JPH0212546Y2 - - Google Patents

Info

Publication number
JPH0212546Y2
JPH0212546Y2 JP1982186738U JP18673882U JPH0212546Y2 JP H0212546 Y2 JPH0212546 Y2 JP H0212546Y2 JP 1982186738 U JP1982186738 U JP 1982186738U JP 18673882 U JP18673882 U JP 18673882U JP H0212546 Y2 JPH0212546 Y2 JP H0212546Y2
Authority
JP
Japan
Prior art keywords
water
engine
heat
exhaust manifold
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982186738U
Other languages
Japanese (ja)
Other versions
JPS5991572U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982186738U priority Critical patent/JPS5991572U/en
Publication of JPS5991572U publication Critical patent/JPS5991572U/en
Application granted granted Critical
Publication of JPH0212546Y2 publication Critical patent/JPH0212546Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【考案の詳細な説明】 本考案は、デイーゼルエンジン、ガスエンジン
等内燃機関を駆動源としてフロンコンプレツサ等
冷媒コンプレツサを運転して、冷温水を得るとこ
ろのエンジン駆動ヒートポンプ装置に関するもの
である。
[Detailed Description of the Invention] The present invention relates to an engine-driven heat pump device that uses an internal combustion engine such as a diesel engine or a gas engine as a driving source to operate a refrigerant compressor such as a freon compressor to obtain cold and hot water.

ガスエンジン等内燃機関を駆動源とするヒート
ポンプは、電気式ヒートポンプに比較して、ガス
エンジンの排熱を容易に回収して給湯、暖房に用
いることができるために暖房給湯効率が高い、
暖房の立上りが早い、ガスエンジンの回転数
制御の採用によつて部分負荷効率にすぐれ、期間
成績係数が高い等の長所を有している。このた
め、西独をはじめとする欧米各国でエンジンを駆
動源とするヒートポンプ装置が、この2,3年間
に急速に普及し、わが国においてもその開発が各
方面で積極的に行われるようになつてきた。
Heat pumps powered by internal combustion engines such as gas engines have higher heating and hot water supply efficiency than electric heat pumps because they can easily recover the exhaust heat from the gas engine and use it for hot water supply and space heating.
It has advantages such as quick start-up of heating, excellent partial load efficiency due to the adoption of gas engine rotation speed control, and high periodic performance coefficient. For this reason, heat pump devices that use engines as their driving source have rapidly spread over the past few years in West Germany and other Western countries, and in Japan, their development is also actively being carried out in various fields. Ta.

通常、エンジン駆動ヒートポンプ装置のエンジ
ン及びコンプレツサ部分は機械室内もしくはパツ
ケージ内に納められる。従来のエンジン駆動ヒー
トポンプ装置では、自然放熱型の空冷マニホール
ドを使用していたため、しばしば機械室やパツケ
ージ内の温度が上昇し電気ガバナや点火プラグ7
に悪影響を及ぼし、故障に至らせるケースが生じ
ている。特に夏期の室外温度の高い酷暑日にあつ
てはパツケージ内の温度が局所的にエンジン電装
品の耐熱温度を上回る場合もあつた。これは空冷
マニホールドクーラがエンジンの排熱によつて赤
熱し、この輻射熱によつてエンジン電装品が過熱
されることによる。従つて従来は、パツケージ内
や機械室にフアンを設けて強制換気を行う方策や
パツケージ内にヒートパイプを設け、空冷マニホ
ールドで発生した熱をパツケージ外に放散する手
段がとられていた。しかしこれらの方策はコスト
が高い上、外気温が極端に高い時などは必ずしも
満足な結果を得ることができなかつた。本考案は
このような点を一挙に解消せんとするものであ
る。すなわち従来の空冷マニホールドにかえて水
冷排気マニホールドを採用し、機械室もしくはパ
ツケージ内の温度上昇を極力防いだものである。
又、この水冷排気マニホールドの冷却により回収
した排熱は、これを有効に利用するため、冷却水
熱及び排気熱を回収するエンジン冷却水回路に於
いて吸収するようにした。なお、水冷排気マニホ
ールドを冷却する場合、高負荷運転時には問題な
いが、冷房又は暖房負荷が小さい場合に、逆に水
冷排気マニホールドを過度に冷却してしまい、こ
の結果水冷排気マニホールド内に凝縮水が発生
し、この凝縮水がバルブやシリンダー内に逆流し
てしまうという問題がある。
Typically, the engine and compressor portions of an engine-driven heat pump device are housed in a machine room or package. Conventional engine-driven heat pump systems use air-cooled manifolds with natural heat dissipation, which often causes temperatures in the machine room and package to rise, causing the electric governor and spark plugs to rise.
There have been cases where this has an adverse effect on the equipment, leading to breakdowns. Particularly on extremely hot summer days when the outdoor temperature is high, the temperature inside the package sometimes exceeds the heat resistance temperature of the engine's electrical components locally. This is because the air-cooled manifold cooler becomes red hot due to exhaust heat from the engine, and the engine electrical components are overheated by this radiant heat. Therefore, in the past, measures were taken to provide forced ventilation by installing fans inside the package cage or machine room, or by installing heat pipes inside the package to dissipate the heat generated by the air cooling manifold outside the package. However, these measures are expensive and do not always give satisfactory results when the outside temperature is extremely high. The present invention aims to solve these problems all at once. In other words, a water-cooled exhaust manifold is used instead of the conventional air-cooled manifold to prevent temperature increases in the machine room or package as much as possible.
Furthermore, in order to effectively utilize the exhaust heat recovered by cooling the water-cooled exhaust manifold, it is absorbed in the engine cooling water circuit that recovers cooling water heat and exhaust heat. Note that when cooling a water-cooled exhaust manifold, there is no problem during high-load operation, but when the cooling or heating load is small, the water-cooled exhaust manifold may be cooled excessively, resulting in condensed water inside the water-cooled exhaust manifold. The problem is that this condensed water flows back into the valves and cylinders.

本考案は以上の如き点に鑑みて提案されるもの
で、水冷排気マニホールドをエンジン冷却水回路
内を流れる水により冷却するようにしたこと、前
記水冷排気マニホールドをバイパスするバイパス
回路を設け、負荷が小さいときにはこのバイパス
回路を開き、反対に負荷が大きいときにはバイパ
ス回路を閉じて水冷排気マニホールドの冷却を行
うと共にこの水冷排気マニホールドからの排熱を
回収するようにしたことが特長である。
The present invention has been proposed in view of the above points, and includes cooling the water-cooled exhaust manifold with water flowing in the engine cooling water circuit, and providing a bypass circuit that bypasses the water-cooled exhaust manifold to reduce the load. The bypass circuit is opened when the load is small, and conversely when the load is large, the bypass circuit is closed to cool the water-cooled exhaust manifold and recover exhaust heat from the water-cooled exhaust manifold.

以下実施例図に基づいて本考案を詳記すると、
1はガスエンジン、2はガスエンジン1により駆
動されるコンプレツサ、3は燃料供給路、4は空
気供給路5に取り付けられたエアークリーナ、6
は冷媒回路にして、R−12,R−22等のフロ
ンガスが通過する。7は冷媒回路6に取り付けた
四方電磁弁にして、冷、暖房の切り替え用であ
る。8は冷媒−空気熱交換器、9は膨張弁、10
は冷媒−水熱交換器にして、冷媒の蒸発潜熱又は
凝縮潜熱を利用して冷水又は温水を作るものであ
る。11はエンジン冷却水熱交換器、12は第
2,3図に示すように周囲に通水路12′を形成
したエンジン1の水冷排気マニホールド、13は
エンジン1の排気ガス熱交換器にして、前記エン
ジン冷却水熱交換器11、水冷排気マニホールド
12内の通水路12′及び排気ガス熱交換器13
はエンジン冷却水回路16に対してシリーズに配
置(接続)されている。
The present invention will be described in detail below based on the example diagrams.
1 is a gas engine, 2 is a compressor driven by the gas engine 1, 3 is a fuel supply path, 4 is an air cleaner attached to the air supply path 5, 6
is a refrigerant circuit, through which fluorocarbon gases such as R-12 and R-22 pass. 7 is a four-way solenoid valve attached to the refrigerant circuit 6, which is used to switch between cooling and heating. 8 is a refrigerant-air heat exchanger, 9 is an expansion valve, 10
is a refrigerant-water heat exchanger that uses the latent heat of vaporization or latent heat of condensation of the refrigerant to produce cold water or hot water. 11 is an engine cooling water heat exchanger; 12 is a water-cooled exhaust manifold of the engine 1 having a water passage 12' formed around it as shown in FIGS. 2 and 3; 13 is an exhaust gas heat exchanger of the engine 1; Engine cooling water heat exchanger 11, water passage 12' in water-cooled exhaust manifold 12, and exhaust gas heat exchanger 13
are arranged (connected) in series to the engine cooling water circuit 16.

14は放熱器、15は冷却水ポンプ、17は消
音器、18は排気ガス出口、19はエアハンドリ
ングユニツト、20,21はヘツダーである。
14 is a radiator, 15 is a cooling water pump, 17 is a muffler, 18 is an exhaust gas outlet, 19 is an air handling unit, and 20 and 21 are headers.

22はエンジン冷却水回路16に於いて、水冷
排気マニホールド12をバイパスするようにして
設けたバイパス回路、23はこのバイパス回路2
2に取り付けた電気信号により切り替る電磁弁、
24は水冷排気マニホールド12とバイパス回路
22の分岐部間に挿入したバルブ、25は水冷排
気マニホールド12とバイパス回路22の合流部
間に挿入したバルブである。図中符号26〜31
はバルブ、32は冷温水回路である。
22 is a bypass circuit provided in the engine cooling water circuit 16 to bypass the water-cooled exhaust manifold 12; 23 is this bypass circuit 2;
A solenoid valve that is switched by an electric signal attached to 2,
24 is a valve inserted between the branch part of the water-cooled exhaust manifold 12 and the bypass circuit 22, and 25 is a valve inserted between the merging part of the water-cooled exhaust manifold 12 and the bypass circuit 22. Numbers 26 to 31 in the figure
is a valve, and 32 is a cold/hot water circuit.

33はエンジン1の排気温度をセンサー34に
より検出し、この排気温度が設定された温度以上
のときに電磁弁23に対して閉の信号を送り、設
定温度以下のときに開の信号を送る制御器であ
る。なお、この制御器33は手動式により電磁弁
23の切り替えを行うようにしてもよい。
33 is a control that detects the exhaust gas temperature of the engine 1 with a sensor 34, sends a close signal to the electromagnetic valve 23 when the exhaust gas temperature is above a set temperature, and sends an open signal when it is below the set temperature. It is a vessel. Note that this controller 33 may be configured to manually switch the solenoid valve 23.

次に本考案システムについてその作用を説明す
ると、暖房運転の場合には、コンプレツサ2で圧
縮され、高温、高圧となつたフロンガスは四方電
磁弁7を経て冷媒−水熱交換器10に至り、冷媒
は凝縮し、その潜熱を利用することによつて温水
が作られる。冷媒−水熱交換器10を出た温水は
ヘツダー21に於て、冷却水ポンプ15、冷却水
熱交換器11、水冷排気マニホールド12、排気
ガス熱交換器13、エンジン冷却水回路16を順
次通過した温水と合流してエアハンドリングユニ
ツト19に至り、暖房効果を生ずる。エアハンド
リングユニツト19からの戻りの温水はヘツダー
20において、一方は冷媒−水熱交換器に他方は
冷却水ポンプ15に導かれる。暖房負荷が大きい
時は、冷却水ポンプ15を出た戻りの温水は水冷
排気マニホールド12のバイパス回路22を通過
することなく、冷却水熱交換器11、水冷排気マ
ニホールド12、排気ガス熱交換器13を順次通
過する。水冷排気マニホールド12は、各シリン
ダより排出される排気ガスを1カ所に合流させ
て、排気ガスを排気ガス熱交換器13、消音器1
7に誘導させるものである。
Next, to explain the operation of the system of the present invention, in the case of heating operation, the compressor 2 compresses the high-temperature, high-pressure fluorocarbon gas that passes through the four-way solenoid valve 7 and reaches the refrigerant-water heat exchanger 10, where the refrigerant is condensed and hot water is produced by using its latent heat. The hot water that has exited the refrigerant-water heat exchanger 10 passes through the header 21 , the cooling water pump 15 , the cooling water heat exchanger 11 , the water-cooled exhaust manifold 12 , the exhaust gas heat exchanger 13 , and the engine cooling water circuit 16 in order. The heated water flows to the air handling unit 19, producing a heating effect. The hot water returned from the air handling unit 19 is guided in a header 20 to a refrigerant-water heat exchanger on one side and to a cooling water pump 15 on the other side. When the heating load is large, the hot water returning from the cooling water pump 15 does not pass through the bypass circuit 22 of the water-cooled exhaust manifold 12 and instead passes through the cooling water heat exchanger 11, the water-cooled exhaust manifold 12, and the exhaust gas heat exchanger 13. pass through sequentially. The water-cooled exhaust manifold 12 merges exhaust gas discharged from each cylinder into one place, and transfers the exhaust gas to an exhaust gas heat exchanger 13 and a muffler 1.
7.

以上のように本考案によると、暖房負荷が大き
いときには、エンジン冷却水回路16内の水を水
冷排気マニホールド12内の通水路12′内に通
し、水冷排気マニホールド12を冷却し、大気放
熱を防止する。この結果、パケージ内の過熱を防
止して電子ガバナ、点火コイル等の電装部品に悪
影響を与えることなく運転が可能となつた。又、
排熱の有効回収も可能となつた。
As described above, according to the present invention, when the heating load is large, water in the engine cooling water circuit 16 is passed through the water passage 12' in the water-cooled exhaust manifold 12 to cool the water-cooled exhaust manifold 12 and prevent heat radiation to the atmosphere. do. As a result, overheating inside the package is prevented, allowing operation without adversely affecting electrical components such as the electronic governor and ignition coil. or,
It has also become possible to effectively recover waste heat.

一方負荷の軽い暖房運転時に、冷却水ポンプ1
5を出た戻りの温水を冷却水熱交換器11、水冷
排気マニホールド12、排気ガス熱交換器13を
順次通過させた場合、エンジンの排気ガスは100
℃以下まで冷却され、水冷排気マニホールド12
内に凝縮水が生成し、それがエンジン1のシリン
ダーに逆流し、プラグを湿らせ起動不良を招来す
るといつたトラブルを招く。またシリンダに逆流
した凝縮水がピストンリングを伝わり、エンジン
1のクランクケース内に至り、潤滑油に混入し白
濁化現象を生ずることもある。このような状態で
運転を続けた場合には潤滑不良を起こし、最悪の
場合は、焼付けに至ることも考えられる。従つて
軽負荷時には、水冷排気マニホールド12を過冷
しないことがエンジン1の保護のために是非とも
必要である。そこで軽負荷暖房時には、電磁弁2
3を開け、水冷排気マニホールドバイパス回路2
2に温水を導くようにした。この場合、温水全量
を水冷排気マニホールドバイパス回路22に導く
と、該マニホールドが過熱され、エンジン等が格
納されているパツケージ内部の温度上昇を招くお
それもあることから、バルブ24,25を操作し
て、水冷排気マニホールド12にも同時に温水を
流すようにする。エンジン駆動ヒートポンプシス
テムの負荷制御はまずエンジン1の回転数制御を
行い、ある負荷以下においてコンプレツサ2の気
筒制御等容量制御を行うのが一般的である。本実
施例では負荷率が100〜46%までは、スロツトル
開度が全開に近い状態で1750rpm〜800rpmまで
回転数制御を行い、負荷率46%以下ではエンジン
1の回転数は800rpmの一定としてコンプレツサ
2の気筒制御を行つている。電磁弁23の開閉
(切り替え)は本実施例ではセンサーによつて検
出された排気温度に応じて行なわれるようにし
た。すなわち、排気温度が設定温度150℃以上の
時には、電磁弁23は閉となり、逆に150℃以下
の場合には開となるようにした。この開閉は勿
論、エンジン1の回転数又はコンプレツサ2の気
筒数に応じて行えるようにしても支障ない。以上
説明した如くに運転した結果、負荷の大小に応じ
て温水が水冷排気マニホールド12に流れたり、
バイパス回路22を流れたりし、いかなる不具合
もないスムーズな運転を行うことができるように
なつた。
On the other hand, during heating operation with a light load, the cooling water pump 1
5, the engine exhaust gas will be 100
℃ or below, the water-cooled exhaust manifold 12
Condensed water is generated inside the engine, which flows back into the cylinder of engine 1, moistens the plug, and causes troubles such as startup failure. Further, the condensed water flowing back into the cylinder may travel through the piston ring, reach the inside of the crankcase of the engine 1, and mix with the lubricating oil, causing a cloudy phenomenon. If operation continues under such conditions, lubrication failure may occur, and in the worst case, seizing may occur. Therefore, it is absolutely necessary to protect the engine 1 that the water-cooled exhaust manifold 12 is not overcooled during light loads. Therefore, during light load heating, solenoid valve 2
3, open the water-cooled exhaust manifold bypass circuit 2.
The hot water was introduced to 2. In this case, if the entire amount of hot water is introduced into the water-cooled exhaust manifold bypass circuit 22, the manifold will be overheated and there is a risk that the temperature inside the package in which the engine etc. is housed will rise, so the valves 24 and 25 should be operated. , hot water is made to flow simultaneously to the water-cooled exhaust manifold 12. In load control of an engine-driven heat pump system, it is common to first control the rotational speed of the engine 1, and then perform capacity control such as cylinder control of the compressor 2 below a certain load. In this example, when the load factor is 100 to 46%, the rotation speed is controlled from 1750 rpm to 800 rpm with the throttle opening close to fully open, and when the load factor is 46% or less, the engine 1 rotation speed is kept constant at 800 rpm. 2 cylinders are controlled. In this embodiment, the solenoid valve 23 is opened/closed (switched) in accordance with the exhaust gas temperature detected by a sensor. That is, when the exhaust gas temperature is above the set temperature of 150°C, the solenoid valve 23 is closed, and when it is below 150°C, it is opened. Of course, this opening and closing may be done in accordance with the rotational speed of the engine 1 or the number of cylinders of the compressor 2 without any problem. As a result of operating as explained above, hot water flows into the water-cooled exhaust manifold 12 depending on the magnitude of the load.
The air flows through the bypass circuit 22, allowing smooth operation without any problems.

次に冷房運転について説明する。コンプレツサ
2を出て高温、高圧となつたフロンガスは、四方
電磁弁7を経て冷媒−空気熱交換器8に至り、冷
媒は凝縮する。凝縮した冷媒は膨張弁9を経て、
冷媒−水熱交換器10に至り、冷媒は、蒸発し、
冷温水回路32を流れる水を冷却する。冷房運転
時、バルブ26及び27は閉めた状態とする。エ
ンジン1からの冷却水損失熱及び排気ガス損失熱
は、エンジン1の冷却水熱交換器11、水冷排気
マニホールド12、排気ガス熱交換器13におい
て温水として回収し、バルブ29,30,31を
開けて放熱器14に於て放熱させる。電磁弁23
の開閉は暖房運転の場合と全く同じ考え方で、エ
ンジン1の排気ガス温度に応じて行う。
Next, cooling operation will be explained. The high-temperature, high-pressure freon gas that has left the compressor 2 passes through the four-way solenoid valve 7 and reaches the refrigerant-air heat exchanger 8, where the refrigerant is condensed. The condensed refrigerant passes through the expansion valve 9,
The refrigerant reaches the water heat exchanger 10, where the refrigerant evaporates,
The water flowing through the cold/hot water circuit 32 is cooled. During cooling operation, valves 26 and 27 are kept closed. Cooling water loss heat and exhaust gas loss heat from the engine 1 are recovered as hot water in the engine 1's cooling water heat exchanger 11, water-cooled exhaust manifold 12, and exhaust gas heat exchanger 13, and valves 29, 30, and 31 are opened. The heat is radiated in the heat radiator 14. Solenoid valve 23
The opening and closing of is performed according to the exhaust gas temperature of the engine 1, using the same concept as in heating operation.

本考案は以上のように従来に於いては自然放熱
を前提としたエンジンの排気マニホールドに於い
て、この排気マニホールドを負荷が大きく、排熱
が高い場合には水冷し、負荷が小さく、排熱が低
い場合には水冷を止めるようにしたので、排気マ
ニホールドからの放熱によつてヒートポンプシス
テムを内蔵したパツケージ内に高温に晒されるこ
とはないと共に排気マニホールドの冷却過多によ
り排気マニホールド内に凝縮水が発生し、これが
エンジンのシリンダー内に逆流したりしてトラブ
ルの原因となることがない効果がある。
As mentioned above, in the conventional engine exhaust manifold that assumes natural heat dissipation, the present invention cools the exhaust manifold with water when the load is large and the exhaust heat is high, and when the load is small and the exhaust heat is high. Since the water cooling is stopped when the temperature is low, the heat dissipated from the exhaust manifold will not expose the package housing the heat pump system to high temperatures, and the exhaust manifold will not be overcooled, causing condensed water to build up inside the exhaust manifold. This has the effect of preventing this from flowing back into the engine cylinder and causing trouble.

次に、本考案は水冷排気マニホールド12をバ
イパスするバイパス回路22を設け、このバイパ
ス回路22内に電磁弁23を取り付け、エンジン
1の排気ガス温度に応じて制御器33が電磁弁2
3に開又は閉信号を送るので、水冷排気マニホー
ルド12の水冷又は水冷解除は確実に行なわれる
効果がある。
Next, the present invention provides a bypass circuit 22 that bypasses the water-cooled exhaust manifold 12, and a solenoid valve 23 is installed in this bypass circuit 22.
Since the open or close signal is sent to the water-cooled exhaust manifold 12, water-cooling or water-cooling release of the water-cooled exhaust manifold 12 is reliably performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案を実施したヒートポンプ装置の
フロー図、第2図は水冷排気マニホールドの正面
図、第3図はA−A′線断面図である。 1……エンジン、2……コンプレツサ、3……
供給路、4……エアクリーナ、5……空気供給
路、6……冷媒回路、7……四方電磁弁、8……
冷媒−空気熱交換器、9……膨張弁、10……冷
媒−水熱交換器、11……エンジン冷却水熱交換
器、12……水冷排気マニホールド、13……排
気ガス熱交換器、14……放熱器、15……冷却
水ポンプ、16……エンジン冷却水回路、17…
…消音器、18……排気ガス出口、19……エア
ハンドリングユニツト、20……ヘツダー、21
……ヘツダー、22……水冷排気マニホールドバ
イパス回路、23……電磁弁、24……バルブ、
25……バルブ、26……バルブ、27……バル
ブ、28……バルブ、29……バルブ、30……
バルブ、31……バルブ、32……冷温水回路、
33……制御器、34……センサー。
FIG. 1 is a flow diagram of a heat pump device embodying the present invention, FIG. 2 is a front view of a water-cooled exhaust manifold, and FIG. 3 is a sectional view taken along line A-A'. 1...Engine, 2...Compressor, 3...
Supply path, 4...Air cleaner, 5...Air supply path, 6...Refrigerant circuit, 7...Four-way solenoid valve, 8...
Refrigerant-air heat exchanger, 9... Expansion valve, 10... Refrigerant-water heat exchanger, 11... Engine cooling water heat exchanger, 12... Water-cooled exhaust manifold, 13... Exhaust gas heat exchanger, 14 ...Radiator, 15...Cooling water pump, 16...Engine cooling water circuit, 17...
...Muffler, 18...Exhaust gas outlet, 19...Air handling unit, 20...Header, 21
... Header, 22 ... Water-cooled exhaust manifold bypass circuit, 23 ... Solenoid valve, 24 ... Valve,
25... Valve, 26... Valve, 27... Valve, 28... Valve, 29... Valve, 30...
Valve, 31...Valve, 32...Cold/hot water circuit,
33...Controller, 34...Sensor.

Claims (1)

【実用新案登録請求の範囲】 (1) エンジンによりコンプレツサを駆動すると共
にエンジンの冷却水熱及び排気熱を回収するよ
うに構成したヒートポンプ装置に於いて、エン
ジンの水冷排気マニホールドの周囲に通水路を
形成し、この通水路を前記冷却水熱及び排気熱
を回収するエンジン冷却水回路に接続すると共
に前記水路(水冷排気マニホールド)をバイパ
スするバイパス回路をエンジン冷却水回路に設
け、このバイパス回路内に電気信号により制御
される電磁弁を取り付けると共にある定められ
た排気温度に応じて前記電磁弁に対して切替信
号を送る制御器を設けて成るエンジン駆動ヒー
トポンプ装置。 (2) 制御器が手動切り替え方式から成る実用新案
登録請求の範囲第1項記載のエンジン駆動ヒー
トポンプ装置。
[Scope of Claim for Utility Model Registration] (1) In a heat pump device configured to drive a compressor by an engine and recover cooling water heat and exhaust heat from the engine, a water passage is provided around the water-cooled exhaust manifold of the engine. The engine cooling water circuit is provided with a bypass circuit that connects this water passage to an engine cooling water circuit that recovers the cooling water heat and exhaust heat and also bypasses the water passage (water-cooled exhaust manifold). An engine-driven heat pump device comprising a solenoid valve that is controlled by an electric signal and a controller that sends a switching signal to the solenoid valve in accordance with a predetermined exhaust gas temperature. (2) The engine-driven heat pump device according to claim 1, wherein the controller is of a manual switching type.
JP1982186738U 1982-12-10 1982-12-10 Engine-driven heat pump device Granted JPS5991572U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982186738U JPS5991572U (en) 1982-12-10 1982-12-10 Engine-driven heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982186738U JPS5991572U (en) 1982-12-10 1982-12-10 Engine-driven heat pump device

Publications (2)

Publication Number Publication Date
JPS5991572U JPS5991572U (en) 1984-06-21
JPH0212546Y2 true JPH0212546Y2 (en) 1990-04-09

Family

ID=30403276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982186738U Granted JPS5991572U (en) 1982-12-10 1982-12-10 Engine-driven heat pump device

Country Status (1)

Country Link
JP (1) JPS5991572U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221477A (en) * 1987-03-11 1988-09-14 Fujitsu Ltd File converting system
JP2571723Y2 (en) * 1987-04-15 1998-05-18 日産ディーゼル工業株式会社 Exhaust heat exchange control device of heat supply power generation system
JPS63287526A (en) * 1987-05-19 1988-11-24 Shiogama Gas Kk Supply gas dehumidifier

Also Published As

Publication number Publication date
JPS5991572U (en) 1984-06-21

Similar Documents

Publication Publication Date Title
US5669338A (en) Dual circuit cooling systems
RU2454554C1 (en) System for forced aspiration ice
US4317439A (en) Cooling system
CN101397929B (en) Cooling system with isolated cooling circuits
RU2327884C2 (en) Supercharhing air cooling circulation circuit arrangement and method of operation of circuit of such arrangement
CN105626222B (en) Cooling system for a vehicle, in particular for a commercial vehicle
US8490392B2 (en) Arrangement for a supercharged combustion engine concerning coolers for inlet air to and exhaust gases from the engine
RU2449136C1 (en) Device for internal combustion engine with supercharge
US20060277906A1 (en) Vehicle cooling system
US5029449A (en) Heat pump booster compressor arrangement
JPS5853172B2 (en) Heat exchange equipment for charging air of internal combustion engines
US8037872B2 (en) Engine system having cooled and heated inlet air
JP2011513640A (en) Device for supercharged internal combustion engine
EP0799979A4 (en) Engine cooler and construction machines
WO2004085807A1 (en) Cooling arrangement and a method for cooling a retarder
WO2012132825A1 (en) Intake cooling device of stationary internal combustion engine
CN108583211A (en) Single cooling water tank new-energy automobile heat management system
JP4325827B2 (en) Fluid circuit device
GB2057564A (en) Pressure-charged engine systems
JPH0212546Y2 (en)
JP2003278608A (en) Egr device
JP2609649B2 (en) Engine cooling device with exhaust heat recovery device
WO2019138582A1 (en) Cooling system and cooling system control method
JP5304573B2 (en) Engine warm-up promotion system
CN220336970U (en) Intake air thermal management system, supercharged engine and vehicle