-08-28 Toshiba Corp Semiconductor high pressure oxidizing apparatus
JPS6291439U (en) * 1985-11-27 1987-06-11
JPS62202524A (en) * 1986-02-28 1987-09-07 Rohm Co Ltd Apparatus for processing semiconductor wafer
JPS63184339A (en) * 1987-01-27 1988-07-29 Tokyo Electron Ltd Oxidizing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710935U (en) * 1993-07-24 1995-02-14 ヤマハ株式会社 Vertical heat treatment furnace
JPH11340230A (en) * 1998-05-21 1999-12-10 Kobe Steel Ltd High-temperature high-pressure treating device for substrate to be treated
JP2009117534A (en) * 2007-11-05 2009-05-28 Hitachi Kokusai Electric Inc Substrate processing apparatus, and manufacturing method of semiconductor device
US8545158B2 (en) 2011-04-07 2013-10-01 Tokyo Electron Limited Loading unit and processing system
CN110574150A (en) * 2017-05-01 2019-12-13 应用材料公司 High pressure annealing chamber with vacuum isolation and pretreatment environment
JP2020519018A (en) * 2017-05-01 2020-06-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High pressure annealing chamber with vacuum separation and pretreatment environment
CN110574150B (en) * 2017-05-01 2023-09-19 应用材料公司 High pressure annealing chamber with vacuum isolation and pretreatment environment
JPWO2020188857A1 (en) * 2019-03-20 2020-09-24
WO2020188857A1 (en) * 2019-03-20 2020-09-24 株式会社Kokusai Electric Substrate processing device, reaction vessel, method for manufacturing semiconductor device, and recording medium

Also Published As

Publication number Publication date
JP2766856B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US5127365A (en) Vertical heat-treatment apparatus for semiconductor parts
JP4640879B2 (en) Method for processing a wafer and system for processing a semiconductor wafer
US5961323A (en) Dual vertical thermal processing furnace
EP0480181B1 (en) Method and apparatus for batch processing of a semiconductor wafer
EP1480262B1 (en) Heat treatment system
US20100291763A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
US7452826B2 (en) Oxidation method and oxidation system
JP2007515054A (en) Heat treatment system with cross-flow injection system including a rotatable injector
JPH02130925A (en) Vertical type pressure oxidation equipment
JPH0727875B2 (en) Method for loading / unloading semiconductor substrate into / from vertical semiconductor heat treatment apparatus and apparatus for preventing outside air contamination
US7129186B2 (en) Oxidation method and oxidation system
JP4259942B2 (en) Substrate processing equipment
JPS6224630A (en) Formation of thermal oxidation film and device therefor
JP3609077B1 (en) High pressure heat treatment equipment
JP4718054B2 (en) Vertical heat treatment equipment
JPS62140413A (en) Vertical type diffusion equipment
JP2011003689A (en) Substrate processing apparatus
JPS6341028A (en) Forming device for oxide film
JP2005032994A (en) Substrate processing device
US6676769B2 (en) Apparatus and method for cleaning a furnace torch
KR100827478B1 (en) Auto shutter and purge gas cleaning method of lpcvd
JP2008258240A (en) Substrate treatment apparatus
JP2000012473A (en) Heat treatment furnace
JPH02138730A (en) Processor and processing
KR20220082877A (en) Vapor growth apparatus and vapor phase growth method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees