JPH02123757A - Resin sealed semiconductor device characterized by high heat-resistance - Google Patents

Resin sealed semiconductor device characterized by high heat-resistance

Info

Publication number
JPH02123757A
JPH02123757A JP27797088A JP27797088A JPH02123757A JP H02123757 A JPH02123757 A JP H02123757A JP 27797088 A JP27797088 A JP 27797088A JP 27797088 A JP27797088 A JP 27797088A JP H02123757 A JPH02123757 A JP H02123757A
Authority
JP
Japan
Prior art keywords
semiconductor device
resin
disconnection
thermosetting resin
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27797088A
Other languages
Japanese (ja)
Inventor
Hiroki Koujima
幸島 博起
Masami Yamamori
山森 昌美
Takashi Urano
浦野 孝志
Sakae Goka
五▲とう▼ 栄
Hiroshi Suzuki
宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27797088A priority Critical patent/JPH02123757A/en
Publication of JPH02123757A publication Critical patent/JPH02123757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent the occurrence of deterioration and disconnection at a connecting part of an Al pad and an Au wire on an Si element by constituting a semiconductor device with a thermosetting resin layer comprising a specified material. CONSTITUTION:A semiconductor device is composed of a thermosetting resin layer whose weight reducing rate in heating when 200 deg.C is kept for 1,000 hours is 0.5% or less and whose size reducing rate is 0.05% or less. As the thermosetting resin, epoxy resin, polyester resin, polyimide resin, polyamide resin and the like are listed. In this constitution, deterioration and disconnection at the connecting part of an Al pad and an Au wire on an Si element are prevented under the high temperature state of 200 deg.C for a long time of 1,000 hours.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性に優れた熱硬化性樹脂封止型半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermosetting resin-encapsulated semiconductor device with excellent heat resistance.

〔従来の技術〕[Conventional technology]

樹脂封止型半導体装置の耐熱性試験は、民生用では12
5°c、i、ooo時間(h)、産業用では150”C
,1,0OOhが一般的に行われて来た。これらの試験
は通常使用状態で、例えば周囲温度55°Cで連続動作
での寿命を予測するためのものであり、150”C,1
,0OOhに耐えれば通常使用で5年以上の寿命をもつ
と一般的に評価され、実際にもこのような関係が成り立
っていた。
The heat resistance test for resin-sealed semiconductor devices is 12 times for consumer use.
5°C, i, ooo time (h), 150”C for industrial use
, 1,0OOh has been commonly practiced. These tests are for predicting life under normal use conditions, e.g. continuous operation at an ambient temperature of 55°C, and at 150"C, 1
, 0OOh, it is generally estimated that it has a lifespan of 5 years or more under normal use, and this relationship holds true in reality.

最近樹脂封止型半導体装置の品質が向上し量産効果によ
り、コストが低減するのと相俟って用途が飛躍的に拡大
した。この用途拡大の一環として従来高信軌性確保の点
からセラミック封止型半導体装置しか使用の対象にされ
ていなかった情報通信の分野にも樹脂封止型半導体装置
が採用される気運となって来た。セラミック封止型半導
体装置は55°C動作で20年以上の寿命があることが
実証され、これを予測する加速試験、175°C120
00hにも充分耐えると評価されている。
Recently, the quality of resin-sealed semiconductor devices has improved and the mass production effect has reduced costs, resulting in a dramatic expansion of applications. As part of this expansion of applications, resin-encapsulated semiconductor devices are now being adopted in the information and communications field, where conventionally only ceramic-encapsulated semiconductor devices have been used to ensure high reliability. It's here. Ceramic-encapsulated semiconductor devices have been proven to have a lifespan of more than 20 years when operated at 55°C, and accelerated tests at 175°C and 120°C have been conducted to predict this.
It is evaluated to be able to withstand even 00 hours.

しかし、樹脂封止型半導体装置では、上述のように従来
125°Cや150°C,1,0OOhには耐えて来た
が175°C,2,0OOhの耐熱性試験に十分耐える
ことが困難とわかり、この向上が必要となった。175
°C12,0OOhおよびこれをさらに短時間にするた
めに200°C1,000hの加速試験を行うと、樹脂
封止型半導体装置においてSi素子上のへ〇バッドとA
u線の接合部から比較的容易に侵食され、断線すること
が問題点である。
However, as mentioned above, resin-encapsulated semiconductor devices have traditionally been able to withstand temperatures of 125°C, 150°C, and 1.0OOh, but it is difficult to withstand heat resistance tests of 175°C and 2.0OOh. I realized that this improvement was necessary. 175
When an accelerated test is performed at 12,000h at °C and 1,000h at 200°C to further shorten the test, it is found that the
The problem is that the joint of the U-wire is relatively easily eroded and disconnected.

従来の試験条件125〜150”C1,000hでは、
このようなAl−Au接合部の劣化断線は全て生じなか
った。したがって175°c12゜000hおよび 2
00°C,1,0OOhでのAR−Au接合部の劣化断
線の発生防止を全て新しい課題として取組むことが必要
となった。
Under conventional test conditions 125-150"C1,000h,
No such deterioration or disconnection of the Al-Au joint occurred. Therefore 175°c12°000h and 2
It became necessary to tackle the prevention of deterioration and disconnection of the AR-Au joint at 00°C and 1.0OOh as a new issue.

C発明が解決しようとする課題〕 本発明は樹脂封止型半導体装置におけるAl−Au接合
部が従来の構成品では175°C12,000hおよび
200°C1,0OOhの加速試験時に劣化断線が生じ
易いという問題を解決することを目的とする。
Problems to be Solved by the Invention] The present invention solves the problem that the Al-Au joint in a resin-sealed semiconductor device is susceptible to deterioration and disconnection during accelerated tests at 175°C for 12,000 hours and 200°C for 1,000 hours in conventional components. The purpose is to solve the problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、樹脂封止型半導体装置において200°
C1i、ooohの裔温長時間耐熱試験を行ったとき、
Si素子上のへ〇パッドとAu線の接合部の劣化断線発
生を防止するために、構成封止材料の材質の面から詳細
に検討した。その結果、特定な材質の熱硬化性樹脂層で
半導体装置を構成することにより前記問題点を解決し得
ることを見出し本発明を完成するに至った。
The present inventors have discovered that the angle of 20° in a resin-sealed semiconductor device is
When C1i, oooh's descendant temperature long-term heat resistance test was conducted,
In order to prevent the occurrence of deterioration and disconnection at the joint between the F-pad on the Si element and the Au wire, we conducted a detailed study from the viewpoint of the material of the constituent sealing material. As a result, the inventors discovered that the above-mentioned problems could be solved by constructing a semiconductor device using a thermosetting resin layer made of a specific material, and completed the present invention.

すなわち、本発明は200°Cで1.000h保持した
後の加熱重量減少率が0.5%以下、でかつ寸法減少率
が0.05%以下の熱硬化性樹脂層で半導体装置を構成
することを特徴とするものであり、Al−Auの接合部
が200°C1I、0OOhでも安定で劣化断線するこ
とのない耐熱性に優れた半導体装置を提供するものであ
る。
That is, the present invention constitutes a semiconductor device with a thermosetting resin layer having a heating weight reduction rate of 0.5% or less and a dimensional reduction rate of 0.05% or less after being held at 200°C for 1.000 hours. This feature provides a semiconductor device with excellent heat resistance, in which the Al-Au joint is stable even at 200°C1I, 0OOh and does not deteriorate or break.

加熱重量減少率が0.5%を超えるもの、あるいは寸法
減少率が0.05%を超えるものは目的とする耐熱性を
満足することができない。
If the heating weight reduction rate exceeds 0.5% or the dimensional reduction rate exceeds 0.05%, the desired heat resistance cannot be satisfied.

この加熱重量減少率および寸法変化率は後述の実施例に
おいて記載されている方法により測定した。
The heating weight loss rate and dimensional change rate were measured by the method described in Examples below.

本発明において、用いられる熱硬化性樹脂は、エポキシ
樹脂系、ポリエステル樹脂系、ポリイミド樹脂系、ポリ
アミドイミド樹脂系などが挙げられる。
In the present invention, examples of the thermosetting resin used include epoxy resins, polyester resins, polyimide resins, and polyamideimide resins.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

各種封止材料8種類を用いて、表1の成形条件に従いD
IP16piNを各30個ずつ成形した。
Using 8 types of various sealing materials, D according to the molding conditions in Table 1.
Thirty pieces of each IP16piN were molded.

用いた素子は5μm(7)A 1.配線パターンのある
7%4M  のテストチップである。金線は25μmφ
(日中貴金属製SRタイプ)を用い、ボンディングはサ
ーモンニック方式のワイヤーボンダー(日本アビオニク
ス製)で行った。各テスト素子はボンディングワイヤー
8本を有しており、リードビンからの導通試験により不
良判定を行い、8本のうち1本でも導通不良を起こせば
すべて不良としてカウントした。
The element used was 5μm(7)A 1. This is a 7% 4M test chip with a wiring pattern. The gold wire is 25μmφ
(SR type manufactured by Nichi-no-Kizoku), and bonding was performed with a salmonic wire bonder (manufactured by Nippon Avionics). Each test element had eight bonding wires, and a failure was determined by a continuity test from a lead bin, and if even one of the eight bonding wires had a continuity failure, all of them were counted as failures.

表 重量減少率および寸法減少率は、表1の条件で成形した
試験片127’ x 12.7″X6.1L世を用いn
=5でそれぞれ初期値からの変化を重量減少率は精密天
秤で、寸法減少率は長さ方向の127 mmの変化をノ
ギスで測定した。試験結果は各サンプルの平均値で示し
ている。
The surface weight reduction rate and dimensional reduction rate were measured using a 127' x 12.7'' x 6.1L test piece molded under the conditions in Table 1.
= 5, the weight reduction rate was measured using a precision balance, and the dimensional reduction rate was measured using a vernier caliper as a change of 127 mm in the length direction. Test results are shown as average values for each sample.

f$WJした各サンプル ”C )の恒温槽に1,OOOh放置した。第1図は各
サンプルの200°C、1,OOOh後の重量減少率と
金線断線不良率の関係を、第2図は各サンプルの200
°c,1,OOOh後の寸法減少率と金線断線不良率の
関係を示したものである。重量減少率からみると0.5
%以下、寸法減少率からみると0.05%以下であれば
断線不良が発生していないことがわかる。これらの相関
を断線不良率との関係で示したのが第3図である。重量
減少率0゜5%以下、寸法減少率0.05以下であれば
、200°C11,0OOh後の断線不良が全く起きて
いないことがわかる。
Each sample "C) subjected to f$WJ was left in a constant temperature bath for 1,000 hours. Figure 1 shows the relationship between the weight loss rate and gold wire breakage defect rate after 1,000 hours at 200°C for each sample. The figure shows 200 of each sample.
The figure shows the relationship between the dimensional reduction rate after °C, 1, OOOh and the gold wire breakage defect rate. 0.5 in terms of weight reduction rate
% or less, and from the dimensional reduction rate of 0.05% or less, it can be seen that no disconnection defects have occurred. FIG. 3 shows these correlations in relation to the disconnection defect rate. If the weight reduction rate is 0.5% or less and the dimensional reduction rate is 0.05 or less, it can be seen that no disconnection failure occurred after 200°C 11,000h.

〔発明の効果] 本発明により樹脂封止型半導体装置の200″C1i、
ooohの高温長時間試験において、Si素子上のA1
バッドとAu線の接合部の劣化断線を防止できる。これ
により樹脂封止型半導体装置の通常使用状態の動作寿命
が従来5年以上と云われていたのを20年以上と飛躍的
に延すことができる。
[Effect of the invention] According to the present invention, a resin-sealed semiconductor device of 200″C1i,
In the high temperature long-term test of oooh, A1 on the Si element
Deterioration and disconnection of the bond between the pad and the Au wire can be prevented. As a result, the operating life of the resin-sealed semiconductor device under normal usage conditions, which was conventionally said to be 5 years or more, can be dramatically extended to 20 years or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は重量減少率と金線断線不良率の関係を示すグラ
フである。第2図は寸法変化率と金線断線不良率の関係
を示すグラフである。第3図は重量減少率、寸法変化率
と金線断線不良率の関係を示すグラフである。 200’C,1000hKtt(n!t*・、ダ楡(’
/=)第 図 200@C、1oooh’5kLr1’T 2’JX・
y雫(’/=)第2 図 200’C,I(X:メツh丁灸のIt;Au衿(ヤω
第3 図
FIG. 1 is a graph showing the relationship between the weight reduction rate and the gold wire breakage failure rate. FIG. 2 is a graph showing the relationship between the dimensional change rate and the gold wire breakage failure rate. FIG. 3 is a graph showing the relationship between weight loss rate, dimensional change rate, and gold wire breakage defect rate. 200'C, 1000hKtt(n!t*・, dael('
/=)Figure 200@C, 1oooh'5kLr1'T 2'JX・
y drop ('/=) 2nd Figure 200'C, I (X: It; Au collar (ya ω)
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、200℃で1,000時間保持した後の重量減少率
が0.5%以下で、かつ寸法減少率が0.05%以下の
熱硬化性樹脂層で構成したことを特徴とする熱硬化性樹
脂封止型半導体装置。
1. A thermosetting resin layer comprising a thermosetting resin layer having a weight reduction rate of 0.5% or less and a dimensional reduction rate of 0.05% or less after being held at 200°C for 1,000 hours. resin-encapsulated semiconductor device.
JP27797088A 1988-11-02 1988-11-02 Resin sealed semiconductor device characterized by high heat-resistance Pending JPH02123757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27797088A JPH02123757A (en) 1988-11-02 1988-11-02 Resin sealed semiconductor device characterized by high heat-resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27797088A JPH02123757A (en) 1988-11-02 1988-11-02 Resin sealed semiconductor device characterized by high heat-resistance

Publications (1)

Publication Number Publication Date
JPH02123757A true JPH02123757A (en) 1990-05-11

Family

ID=17590805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27797088A Pending JPH02123757A (en) 1988-11-02 1988-11-02 Resin sealed semiconductor device characterized by high heat-resistance

Country Status (1)

Country Link
JP (1) JPH02123757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171887B1 (en) 1996-02-28 2001-01-09 Kabushiki Kaisha Toshiba Semiconductor device for a face down bonding to a mounting substrate and a method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171887B1 (en) 1996-02-28 2001-01-09 Kabushiki Kaisha Toshiba Semiconductor device for a face down bonding to a mounting substrate and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5455195A (en) Method for obtaining metallurgical stability in integrated circuit conductive bonds
US6590277B1 (en) Reduced stress LOC assembly
JPH04366630A (en) Anisotropic conductive adhesive tape
US20100052163A1 (en) Semiconductor device, method of manufacturing same and method of repairing same
JP3256367B2 (en) Resin-coated insulating bonding wire
JPH02123757A (en) Resin sealed semiconductor device characterized by high heat-resistance
US5113241A (en) Semiconductor device mounted upon an insulating adhesive with silicon dioxide and nickel chromium steel filling particles
JPH0738401B2 (en) LSI chip mounting structure
JP2000290471A (en) Resin composition for sealing
US6784545B2 (en) Semiconductor device having pad electrode connected to wire
JPH01143346A (en) Semiconductor device
JPH09172110A (en) Semiconductor device
JPS5835934A (en) Resin sealed type semiconductor device
JPS59175753A (en) Semiconductor device and lead frame
JPH01248546A (en) Manufacture of electronic parts
JP4177198B2 (en) Manufacturing method of semiconductor device
KR820002403B1 (en) Passivated and ecapsulated semiconductors and method of making same
JP2008022037A (en) Connection member, connection structure of electrode using the same, and connection method
JPH08250548A (en) Manufacture of semiconductor device
KR0163866B1 (en) Wire error prevention type lead frame
JPH09148380A (en) Semiconductor device
JP2000007923A (en) Semiconductor sealing resin composition, semiconductor device and its preparation
JPS5835949A (en) Semiconductor device
JPH0737921A (en) Semiconductor device
JPS61150227A (en) Semiconductor device