JPH02126798A - Piezoelectric diaphragm and its manufacture - Google Patents

Piezoelectric diaphragm and its manufacture

Info

Publication number
JPH02126798A
JPH02126798A JP28191488A JP28191488A JPH02126798A JP H02126798 A JPH02126798 A JP H02126798A JP 28191488 A JP28191488 A JP 28191488A JP 28191488 A JP28191488 A JP 28191488A JP H02126798 A JPH02126798 A JP H02126798A
Authority
JP
Japan
Prior art keywords
support plate
groove
piezoelectric
grooves
piezoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28191488A
Other languages
Japanese (ja)
Inventor
Teruyuki Ikeda
輝幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28191488A priority Critical patent/JPH02126798A/en
Publication of JPH02126798A publication Critical patent/JPH02126798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To reduce the dispersion of resonant frequencies by providing second grooves having the same depth as a first groove at mutually different positions of the both surfaces of a supporting plate. CONSTITUTION:Electrodes 11 are formed on the both disk surfaces of a piezoelectric member 14, and bonded to a supporting plate 15. A first groove 16 having the even depth to partially bond the piezoelectric member 14 to the surface to be bonded is formed. Between the external peripheral part of the piezoelectric member 14 and the support fixing body 17 to support the external periphery of the supporting plate 15, second grooves 18, which are at mutually different positions and have the same depth as that of the groove 16, are prepared. A thermoplastic substrate 24 is used for the supporting plate 15, the substrate 24 is pinched by upper and lower molds 21 and 22 projecting at a part corresponding to the groove, heated and left for a prescribed time, then pressure is applied, and the groove is shaped on the substrate 24. That is, since the depth of the first and second grooves 16 and 18 can be controlled to a constant value by the height of a projecting pattern formed on the upper and lower molds 21 and 22 and the width of the frame 25 placed between the molds, the dispersion of the resonant frequencies can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電振動板とその製造方法に関し、特に小型・
低周波化で高い音圧レベルを得る圧電型発音体などに利
用可能な圧電振動板とその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a piezoelectric diaphragm and a method for manufacturing the same, and particularly relates to a piezoelectric diaphragm and a method for manufacturing the same.
This invention relates to a piezoelectric diaphragm that can be used in piezoelectric sounding bodies that achieve high sound pressure levels at low frequencies, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

圧電型発音体は支持板に両面電極を形成した板状の圧電
材を接着し、この電極間に交番電圧を加えることで、圧
電材の面方向への伸縮と支持板による固定の関係から生
じるたわみ振動を利用したもので、支持板の片側に圧電
材を接着したユニモルフ構造と支持板の両面に圧電材を
接着したバイモルフ構造がある。
A piezoelectric sounding body is produced by gluing a plate-shaped piezoelectric material with electrodes on both sides to a support plate, and applying an alternating voltage between the electrodes, resulting in the relationship between the expansion and contraction of the piezoelectric material in the plane direction and the fixation by the support plate. It utilizes flexural vibration, and there are two types: a unimorph structure in which a piezoelectric material is bonded to one side of the support plate, and a bimorph structure in which piezoelectric materials are bonded to both sides of the support plate.

この圧電型発音体は、小型・薄型化が可能であり、特に
重要な磁気を発生しないという特性から、情報機器のI
Dカードと一緒に携帯する可能性のあるポケットベルや
移動通信機器になくてはならないものとなってきている
This piezoelectric sounding body can be made smaller and thinner, and because it does not generate particularly important magnetism, it can be used for the I/O of information equipment.
It has become indispensable for pagers and mobile communication devices that may be carried along with the D card.

従来、この圧電型発音体の圧電振動板は、単に円板状の
圧電材に電極を形成して、これを金属製の薄い支持板に
接着するだけで得ており、これを小型・低周波化するた
めに圧電材及び支持板の厚みを50μm以下に薄くする
と同時に、この支持板の外周部を自由状態に近い支持と
して弾性接着剤で同定するものがあった。しかし、支持
板の厚みが薄くなると弾性接着剤の影響が強くなり、均
一に塗布できない弾性接着剤によって、得られる性能に
ばらつきが多くなるものであった。
Conventionally, the piezoelectric diaphragm of this piezoelectric sounding body has been obtained simply by forming electrodes on a disc-shaped piezoelectric material and gluing it to a thin metal support plate. In order to reduce the thickness of the piezoelectric material and the support plate to 50 μm or less, the outer periphery of the support plate is used as a near-free support using an elastic adhesive. However, as the thickness of the support plate becomes thinner, the influence of the elastic adhesive becomes stronger, and the elastic adhesive cannot be applied uniformly, resulting in more variations in the performance obtained.

このような問題を解決するために、特願昭62−188
194では支持板の外周固定部と圧電材の外周部との間
に両面交互で、異なる位置とした溝を持たせることで、
弾性接着剤の場合より共振周波数を低くして、小型・低
周波化を実現している。
In order to solve such problems, a patent application filed in 1888
In No. 194, by providing grooves at different positions alternately on both sides between the outer peripheral fixing part of the support plate and the outer peripheral part of the piezoelectric material,
The resonant frequency is lower than that of elastic adhesives, achieving a smaller size and lower frequency.

更に、特願昭62−188195では、低周波化にとも
なって、圧電材の厚みを薄くしたとき、圧電材の接着に
よる変位低下により生じる音圧レベルの低下を防止する
構造として、圧電材と支持板の接着を部分接着としてお
り、これら前者の発明と後者の発明を一体化することに
よって小型で低周波特性の良好な圧電型発音体が得られ
るようになった。
Furthermore, Japanese Patent Application No. 62-188195 proposes a structure that prevents a decrease in the sound pressure level caused by a decrease in displacement due to adhesion of the piezoelectric material when the thickness of the piezoelectric material becomes thinner due to lower frequencies. The plates are partially bonded, and by integrating the former invention and the latter invention, it has become possible to obtain a piezoelectric sounding body that is small and has good low frequency characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の圧電振動板とその製造方法では、周辺支
持部に両面交互で寮なる位置とした溝を持たせるか、接
着面には部分接着とするための溝を持たせることにより
、小型で低周波特性の良好なものが得られた。しかし、
ポケットベル等の応用では、小さなスペースに多くの機
能を含めたいため、電池や発音体のスペースはより小さ
くなる。
In the above-mentioned conventional piezoelectric diaphragm and its manufacturing method, the peripheral support part has grooves arranged alternately on both sides as dormitory positions, or the adhesive surface has grooves for partial adhesion. Good low frequency characteristics were obtained. but,
In applications such as pagers, it is desired to include many functions in a small space, so the space for batteries and sounding elements becomes smaller.

このようなことから、電池1個で13IIIIII口の
小さな形状でも実用上十分な音圧レベルとなり、なおか
つ2〜3 k)Izの低い周波数の音を得る発音体が望
まれることになるが、これらの要求をばらつきが無く得
るためには、周辺支持部の両面交互で異なる位置とした
溝及び部分接着とするための溝の深さは均一でなければ
ならない。
For this reason, there is a need for a sounding body that can produce a sound pressure level that is sufficient for practical use even with a small shape with a 13IIIIII mouth using a single battery, and that can also produce sounds with a low frequency of 2 to 3k)Iz. In order to meet the requirements without variation, the depth of the grooves alternately placed at different positions on both sides of the peripheral support and the grooves for partial adhesion must be uniform.

上述した特願昭62−188194は、薄い金属板にパ
ターニングし、これをエツチング加工することで支持板
とし、この支持板に圧電材を接着することで得るもので
ある。このような構造とした振動板は、溝の深さによっ
て共振周波数が変化する。
The above-mentioned Japanese Patent Application No. 62-188194 discloses that a thin metal plate is patterned and etched to form a support plate, and a piezoelectric material is bonded to this support plate. In a diaphragm having such a structure, the resonant frequency changes depending on the depth of the grooves.

例えば、第4図は厚みを50μmのステンレス鋼板を支
持板材料としたときの溝の深さと共振周波数の関係を示
したものである。
For example, FIG. 4 shows the relationship between the groove depth and the resonant frequency when a stainless steel plate with a thickness of 50 μm is used as the support plate material.

第4図に示すように、曲線Aが溝のない場合で、曲線B
〜Dが溝の深さを支持板の厚みに対して215.315
.415としたときの支持直径と共振周波数の関係であ
る。第4図から理解できるように、溝の深さが変化する
と共振周波数が大きく変化することが分かる。したがっ
て、溝の深さを正確に制御することが振動板としてのば
らつきを小さくすることになる。しかし、この溝はエツ
チングで形成されるので、エツチング液の濃度及び温度
やエツチング時間などの条件を十分に管理しなければな
らない、更に、このエツチング時間も数10μmの支持
板厚に対して制御するのであるから、時間も短く、正確
に溝の深さを設定するのは困難となる。この結果、共振
周波数が変化するため、共振点の最大振幅を利用するよ
うな場合、例えば、他励振タイプの圧電ブザーでは共振
周波数のずれから音圧レベルが変化してしまい、最悪の
場合には規格を満たさないことになるという欠点がある
As shown in Figure 4, curve A is the case without grooves, and curve B
~D is the depth of the groove relative to the thickness of the support plate 215.315
.. This is the relationship between the support diameter and the resonant frequency when the diameter is 415. As can be understood from FIG. 4, it can be seen that as the depth of the groove changes, the resonant frequency changes greatly. Therefore, accurately controlling the depth of the grooves will reduce variations in the diaphragm. However, since this groove is formed by etching, conditions such as the concentration and temperature of the etching solution and the etching time must be carefully controlled.Furthermore, the etching time must also be controlled for a support plate thickness of several tens of micrometers. Therefore, it takes a short time and it is difficult to set the groove depth accurately. As a result, the resonant frequency changes, so when using the maximum amplitude at the resonant point, for example, in a separately excited type piezoelectric buzzer, the sound pressure level changes due to the shift in the resonant frequency, and in the worst case, The disadvantage is that it does not meet the standards.

又、エツチングで形成する支持板は、エツチングのし易
さからステンレス鋼や黄銅などの金属板が用いられるが
、この材料自体が導電性であり、圧電材が絶縁性の接着
剤を用いて接着されていたとしても接着剤の塗布厚みは
薄く、圧電材の電極と絶縁状態を保つことは困難である
。このことから、圧電材に加える電界が支持板自体にも
加わっているため、流体移送のマイクロポンプや圧電リ
レーのアクチエエータとしての利用では充分な絶縁処理
をしなければならないという欠点がある。
In addition, metal plates such as stainless steel or brass are used for the support plate formed by etching because of the ease of etching, but this material itself is conductive, and the piezoelectric material is bonded using an insulating adhesive. Even if the adhesive is applied, the thickness of the adhesive is thin and it is difficult to maintain insulation from the piezoelectric electrode. For this reason, since the electric field applied to the piezoelectric material is also applied to the support plate itself, there is a drawback that sufficient insulation treatment is required when used as an actuator for a micropump for fluid transfer or a piezoelectric relay.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の圧電振動板は、板状の圧電材と、該圧電材が少
くとも2点で分割接着されるための均一な深さを有する
第1の溝と前記圧電材の外周部の外側に両面交互で異な
る位置のそれぞれの面に形成される少くとも1本の連続
した前記第1の溝と深さの等しい第2の溝とを備える熱
可塑性基材の支持板と、該支持板の外周部の前記第2の
溝の外側を支持する支持固定体とを含んで構成される。
The piezoelectric diaphragm of the present invention includes a plate-shaped piezoelectric material, a first groove having a uniform depth for dividing and adhering the piezoelectric material at at least two points, and a first groove on the outside of the outer periphery of the piezoelectric material. A support plate made of a thermoplastic base material and comprising at least one continuous second groove having the same depth as the first groove formed on each surface at different positions alternately on both sides; and a support and fixing body that supports the outside of the second groove on the outer periphery.

さらに本発明の圧電振動板の製造方法は、板状の圧電材
を少くとも2点で分割接着する支持板を熱可塑性基板で
形成し、前記支持板の上面から前記支持板を押圧する上
部金型の前記支持板に接する面に前記分割接着のための
第1の溝を形成する第1の突起と前記圧電材の外周の外
側の前記支持板上の第2の溝を形成する第2の突起とを
形成し、前記支持板の下面から前記支持板を支持する下
部金型の前記支持板に接する面に前記第2の突起と交互
に異なる位置とした第3の突起を形成し、前記上部金型
と前記下部金型とで前記支持板を挟んでプレス成型する
ように構成される。
Furthermore, in the method for manufacturing a piezoelectric diaphragm of the present invention, a support plate to which a plate-shaped piezoelectric material is divided and bonded at at least two points is formed of a thermoplastic substrate, and an upper metal plate is provided to press the support plate from the upper surface of the support plate. a first protrusion forming a first groove for the split adhesion on a surface of the mold in contact with the support plate; and a second protrusion forming a second groove on the support plate outside the outer periphery of the piezoelectric material. and third protrusions are formed at alternately different positions from the second protrusions on a surface of a lower mold that supports the support plate from the lower surface of the support plate and are in contact with the support plate; The support plate is sandwiched between the upper mold and the lower mold to perform press molding.

〔作用〕[Effect]

支持板として熱可塑性基板を用い、この基板を溝位置に
相当する部分で凸状となる金型で上下から挟み込み、所
定の時間80〜200℃の温度に放置した後、圧力を加
える。この後、金型を常温に冷却することで金型内に挟
まれた基板に溝が形成できる。したがって、この溝に相
当する凸状のパターンが上側の金型と下側の金型で交互
に位置をずらして形成してあれば、本製造方法で得られ
る基板には両面交互で異なる位置となる溝を持つ支持板
が得られる。
A thermoplastic substrate is used as a support plate, and this substrate is sandwiched from above and below between molds having a convex shape at the portion corresponding to the groove position, and after being left at a temperature of 80 to 200° C. for a predetermined time, pressure is applied. Thereafter, by cooling the mold to room temperature, grooves can be formed in the substrate sandwiched within the mold. Therefore, if the convex patterns corresponding to these grooves are formed in the upper and lower molds at alternate positions, the substrate obtained by this manufacturing method will have different positions alternately on both sides. A support plate with grooves is obtained.

このようにして得られた支持板には、金型内に基板厚み
と形成したい溝の深さの関係から決まる支持枠スペーサ
を置くことで、形成される溝の深さは自由に制御できる
。又、溝の位置も溝のピッチも金型のパターンにより、
自由に決定でき、支持部の両面交互の溝の他に接着部の
部分接着のための溝も同時に得られる。
The depth of the groove to be formed can be freely controlled by placing a support frame spacer in the support plate thus obtained, which is determined by the relationship between the thickness of the substrate and the depth of the groove to be formed. Also, the position of the grooves and the pitch of the grooves may vary depending on the mold pattern.
This can be determined freely, and in addition to the grooves alternating on both sides of the support part, grooves for partial gluing of the adhesive part can also be obtained at the same time.

以上のようにして得られた支持板に、電極形成を行った
圧電材を接着することで本発明の圧電振動板が得られる
。このとき、支持板の両面交互で異なる位置となる溝の
深さは正確に形成され、従来のエツチングによる方法よ
りばらつきが極めて少くなると同時に、支持板の溝はた
わみ振動を容易にし、この変位も大きくなる。したがっ
て、この支持板の周辺部を固定すれば、共振周波数が低
く、かつばらつきの少い高音圧レベルの発音体となる。
A piezoelectric diaphragm of the present invention can be obtained by bonding a piezoelectric material on which electrodes have been formed to the support plate obtained as described above. At this time, the depth of the grooves at different positions alternately on both sides of the support plate is accurately formed, and the variation is much smaller than in the conventional etching method.At the same time, the grooves on the support plate facilitate flexural vibration, and this displacement growing. Therefore, by fixing the peripheral portion of this support plate, a sounding body with a low resonance frequency and a high sound pressure level with little variation can be obtained.

〔実施例〕 次に、本発明について図面を参照して説明する。〔Example〕 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の圧電振動板の一部切欠
き斜視図である。
FIG. 1 is a partially cutaway perspective view of a piezoelectric diaphragm according to a first embodiment of the present invention.

第1図に示すように、第1の実施例は圧電型発音体に用
いる圧電振動板であり、圧電材14は円板状の両面に電
極11が形成され、接着面側の電極を引出すためのスル
ーホール12と引出し端子13が形成される。圧電材1
4は支持板15に接着される。
As shown in FIG. 1, the first embodiment is a piezoelectric diaphragm used for a piezoelectric sounding body, and the piezoelectric material 14 has electrodes 11 formed on both sides of a disk shape, and the electrodes on the adhesive side are drawn out. A through hole 12 and a lead terminal 13 are formed. Piezoelectric material 1
4 is adhered to the support plate 15.

支持板15には、圧電材14を貼付ける面に部分接着と
するための均一な深さの第1の溝16があり、又、圧電
材14の外周部と支持板15の外周を支持する支持固定
体17の間に両面交互で異なる位置とした溝16と等し
い深さの第2の講18がある。
The support plate 15 has a first groove 16 of uniform depth for partial adhesion on the surface to which the piezoelectric material 14 is pasted, and also supports the outer periphery of the piezoelectric material 14 and the outer periphery of the support plate 15. Between the support fixtures 17 there are second grooves 18 of the same depth as the grooves 16 alternately located on both sides and at different positions.

次に、本発明の圧電振動板の製造方法について説明する
Next, a method for manufacturing a piezoelectric diaphragm according to the present invention will be explained.

第2図は本発明の第2の実施例の圧電振動板の製造方法
に用いる支持板溝形成治具の断面図である。
FIG. 2 is a cross-sectional view of a supporting plate groove forming jig used in a method of manufacturing a piezoelectric diaphragm according to a second embodiment of the present invention.

第2図に示すように、溝を形成するための上部金型21
と下部金型22には、溝形成位置に相当する部分に凸状
のパターンの上述した第1の実施例の第1の溝16を形
成する第1の突起23.と第2の溝18を形成する第2
の突起23bと第3の突起23.がエツチングにより上
部金型21及び下部金型22の表面に形成されている。
As shown in FIG. 2, an upper mold 21 for forming grooves.
and the lower mold 22 has a first projection 23. which forms the first groove 16 of the first embodiment described above with a convex pattern in a portion corresponding to the groove forming position. and a second groove 18 forming the second groove 18.
protrusion 23b and third protrusion 23. are formed on the surfaces of the upper mold 21 and the lower mold 22 by etching.

上部金型21と下部金型22の間に第1図の支持板15
となる熱可塑性基板24を置き、所望の溝の深さを得る
スペーサとしての枠25が位置合わせピン26と穴27
の間に置かれる。
The support plate 15 shown in FIG. 1 is placed between the upper mold 21 and the lower mold 22.
A thermoplastic substrate 24 is placed, and a frame 25 serving as a spacer to obtain the desired groove depth is connected to the positioning pins 26 and holes 27.
placed between.

熱可塑性基板24としては、ボリアリレートやガラス繊
維強化ポリエステル樹脂などがあり、100〜200°
Cの温度で熱変形させることができる。
The thermoplastic substrate 24 is made of polyarylate, glass fiber reinforced polyester resin, etc.
It can be thermally deformed at a temperature of C.

溝の形成には、上部金型21と下部金型22間に熱可塑
性基板24を挟み込んで行うが、金型の温度が上昇し、
充分に熱可塑性基板24が加熱されるまでは枠25の他
にダミーのスペーサを上部金型21と下部金型22の間
の外周部に配置して上部金型21を浮がせ、その後、こ
のダミーのスペーサを除去した後、圧力を加えて成型す
る0次に、この金型をプレス機より取出した後、金型を
冷却することによって溝形成された上述した第1図に示
す支持板15が得られる。
The grooves are formed by sandwiching the thermoplastic substrate 24 between the upper mold 21 and the lower mold 22, but the temperature of the mold increases,
Until the thermoplastic substrate 24 is sufficiently heated, a dummy spacer is placed in addition to the frame 25 on the outer periphery between the upper mold 21 and the lower mold 22 to lift the upper mold 21, and then, After removing this dummy spacer, molding is performed by applying pressure.Next, after taking out this mold from the press machine, the support plate shown in FIG. 1 mentioned above is formed with grooves by cooling the mold. 15 is obtained.

このような方法によって得られる支持板は、溝の形成深
さが枠25の厚みと、挟み込む熱可塑性基板24の厚み
から決定され、同一条件であれば溝の深さは常に一定に
できる。このため、従来のエツチングによる溝形成のよ
うに処理時間の微妙な制御やエツチング液の濃度管理等
の不安定要素を除去でき、振動板としてのばらつきを極
めて小さくできる。
In the support plate obtained by such a method, the depth of the grooves is determined by the thickness of the frame 25 and the thickness of the sandwiched thermoplastic substrate 24, and the depth of the grooves can always be constant under the same conditions. Therefore, unstable factors such as delicate control of processing time and concentration control of etching solution, which are required in conventional etching to form grooves, can be eliminated, and variations in the diaphragm can be extremely reduced.

第2図に示す上部金型21及び下部金型22は厚さ3m
1mのステンレス鋼板にエツチング加工によって溝形成
のための突起を形成し、このエツチングの深さを0.1
mmとする。又、上部金型21と下部金型22の間に置
くスペーサとしての枠25の厚さを0.15mmとする
The upper mold 21 and lower mold 22 shown in Fig. 2 have a thickness of 3 m.
Protrusions for forming grooves are formed on a 1 m stainless steel plate by etching, and the depth of this etching is set to 0.1.
Let it be mm. Further, the thickness of the frame 25 as a spacer placed between the upper mold 21 and the lower mold 22 is 0.15 mm.

更に、熱可塑性基板24としては、厚さ0.1mmのボ
リアリレートを用い、これを上述したように上部金型2
1と下部金型22間に挟み込み、80〜200℃程度に
加熱できるプレス機にセットする。
Furthermore, as the thermoplastic substrate 24, a polyarylate with a thickness of 0.1 mm is used, and as described above, this is used as the upper mold 2.
1 and the lower mold 22, and set it in a press capable of heating to about 80 to 200°C.

一方、溝形成を行った支持板に接着する圧電材は、マグ
ネシウム・ニオブ酸鉛Pb(Mgl/3・Nb2/3)
03を主成分とする電歪材料の粉末を有機バインダーと
ともに溶媒中に分散し、スラリー状とする。これをドク
ターブレードを用いたスリップキャスティング法によっ
て、厚さ40〜100μm程度の均一な厚みの圧電材グ
リーンシートとする0次に、この圧電材グリーンシート
を所定の大きさに打抜き、接着面側の電極を表側に引上
げるためのスルーホール接続用の穴をパンチ及びダイに
よって形成する0次に、この穴あけを行った圧電材グリ
ーンシートの両面にスクリーン印刷機を用いて電極ペー
ストを印刷するが、このとき接着面となる側は、全面ベ
タ電極とし、この反対面である表側では、スルーホール
部分と接続された端子パターンを一部にもうけた電極パ
ターンとする。更に、この電極パターンが印刷された圧
電材グリーンシートをプレス金型にセットし、100℃
前後の温度で加熱し、250kg/cm”程度の圧力を
加えて密度を高めな圧電材グリーンシートとする0次に
、プレスした圧電材グリーンシートを所定の寸法に切断
した後、セラミックグリーンシート中に存在する有機物
を脱バインダー工程において酸化雰囲気中で徐々に加熱
し、分解及び消失させる0通常これらの有機物は500
〜600゛Cまでには完全に分解及び酸化するが、急激
に温度を分解温度まで上げると圧電材が破損するので1
時間当り25℃あるいは、これよりもゆっくりとした昇
温スピードで温度を上げ、500〜600℃に充分長い
時間保持することで有機物を完全に消失させる。この後
、900〜1200℃の温度で焼成することで、上述し
た第2の実施例で述べた支持板に貼付ける圧電材平板が
得ちれる。
On the other hand, the piezoelectric material bonded to the support plate with grooves formed is made of magnesium lead niobate Pb (Mgl/3/Nb2/3).
Powder of an electrostrictive material containing 03 as a main component is dispersed in a solvent together with an organic binder to form a slurry. This is made into a piezoelectric green sheet with a uniform thickness of about 40 to 100 μm by slip casting using a doctor blade. Next, this piezoelectric green sheet is punched out to a predetermined size, and the adhesive side is A through-hole connection hole for pulling the electrode to the front side is formed using a punch and die.Next, an electrode paste is printed on both sides of the piezoelectric material green sheet with the holes made using a screen printer. At this time, the side that will be the adhesive surface is a solid electrode over the entire surface, and the opposite surface, which is the front side, is an electrode pattern that partially has a terminal pattern connected to the through-hole portion. Furthermore, the piezoelectric green sheet with this electrode pattern printed on it was set in a press mold and heated at 100°C.
The piezoelectric green sheet is heated at a temperature of around 200 lbs. and then a pressure of about 250 kg/cm is applied to create a piezoelectric green sheet with high density.Next, the pressed piezoelectric green sheet is cut into predetermined dimensions, and then placed in a ceramic green sheet. In the debinding process, the organic substances present in the organic substances are gradually heated in an oxidizing atmosphere to decompose and disappear.
It will completely decompose and oxidize by ~600°C, but if the temperature is suddenly raised to the decomposition temperature, the piezoelectric material will be damaged.
The temperature is raised at a rate of 25° C. per hour or at a slower heating rate and maintained at 500 to 600° C. for a sufficiently long time to completely eliminate organic substances. Thereafter, by firing at a temperature of 900 to 1200[deg.] C., a piezoelectric material flat plate to be attached to the support plate described in the second embodiment described above is obtained.

以上の説明で明らかなように、支持板の厚みも溝の深さ
も常に一定の状態で作り出すことができ、共振周波数の
ばらつきが少いため、他励振タイプの圧電ブザーでも常
に一定の音圧レベルが得られる。
As is clear from the above explanation, the thickness of the support plate and the depth of the groove can always be created in a constant state, and there is little variation in the resonance frequency, so even a separately excited type piezoelectric buzzer can always maintain a constant sound pressure level. can get.

上述した第1の実施例では、1つの圧電型発音体につい
て示しているが、支持板としての形状は、エツチングで
形成する金型凸状パターンにより自由に構成できるので
、1回のプレス成形で多数の支持板を得ることができる
。又、振動板としての形状も円形に限定されることはな
く、方形や楕円など任意の形の支持板が可能で、圧電材
自体を電極印刷プレス上がりで支持板の形状に合わせて
切断すれば良い。
In the first embodiment described above, one piezoelectric type sounding body is shown, but the shape of the support plate can be freely configured by the convex pattern of the mold formed by etching, so it can be formed by one press molding. A large number of support plates can be obtained. In addition, the shape of the diaphragm is not limited to a circle, and any support plate shape such as a square or an ellipse is possible, and if the piezoelectric material itself is cut to match the shape of the support plate after the electrode printing press. good.

なお、第1の実施例の圧電振動板は、発音体だけでなく
流体移送のマイクロポンプや圧電リレー等、絶縁を必要
とするようなデバイスでのアクチュエータや振動板とし
て利用することができる。
The piezoelectric diaphragm of the first embodiment can be used not only as a sounding body but also as an actuator or a diaphragm in devices that require insulation, such as micro pumps for fluid transfer and piezoelectric relays.

第3図は本発明の第3の実施例の圧電振動板の斜視図で
ある。
FIG. 3 is a perspective view of a piezoelectric diaphragm according to a third embodiment of the present invention.

第3図に示すように第3の実施例は片持ち支持のユニモ
ルフ構造のアクチュエータで圧電ポンプの振動板として
の構成例である。この場合にも支持固定体31で固定さ
れる支持板32には、熱可塑性基材を用いて上述した第
2の実施例と同様に溝形成位置に相当する凸状のパター
ンを有する金型を用いてプレス成形して周辺支持部の溝
33と部分接着とするための溝34を持たせ、この支持
板32の上に両面電極を形成し、スルーホール接続によ
って表側に端子として引出した引出し電極35を持つ圧
電材36を接着している。
As shown in FIG. 3, the third embodiment is an actuator having a cantilevered unimorph structure and is used as a diaphragm for a piezoelectric pump. In this case as well, the support plate 32 fixed by the support fixing body 31 is provided with a mold having a convex pattern corresponding to the groove forming position as in the second embodiment described above using a thermoplastic base material. A double-sided electrode is formed on the support plate 32, and an extraction electrode is drawn out as a terminal on the front side by through-hole connection. A piezoelectric material 36 having a diameter of 35 is bonded.

このように構成したアクチュエータとしての圧電振動板
でも周辺支持部の満33と部分接着とするための満34
の溝の深さは金型で成形するときのスペーサとしての枠
の厚みによって制御でき、一定条件で成型するのであれ
ば、溝の深さは常に一定であり、圧電振動板としての共
振周波数やアクチュエータとしての変位量の大きさにば
らつきが少いものが得られる。
Even with the piezoelectric diaphragm as an actuator configured in this way, the peripheral support part has 33 mm and the 34 mm has been partially bonded.
The depth of the groove can be controlled by the thickness of the frame used as a spacer when molding with a mold, and if molded under certain conditions, the depth of the groove is always constant, and the resonant frequency and An actuator with little variation in the amount of displacement can be obtained.

以上の説明では、本発明の圧電振動板を圧電型発音体や
アクチュエータとしての利用について示してきたが、圧
電材に電界を加えるのではなく、外力によって生じる電
荷を利用するセンサとしての利用ができ、圧力センサや
マイクロホンとして用いる場合にも外部入力に対する電
荷の発生量のばらつきの少いものが得られる。
In the above explanation, the piezoelectric diaphragm of the present invention has been shown to be used as a piezoelectric sounding body or an actuator, but it can also be used as a sensor that uses electric charges generated by external force instead of applying an electric field to a piezoelectric material. Also, when used as a pressure sensor or a microphone, it is possible to obtain a device with little variation in the amount of charge generated in response to external input.

一方、これら金型で成形する熱可塑性の樹脂としては、
ボリアリレートやガラス繊維強化ポリエステル樹脂があ
るが、この他にも80〜200 ’Cの範囲で軟化する
素材であれば、これら材料は限定されることはない。
On the other hand, the thermoplastic resin molded with these molds is
Polyarylate and glass fiber reinforced polyester resins are available, but other materials are not limited as long as they soften within the range of 80 to 200'C.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、圧電振動板は、圧電材を接
着する支持板に形成する周辺支持部の溝と部分接着のた
めの溝の深さは、上下の金型に形成する凸状パターンの
高さと金型間に置くスペーサーとしての枠の厚さによっ
て一定に制御できるので、圧電振動板としての共振周波
数にばらつきが少くなる。この結果、他励振の圧電ブザ
ーとしての構成においても音圧レベルは一定なものが得
られる効果がある。又、支持板自体が熱可塑性の樹脂で
あることから得られる支持板は絶縁物であり、このため
圧電材に加える電界は支持板によって絶縁されるため流
体移送のマイクロポンプや圧電リレーなどとしての絶縁
の必要なデバイスでの振動板としての利用が可能になる
効果がある。
As described above, the present invention provides a piezoelectric diaphragm in which the depth of the groove of the peripheral support part formed in the support plate to which the piezoelectric material is bonded and the groove for partial bonding are the same as the convex shape formed in the upper and lower molds. Since it can be controlled to a constant level by controlling the height of the pattern and the thickness of the frame as a spacer placed between the molds, there is less variation in the resonance frequency of the piezoelectric diaphragm. As a result, even in the configuration as a separately excited piezoelectric buzzer, a constant sound pressure level can be obtained. In addition, since the support plate itself is made of thermoplastic resin, the support plate obtained is an insulator, and therefore the electric field applied to the piezoelectric material is insulated by the support plate, making it suitable for use as micro pumps for fluid transfer, piezoelectric relays, etc. This has the effect of making it possible to use it as a diaphragm in devices that require insulation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の圧電振動板の一部切欠
き斜視図、第2図は本発明の第2の実施例の圧電振動板
の製造方法に用いる支持板溝形成治具の断面図、第3図
は本発明の第3の実施例の圧電振動板の斜視図、第4図
は支持板の溝の深さを変化させたときの共振周波数と支
持直径との相関を示す特性図である。 11・・・電極、12・・・スルーホール、13・・・
引出し端子、14・・・圧電材、15・・・支持板、1
6・・・部分接着のための溝、17・・・支持固定体、
18・・・溝、21・・・上部金型、22・・・下部金
型、23.。 23b 、23゜・・・突起、24・・・熱可塑性基板
、25・・・枠、26・・・位置合わせビン、27・・
・穴、31・・・支持固定体、32・・・支持板、33
・・・周辺支持部の溝、34・・・部分接着とするため
の溝、35・・・引出し電極、36・・・圧電材。
FIG. 1 is a partially cutaway perspective view of a piezoelectric diaphragm according to a first embodiment of the present invention, and FIG. 2 is a support plate groove forming treatment used in a method of manufacturing a piezoelectric diaphragm according to a second embodiment of the present invention. FIG. 3 is a perspective view of a piezoelectric diaphragm according to the third embodiment of the present invention, and FIG. 4 shows the correlation between resonance frequency and support diameter when the depth of the groove in the support plate is changed. FIG. 11... Electrode, 12... Through hole, 13...
Output terminal, 14... Piezoelectric material, 15... Support plate, 1
6...Groove for partial adhesion, 17...Supporting and fixing body,
18...Groove, 21...Upper mold, 22...Lower mold, 23. . 23b, 23°...protrusion, 24...thermoplastic substrate, 25...frame, 26...alignment bin, 27...
- Hole, 31... Supporting fixing body, 32... Supporting plate, 33
...Groove of peripheral support portion, 34...Groove for partial adhesion, 35...Leader electrode, 36...Piezoelectric material.

Claims (2)

【特許請求の範囲】[Claims] (1)板状の圧電材と、該圧電材が少くとも2点で分割
接着されるための均一な深さを有する第1の溝と前記圧
電材の外周部の外側に両面交互で異なる位置のそれぞれ
の面に形成される少くとも1本の連続した前記第1の溝
と深さの等しい第2の溝とを備える熱可塑性基材の支持
板と、該支持板の外周部の前記第2の溝の外側を支持す
る支持固定体とを含むことを特徴とする圧電振動板。
(1) A plate-shaped piezoelectric material, a first groove having a uniform depth for dividing and adhering the piezoelectric material at at least two points, and alternately different positions on both sides of the piezoelectric material outside the outer periphery. a thermoplastic substrate support plate comprising at least one continuous second groove having the same depth as the first groove formed on each surface of the support plate; 1. A piezoelectric diaphragm comprising: a support fixing body supporting the outside of the groove of No. 2;
(2)板状の圧電材を少くとも2点で分割接着する支持
板を熱可塑性基板で形成し、前記支持板の上面から前記
支持板を押圧する上部金型の前記支持板に接する面に前
記分割接着のための第1の溝を形成する第1の突起と前
記圧電材の外周の外側の前記支持板上の第2の溝を形成
する第2の突起とを形成し、前記支持板の下面から前記
支持板を支持する下部金型の前記支持板に接する面に前
記第2の突起と交互に異なる位置とした第3の突起を形
成し、前記上部金型と前記下部金型とで前記支持板を挟
んでプレス成型することを特徴とする圧電振動板の製造
方法。
(2) A support plate to which a plate-shaped piezoelectric material is divided and bonded at at least two points is formed of a thermoplastic substrate, and a surface of an upper mold that presses the support plate from the upper surface of the support plate is in contact with the support plate. a first protrusion forming a first groove for the split adhesion and a second protrusion forming a second groove on the support plate outside the outer periphery of the piezoelectric material; Third protrusions are formed at alternately different positions from the second protrusions on the surface of the lower mold that supports the support plate from the lower surface of the lower mold, and the third protrusions are arranged at different positions alternately from the second protrusions. A method for manufacturing a piezoelectric diaphragm, characterized in that press molding is performed by sandwiching the support plate.
JP28191488A 1988-11-07 1988-11-07 Piezoelectric diaphragm and its manufacture Pending JPH02126798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28191488A JPH02126798A (en) 1988-11-07 1988-11-07 Piezoelectric diaphragm and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28191488A JPH02126798A (en) 1988-11-07 1988-11-07 Piezoelectric diaphragm and its manufacture

Publications (1)

Publication Number Publication Date
JPH02126798A true JPH02126798A (en) 1990-05-15

Family

ID=17645713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28191488A Pending JPH02126798A (en) 1988-11-07 1988-11-07 Piezoelectric diaphragm and its manufacture

Country Status (1)

Country Link
JP (1) JPH02126798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053924A1 (en) * 1997-05-27 1998-12-03 Raytheon Company Flexural plate sound transducer having low resonant frequency
WO2020121596A1 (en) * 2018-12-10 2020-06-18 株式会社村田製作所 Piezoelectric transducer
US11832522B2 (en) 2018-12-10 2023-11-28 Murata Manufacturing Co., Ltd. Piezoelectric transducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053924A1 (en) * 1997-05-27 1998-12-03 Raytheon Company Flexural plate sound transducer having low resonant frequency
WO2020121596A1 (en) * 2018-12-10 2020-06-18 株式会社村田製作所 Piezoelectric transducer
JPWO2020121596A1 (en) * 2018-12-10 2021-11-04 株式会社村田製作所 Piezoelectric transducer
US11832522B2 (en) 2018-12-10 2023-11-28 Murata Manufacturing Co., Ltd. Piezoelectric transducer

Similar Documents

Publication Publication Date Title
US6969942B2 (en) Piezoelectric electroacoustic transducer
US6570299B2 (en) Piezoelectric electroacoustic transducer and manufacturing method of the same
US6472798B2 (en) Piezoelectric acoustic components
JP3134844B2 (en) Piezo acoustic components
CA1108745A (en) Piezoelectric bimorph or monomorph bender structure
EP0220959A2 (en) Ceramic electronic device and method of manufacturing the same
CN103339380A (en) Fluid-control device, and method for adjusting fluid-control device
KR20070109980A (en) Piezoelectric sounding body
JP3714128B2 (en) Piezoelectric electroacoustic transducer
EP2739068A1 (en) Acoustic generator, acoustic generation device, and electronic apparatus
JP2000310990A (en) Piezoelectric sound component
KR100370638B1 (en) Membraneless piezoelectric/electrostrictive micro actuator and fabricating method thereof
JPH02126798A (en) Piezoelectric diaphragm and its manufacture
JP2006509490A (en) Electroactive actuator
CN108462935A (en) Double-deck piezoelectric ceramic electro-acoustic element and preparation method thereof
JP2016184787A (en) Piezoelectric actuator, acoustic generator, acoustic generation device, and electronic equipment
JP2019146108A (en) Acoustic generator and electronic apparatus
JP2018125605A (en) Piezoelectric actuator, piezoelectric vibration device, and electronic apparatus
JP2913659B2 (en) Piezoelectric diaphragm
JPS62132500A (en) Piezoelectric electroacoustic transducing device
JPS63252100A (en) Piezoelectric sounding body
JPS63123299A (en) Manufacture for electroacoustic transducing device
JPS63136898A (en) Piezoelectric electroacoustic transducing device
JPH0223800A (en) Piezo-electric diaphragm
JPH058920B2 (en)