JPH02126920A - Apparatus for controlling desulfurization - Google Patents

Apparatus for controlling desulfurization

Info

Publication number
JPH02126920A
JPH02126920A JP63280186A JP28018688A JPH02126920A JP H02126920 A JPH02126920 A JP H02126920A JP 63280186 A JP63280186 A JP 63280186A JP 28018688 A JP28018688 A JP 28018688A JP H02126920 A JPH02126920 A JP H02126920A
Authority
JP
Japan
Prior art keywords
dew point
nozzle
water
flow rate
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63280186A
Other languages
Japanese (ja)
Other versions
JP2566638B2 (en
Inventor
Yasumitsu Kurosaki
泰充 黒崎
Yuichi Miyamoto
裕一 宮本
Kenichi Murai
村井 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63280186A priority Critical patent/JP2566638B2/en
Publication of JPH02126920A publication Critical patent/JPH02126920A/en
Application granted granted Critical
Publication of JP2566638B2 publication Critical patent/JP2566638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To sufficiently execute desulfurization by controlling flow rate of water from a nozzle so that the detected temp. with temp. detector comes to more than the dew point calculated with a dew point arithmetic means. CONSTITUTION:The water is injected to combustion gas from the nozzle 8 to execute the desulfurization. Then, steam partial pressure contained in the combustion gas at downstream side from the nozzle 8 is calculated with the dew point arithmetic means 17 and based on this steam partial pressure, the dew point is calculated. Further, temp. of exhaust gas at downstream side from the nozzle 8 is detected with the temp. detector 16. Further, in a means composed of control circuits 18, 20, pump 12, flow rate control valve 14, flow meter 15, etc., the flow rate of water from the nozzle 8 is controlled so that the temp. detected with the temp. detector 16 comes to more than the dew point calculated with the dew point arithmetic means 17. In this result, SOx concn. can be reduced and also damage of corrosion caused by excess-supplying of the water is prevented and the desulfurization can be executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼炉などからの燃焼ガスに含まれるSOx
を低減するための脱硫制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to SOx contained in combustion gas from a combustion furnace, etc.
This invention relates to a desulfurization control device for reducing.

従来の技術 従来から脱硫を行うために、燃焼炉からの燃焼ガスに水
を噴射して洗浄し、これによってSOxを低減している
。噴射する水の量が多すぎると、装置の腐食が生じるの
で、その腐食を防ぐために負荷変動にかかわらず、その
水を噴射した漫の燃焼ガスの温度が露点以上となるよう
に、噴射する水の流量を少なめとしている。
BACKGROUND ART Conventionally, in order to perform desulfurization, water is injected into the combustion gas from a combustion furnace to clean it, thereby reducing SOx. If too much water is injected, equipment will corrode, so in order to prevent this corrosion, the injected water must be adjusted so that the temperature of the combustion gas at the point where the water is injected is above the dew point, regardless of load fluctuations. The flow rate is kept low.

発明が解決すべき課題 このような先行技術では、燃焼ガスに含まれるSOx濃
度を充分に低減することが困難である。
Problems to be Solved by the Invention With such prior art, it is difficult to sufficiently reduce the concentration of SOx contained in combustion gas.

本発明の目的は、脱硫を充分に行うことができるように
した脱硫制御装置を提供することである。
An object of the present invention is to provide a desulfurization control device that can perform sufficient desulfurization.

課題を解決するための手段 本発明は、燃焼ガスに水をノズルから噴射して脱硫を行
う脱硫制御装置において、 ノズルよりも下流側の燃焼ガスに含まれる水蒸気分圧を
演算し、この水蒸気分圧に基づいて露点を演算する露点
演算手段と、 ノズルよりも下流側の排ガスの温度を検出する温度検出
器と、 温度検出器によって検出される温度が、露点演算手段に
よって演算される露点以上となるように、ノズルからの
水の流量を制御する手段とを含むことを特徴とする脱硫
制御装置である。
Means for Solving the Problems The present invention provides a desulfurization control device that performs desulfurization by injecting water into combustion gas from a nozzle. a dew point calculation means for calculating a dew point based on the pressure; a temperature detector for detecting the temperature of the exhaust gas downstream of the nozzle; This desulfurization control device is characterized in that it includes means for controlling the flow rate of water from the nozzle.

作  用 本発明に従えば、燃焼炉などからの燃焼ガスにノズルか
らの水を噴射し、この水の噴射後の燃焼ガスに含まれる
水蒸気分圧を演算し、この水蒸気分圧に基づいて露点を
求める。この露点よりも高い温度が維持されるように、
ノズルからの水の噴射流量を制御する。これによって水
が多すぎて腐食を生じることなしに、効率よく脱硫を行
うことができる。
According to the present invention, water is injected from a nozzle into combustion gas from a combustion furnace, etc., the water vapor partial pressure contained in the combustion gas after the water injection is calculated, and the dew point is determined based on this water vapor partial pressure. seek. so that the temperature is maintained above this dew point.
Controls the flow rate of water jet from the nozzle. This allows for efficient desulfurization without causing corrosion due to too much water.

実施例 第11121は、本発明の一実施例の断面図である。Example No. 11121 is a sectional view of one embodiment of the present invention.

燃焼炉1では、始動のために管路2から灯油が供給され
、また管路3から微粉炭が供給され、さらにまた管路4
から燃焼用空気が供給される。燃焼炉1の燃焼室5では
、灯油および微粉炭が燃焼し、その燃焼ガスは管路6か
らスプレクーラ7に導かれ、ノズル8から噴射される水
によって洗浄され脱硫される。このSOxが低減された
燃焼ガスは、バグフィルタ9から管路10を経て煙突1
1に導かれる。
In the combustion furnace 1, kerosene is supplied from a pipe 2 for starting, pulverized coal is supplied from a pipe 3, and further from a pipe 4.
Combustion air is supplied from In the combustion chamber 5 of the combustion furnace 1, kerosene and pulverized coal are combusted, and the combustion gas is led from a pipe 6 to a spray cooler 7, where it is washed and desulfurized by water injected from a nozzle 8. This combustion gas with reduced SOx is passed from the bag filter 9 to the chimney 10 via the pipe line 10.
I am guided by 1.

ポンプ12からの水は、管路13を経て流量制御弁14
によってその流量が制御されて、ノズル8に供給される
。この水の流量は、11m1L計15によって計測され
る。ノズル8よりも下流側における燃焼ガスの温度は、
温度検出器16によって検出される。
Water from the pump 12 passes through a pipe 13 to a flow rate control valve 14.
The flow rate is controlled by the following and supplied to the nozzle 8. The flow rate of this water is measured by an 11ml meter 15. The temperature of the combustion gas downstream of the nozzle 8 is
The temperature is detected by the temperature detector 16.

第2図は、第1図に示される実施例の電気的構成を示す
ブロック図である。露点演算手段17では、ノズル8か
ら水が噴射された後の燃焼ガスの露点を演算して求める
。演算した露点を考慮して定めた設定信号は、ライン3
1を介して、比例および積分などを行う制御回路18に
与えられる。
FIG. 2 is a block diagram showing the electrical configuration of the embodiment shown in FIG. 1. The dew point calculating means 17 calculates and obtains the dew point of the combustion gas after water is injected from the nozzle 8. The setting signal determined by considering the calculated dew point is line 3.
1 to a control circuit 18 that performs proportionality, integration, etc.

制御回路18には、温度検出器16からの出力が与えら
れる。制御回路18は、露点演算回路17によって演算
された露点と温度検出器16によって検出された温度と
の偏差を表す信号を、ライン1つに導出して、比例およ
び積分などを行う制御回路20に与える。制御回路20
には、流量計15によって測定されたノズル8の水の流
量測定値が与えられる。この制御回路20は、流量制御
弁14によって制御される水の流量、すなわち流量計1
5によって測定される水の流量が、ライン1つを介する
制御回路18からの温度偏差が零となる流量に制御する
。こうして温度検出器16によって検出される温度が水
蒸気の露点以上となるように保たれる。こうしてSOx
濃度が効率よく低減されるとともに、水が多すぎてスプ
レクーラ7およびバグフィルタ9などの腐食を生じるお
それがない。
The output from the temperature detector 16 is given to the control circuit 18 . The control circuit 18 derives a signal representing the deviation between the dew point calculated by the dew point calculation circuit 17 and the temperature detected by the temperature detector 16 to one line, and sends it to a control circuit 20 that performs proportionality, integration, etc. give. Control circuit 20
is given the measured flow rate of water in the nozzle 8 measured by the flow meter 15. This control circuit 20 controls the flow rate of water controlled by the flow control valve 14, that is, the flow meter 1.
The flow rate of water measured by 5 is controlled to such a flow rate that the temperature deviation from the control circuit 18 through one line is zero. In this way, the temperature detected by the temperature detector 16 is maintained at or above the dew point of water vapor. In this way, SOx
The concentration is efficiently reduced, and there is no risk of corrosion of the spray cooler 7, bag filter 9, etc. due to too much water.

第31121は、露点演算回路17の具体的な構成を示
すブロック図である。管路2から供給される灯油の流量
は灯油流量計22によって計測され、また管路3から供
給される微粉炭の流量は微粉炭流量計23によって計測
され、さらにまた管路4から供給される燃焼用空気の流
量は空気流量計24によって計測される。入口水蒸気流
量計算回路25は、微粉炭流量計23の付着水分と固有
水分とを求め、またその灯油および微粉炭の燃焼によっ
て生じる水の1を演算し、さらにまた空気に含まれる水
の量を演算し、こうして燃焼炉1から排出される燃焼ガ
スに含まれる水の流量を求めて加算回路26に与える。
No. 31121 is a block diagram showing a specific configuration of the dew point calculation circuit 17. The flow rate of kerosene supplied from conduit 2 is measured by a kerosene flowmeter 22, and the flow rate of pulverized coal supplied from conduit 3 is measured by a pulverized coal flowmeter 23, which is further supplied from conduit 4. The flow rate of combustion air is measured by an air flow meter 24. The inlet steam flow rate calculation circuit 25 calculates the adhering moisture and inherent moisture of the pulverized coal flow meter 23, calculates the amount of water generated by the combustion of the kerosene and pulverized coal, and further calculates the amount of water contained in the air. In this way, the flow rate of water contained in the combustion gas discharged from the combustion furnace 1 is determined and provided to the addition circuit 26.

加算回路26には、流量計15によって計測される噴霧
水の流量を表す信号が与えられる。こうして加算回路2
6は、スプレクーラ7よりも下流側の燃焼ガスに含まれ
ている水の総和、を表す信号を水蒸気分圧計算回路27
に与える。水蒸気分圧計算回路27は、燃焼ガスの水蒸
気分圧を求め、蒸気表口路28によって、第4因に示さ
れるように飽和蒸気線図11に基づき水蒸気分圧に対応
する飽和温度すなわち露点Tを求める。蒸気表口路28
からの露点を表す信号は、加算回路29に与えられる。
A signal representing the flow rate of spray water measured by the flow meter 15 is given to the addition circuit 26 . In this way, adder circuit 2
6 is a water vapor partial pressure calculation circuit 27 which outputs a signal representing the total amount of water contained in the combustion gas downstream of the spray cooler 7.
give to The water vapor partial pressure calculating circuit 27 calculates the water vapor partial pressure of the combustion gas, and calculates the water vapor partial pressure of the combustion gas through the steam front passage 28 to determine the saturated temperature, that is, the dew point T, corresponding to the water vapor partial pressure based on the saturated steam diagram 11 as shown in the fourth factor. seek. Steam front road 28
A signal representing the dew point from is given to an adder circuit 29.

加算回路29には、予め定める値αを設定する回路30
からの信号が与えられる。この予め定める値αは、ノズ
ル8からの水の噴射量が多すぎて燃焼ガスの温度が露点
未満になることを確実に防ぎ、rK食の発生を防止する
ためである。加算回路29からライン31に導出される
信号は、バグフィルタ9の出口の燃焼ガス温度の目標値
として、前述のように制御回路18に与えられる。
The addition circuit 29 includes a circuit 30 for setting a predetermined value α.
A signal is given from This predetermined value α is intended to reliably prevent the temperature of the combustion gas from falling below the dew point due to the amount of water injected from the nozzle 8 being too large, and to prevent the occurrence of rK eclipse. The signal derived from the adder circuit 29 to the line 31 is given to the control circuit 18 as the target value of the combustion gas temperature at the outlet of the bag filter 9, as described above.

第5図を9照して、燃焼ガスの脱硫効率ηは露点Tより
も予め定める値α1だけ高い温度で最大となることが本
件発明者の実験によって確認されている。したがって前
述の予め定める値α=α1とし、これによって脱硫効率
を向上することもまた、可能となる。
Referring to FIG. 5, it has been confirmed through experiments by the inventor that the desulfurization efficiency η of the combustion gas reaches its maximum at a temperature higher than the dew point T by a predetermined value α1. Therefore, it is also possible to improve the desulfurization efficiency by setting the above-mentioned predetermined value α=α1.

発明の効果 以上のように本発明によれば、SOx濃度の低減を図り
、また水の供給過多による腐食などの損傷を防いで脱硫
を行うことができるようになる。
Effects of the Invention As described above, according to the present invention, it is possible to reduce the SOx concentration and perform desulfurization while preventing damage such as corrosion due to excessive water supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は本発明の
一実施例の電気的構成を示すブロック図、第3図は露点
演算回路17の具体的な構成を示すブロック図、第4図
は蒸気表回路28の構成を示すグラフ、第5図は燃焼ガ
スの温度と脱硫効率との関係を示すグラフである。 1・・・燃焼炉、7・・・スアレターラ、8・・・ノズ
ル、12・・・ポンプ、14・・・流量制御弁、15・
・・流量計、16・・・温度検出器、17・・露点演算
回路、18゜20・・・制御回路、25・・・入口水蒸
気流量計算回路、27・・・水蒸気分圧計算回路、28
・・・蒸気表回路、30・・・設定回路 代理人  弁理士 画数 圭一部 第 図 第 図 水蒸気分圧 第 図 温度
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a block diagram showing the electrical configuration of an embodiment of the invention, and FIG. 3 is a block diagram showing the specific configuration of the dew point calculation circuit 17. , FIG. 4 is a graph showing the configuration of the steam table circuit 28, and FIG. 5 is a graph showing the relationship between combustion gas temperature and desulfurization efficiency. DESCRIPTION OF SYMBOLS 1... Combustion furnace, 7... Suaretara, 8... Nozzle, 12... Pump, 14... Flow rate control valve, 15...
...Flowmeter, 16...Temperature detector, 17...Dew point calculation circuit, 18°20...Control circuit, 25...Inlet water vapor flow rate calculation circuit, 27...Water vapor partial pressure calculation circuit, 28
...Steam table circuit, 30...Setting circuit agent Patent attorney Number of strokes Keiichi Diagram Diagram Water vapor partial pressure Diagram Temperature

Claims (1)

【特許請求の範囲】 燃焼ガスに水をノズルから噴射して脱硫を行う脱硫制御
装置において、 ノズルよりも下流側の燃焼ガスに含まれる水蒸気分圧を
演算し、この水蒸気分圧に基づいて露点を演算する露点
演算手段と、 ノズルよりも下流側の排ガスの温度を検出する温度検出
器と、 温度検出器によつて検出される温度が、露点演算手段に
よつて演算される露点以上となるように、ノズルからの
水の流量を制御する手段とを含むことを特徴とする脱硫
制御装置。
[Claims] In a desulfurization control device that desulfurizes combustion gas by injecting water from a nozzle, the water vapor partial pressure contained in the combustion gas downstream of the nozzle is calculated, and the dew point is determined based on this water vapor partial pressure. a temperature detector that detects the temperature of the exhaust gas downstream of the nozzle; and a temperature detector that detects the temperature of the exhaust gas on the downstream side of the nozzle, the temperature detected by the temperature detector being equal to or higher than the dew point calculated by the dew point calculation means. and means for controlling the flow rate of water from the nozzle.
JP63280186A 1988-11-04 1988-11-04 Desulfurization control device Expired - Fee Related JP2566638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280186A JP2566638B2 (en) 1988-11-04 1988-11-04 Desulfurization control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280186A JP2566638B2 (en) 1988-11-04 1988-11-04 Desulfurization control device

Publications (2)

Publication Number Publication Date
JPH02126920A true JPH02126920A (en) 1990-05-15
JP2566638B2 JP2566638B2 (en) 1996-12-25

Family

ID=17621495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280186A Expired - Fee Related JP2566638B2 (en) 1988-11-04 1988-11-04 Desulfurization control device

Country Status (1)

Country Link
JP (1) JP2566638B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395408A (en) * 1993-10-12 1995-03-07 Zeritis; Nikolaos Chimney smoke scrubber
EP2397213A1 (en) 2010-06-18 2011-12-21 Lab Sa Method for managing corrosion risk in smoke treatment methods
CN109000745A (en) * 2017-06-06 2018-12-14 大唐环境产业集团股份有限公司 It is a kind of for measuring the device and measurement method of wet desulfuration tower slurries spraying intensity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804234B2 (en) * 2016-08-24 2020-12-23 三菱パワー環境ソリューション株式会社 Particle remover

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178420A (en) * 1984-09-26 1986-04-22 Hitachi Ltd Corrosion monitor and control apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178420A (en) * 1984-09-26 1986-04-22 Hitachi Ltd Corrosion monitor and control apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395408A (en) * 1993-10-12 1995-03-07 Zeritis; Nikolaos Chimney smoke scrubber
EP2397213A1 (en) 2010-06-18 2011-12-21 Lab Sa Method for managing corrosion risk in smoke treatment methods
FR2961408A1 (en) * 2010-06-18 2011-12-23 Lab Sa METHOD OF MANAGING THE RISK OF CORROSION IN METHODS OF TREATING FUMES
CN109000745A (en) * 2017-06-06 2018-12-14 大唐环境产业集团股份有限公司 It is a kind of for measuring the device and measurement method of wet desulfuration tower slurries spraying intensity
CN109000745B (en) * 2017-06-06 2023-11-24 大唐环境产业集团股份有限公司 Device and method for measuring slurry spraying strength of wet desulfurization tower

Also Published As

Publication number Publication date
JP2566638B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JPH02126920A (en) Apparatus for controlling desulfurization
JPS5692326A (en) Method of and apparatus for controlling combustion of gas turbine
CN204389479U (en) The PH value detector device of on-line auto-cleaning
FR2688581B1 (en) METHOD AND DEVICE FOR REGULATING THE COMBUSTION AIR FLOW OF A FUME CAPTURING DEVICE OF A METALLURGICAL REACTOR, CORRESPONDING CAPTURING DEVICE AND METALLURGICAL REACTOR.
GB1536190A (en) Gas scrubber
JPS6223423A (en) Method for controlling wet type waste gas desulfurization apparatus
JP3705042B2 (en) Smoke treatment system
JP3705041B2 (en) Smoke treatment system
JPH01148333A (en) Method for feeding reducing agent for denitration
JPH02219905A (en) Soot blow method of waste heat boiler
JPH07119949A (en) Method for controlling and apparatus for controlling soot blower of boiler and deslagging device
JP3731471B2 (en) Smoke treatment method for high sulfur oil fired boiler
JPS63100111A (en) Recovery apparatus for blast furnace gas
JPS5458140A (en) Internal combustion engine control system
SU918470A1 (en) Apparatus for preheating oil
JPS57155306A (en) Treatment of gas generated in blast furnace at time of vacant furnace blowing period
JP3578327B2 (en) Smoke exhaust treatment method for high sulfur oil fired boiler
JP3911729B2 (en) Denitration ammonia injection amount control method and apparatus for coal fired boiler
JP2004020091A (en) Regeneration burner for connecting passage for introducing inert gas to fuel supply passage and its operation method
JPS572425A (en) Method of controlling injection of stag ammonia
JPH0194924A (en) Method for controlling nh3 injection amount into dry denitration apparatus
SU697157A1 (en) Air cleaning process regulator
JP2002250517A (en) Gas turbine combustor system and its operation method
JP2001021101A (en) Corrosion proofing method of heat recovery equipment and apparatus therefor
JPS59225217A (en) Control method for soot blower of drum boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees