JPH02122243A - Method and device for acoustooptical analysis - Google Patents

Method and device for acoustooptical analysis

Info

Publication number
JPH02122243A
JPH02122243A JP63275373A JP27537388A JPH02122243A JP H02122243 A JPH02122243 A JP H02122243A JP 63275373 A JP63275373 A JP 63275373A JP 27537388 A JP27537388 A JP 27537388A JP H02122243 A JPH02122243 A JP H02122243A
Authority
JP
Japan
Prior art keywords
photoacoustic
sample
wavelength
light
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63275373A
Other languages
Japanese (ja)
Other versions
JPH0514219B2 (en
Inventor
Takehiko Kitamori
武彦 北森
Kyoko Imai
恭子 今井
Yasushi Nomura
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63275373A priority Critical patent/JPH02122243A/en
Publication of JPH02122243A publication Critical patent/JPH02122243A/en
Publication of JPH0514219B2 publication Critical patent/JPH0514219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids

Abstract

PURPOSE:To eliminate the influence of a background from only a result of measurement against a sample and to derive the concentration of an object to be analyzed by irradiating a sample simultaneously by two or more excitation light beams having each different optical wavelength and optical intensity modulation frequency. CONSTITUTION:When the inside of an acoustooptical cell 8 is filled with a liquid sample and excitation light beams 5, 6 are made incident, acoustooptical signals generated in accordance with two excitation light beams are superposed to each other, and converted as the acoustooptical wave to an electric signal 9 by a piezo-electric element. The acoustooptical signals converted to this signal 9 are allowed to branch to two signals, and inputted to a phase detecting device 10 and 11. Subsequently, in the device 10, by using a signal 12 synchronizing with the modulation of an optical intensity modulator 3 as a reference signal, only an acoustooptical signal 13 corresponding to the excitation light beam 5 is extracted from the detected signal 9, and inputted to a data processor 14. In the same manner, in the device 11, by referring to a signal 15 from an optical intensity modulator 4, only an acoustooptical signal 16 corresponding to the excitation light beam 6 is extracted and inputted to the device 14. In the device 14, based on the signals 13, 16, the analytical cure of an object to be analyzed is generated, and an unknown sample is brought to quantitative analysis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光音響分析方法及び装置に係り、特に免疫分析
に好適な光音響分析方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoacoustic analysis method and apparatus, and particularly to a photoacoustic analysis method and apparatus suitable for immunoassay.

〔従来の技術〕[Conventional technology]

従来の光音響分析装置は特開昭63−44149号ある
いは、アナリティカル・ケミストリー、第53巻、第5
39頁から第540頁(1981年)(Anal、Ch
em、、53. pp、 539−540 (1981
))において記載されているように、セルに入射する励
起光は1つの波長と光強度変調周波数に限られていた。
Conventional photoacoustic analyzers are disclosed in Japanese Patent Application Laid-open No. 63-44149 or Analytical Chemistry, Vol. 53, No. 5.
pp. 39-540 (1981) (Anal, Ch.
em,,53. pp. 539-540 (1981
)), the excitation light incident on the cell was limited to one wavelength and light intensity modulation frequency.

そのため、試料のバックグラウンドを差し引く場合試料
とブランクを順次セルに詰めかえて各々の光音響信号強
度を測定してその差を求めるか、あるいは、2つのセル
に試料とブランクを充填し、同一波長、同一光強度変調
周波数の励起光を各々のセルに入射してその差を取って
いた。また、バックグラウンドは一定とし、特に試料と
ブランクとの差を取らすに定量分析していた。
Therefore, when subtracting the background of a sample, it is necessary to fill the sample and blank into cells sequentially and measure the photoacoustic signal intensities of each and find the difference, or alternatively, fill two cells with the sample and blank and use the same wavelength , excitation light with the same light intensity modulation frequency was incident on each cell and the difference was taken. In addition, the background was kept constant, and the quantitative analysis was carried out focusing on the difference between the sample and the blank.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は試料のバックグラウンドを差し引く場合
、必ずブランクを必要とするか、あるいはバックグラウ
ンドは一定と仮定していた。一方、光音響分光法の感度
は極めて高いため、分析対象以外の夾雑物が試料に混入
している場合、夾雑物に対しても高いレベルの光音響信
号即ちバックグラウンドが発生するため、分析対象物か
らの光音響信号がバンククラウン1くに埋れ、定量分析
を困難にするという問題がある。
In the above conventional techniques, when subtracting the background of a sample, a blank is always required or the background is assumed to be constant. On the other hand, since the sensitivity of photoacoustic spectroscopy is extremely high, if contaminants other than the target of analysis are mixed into the sample, a high level of photoacoustic signal, that is, a background, will be generated for the contaminants. There is a problem in that photoacoustic signals from objects are buried deep in the bank crown, making quantitative analysis difficult.

特に、免疫分析においては試料となる血清中の夾雑物は
個人間で異なるうえ、同一個人においても症状や併発症
などにより大きく変動するため、バックグラウンドも血
清ごとに大きく異なる。そのため、バックグラウンドは
一定と仮定して定量分析することはできす、ブランクを
用いてハックグラウンドの差し引きが必要となる。
In particular, in immunoassays, impurities in serum samples differ between individuals, and even within the same individual, they vary greatly depending on symptoms and complications, so the background also varies greatly from serum to serum. Therefore, it is not possible to perform quantitative analysis assuming that the background is constant; it is necessary to subtract the hackground using a blank.

しかし、免疫分析などに対する応用では、検体量や試薬
量の関係や、分析手順」二の制約から必ずしも常にブラ
ンクを用意することができず、この場合、試料とブラン
クの光音響信号強度を個別に測定し、その差を取ること
によりバックグラウンドを差し引く手法はとれないとい
う問題点があった。
However, in applications such as immunoassays, it is not always possible to prepare a blank due to the relationship between the sample amount and reagent amount and the limitations of the analytical procedure. There was a problem in that it was not possible to subtract the background by measuring and taking the difference.

また、ブランクを用いず試料のみでバソクグラランドを
補正する手法としては、分析対象物の吸収ピークに一致
する波長の励起光と夾雑物の吸収ピークに一致する波長
の励起光を用い、それぞれの励起光における光音響信号
から分析対象物と夾雑物の濃度を求める、いわゆる2波
長法が考えられる。しかし、この場合、2つの励起光波
長で測定するため、分析時間が長く、また、光変性の試
料では、2度の測定時における試料の状態が変化するな
どの問題があった。
In addition, as a method for correcting Basok Graland using only a sample without using a blank, excitation light with a wavelength that matches the absorption peak of the analyte and excitation light with a wavelength that matches the absorption peak of contaminants is used. A so-called two-wavelength method is considered, which determines the concentration of the analyte and impurities from the photoacoustic signal. However, in this case, since measurement is performed using two excitation light wavelengths, the analysis time is long, and in the case of a photo-denatured sample, the state of the sample changes during the second measurement.

本発明の目的は、これら、ブランクを別途用意すること
が困難な状況下において、試料に対する測定結果のみか
らバックグラウンドの影響を排除し、分析対象の濃度を
求めることができる光音響分析方法及び装置を提供する
ことにある。
The purpose of the present invention is to provide a photoacoustic analysis method and apparatus that can eliminate the influence of background and determine the concentration of an analyte from only the measurement results for a sample under these circumstances where it is difficult to separately prepare a blank. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

」二記の目的を達成するために本発明の方法は、試料に
励起光を照射し、光音響効果により発生する光音響信号
の強度から、前記試料に含まれる分析対象物質を定量す
る光音響分析方法において、前記試料に相異る光波長と
光強度変調周波数を持つ二以上の励起光を同時に照射し
、それぞれの励起光の光強度変調に同期した光音響信号
を検出し、それらの信号強度の差から前記分析対象物質
を定量することを特徴とし、また、前記試料に対して相
異る二以上の時刻における光音響信号の強度を測定し、
それぞれの信号強度の差から前記分析対象物質を定量す
ることを特徴とするものである。
In order to achieve the second object, the method of the present invention is a photoacoustic method in which a sample is irradiated with excitation light and the analyte contained in the sample is quantified from the intensity of the photoacoustic signal generated by the photoacoustic effect. In the analysis method, the sample is simultaneously irradiated with two or more excitation lights having different light wavelengths and light intensity modulation frequencies, photoacoustic signals synchronized with the light intensity modulation of each excitation light are detected, and these signals are detected. The method is characterized in that the substance to be analyzed is quantified from the difference in intensity, and the intensity of the photoacoustic signal at two or more different times with respect to the sample is measured,
This method is characterized in that the substance to be analyzed is quantified from the difference in signal strength.

また本発明の装置は、試料に励起光を照射し、光音響効
果により発生する光音響信号の強度から、前記試料に含
まれる分析対象物質を定量する光音響分析装置において
、前記試料に照射する相異なる光波長と光強度変調周波
数とを有する二以上の励起光の発生手段と、該励起光を
前記試料に入射してそれぞれの光強度変調に同期した光
音響信号を検出する検出手段とを備えたことを特徴とし
、また、前記試料の光音響信号を異なる二以上の時刻で
測定する測定手段と、該測定値の差に基づいて分析対象
物質を定量する処理手段とを備えたことを特徴とするも
のである。
Further, the apparatus of the present invention is a photoacoustic analyzer that irradiates a sample with excitation light and quantifies an analyte contained in the sample from the intensity of a photoacoustic signal generated by a photoacoustic effect. A means for generating two or more excitation lights having different light wavelengths and light intensity modulation frequencies, and a detection means for inputting the excitation light into the sample and detecting a photoacoustic signal synchronized with each light intensity modulation. The method further comprises a measuring means for measuring the photoacoustic signal of the sample at two or more different times, and a processing means for quantifying the substance to be analyzed based on the difference between the measured values. This is a characteristic feature.

〔作用〕[Effect]

以下、本発明の作用原理を説明する。光音響信号の波形
や強度、位相などを決定する要因は、励起光の空間分布
や波長、光強度変調周波数、セルの材質や形状など様々
である。
The principle of operation of the present invention will be explained below. There are various factors that determine the waveform, intensity, phase, etc. of a photoacoustic signal, such as the spatial distribution and wavelength of excitation light, the light intensity modulation frequency, and the material and shape of the cell.

このうち、試料の特性を特に強く反映するパラメータと
して、励起光波長λを挙げることができ、また、発生す
る光音響信号の周波数を決定するパラメータは光強度変
調周波数ωである。試料が反応進行中のものであれば光
音響信号は測定時刻tの関数となる。その他のパラメー
タはセルや光源を変えない限り一定に保つことができる
Among these, the excitation light wavelength λ can be mentioned as a parameter that particularly strongly reflects the characteristics of the sample, and the light intensity modulation frequency ω is a parameter that determines the frequency of the generated photoacoustic signal. If the sample is undergoing reaction, the photoacoustic signal will be a function of the measurement time t. Other parameters can be kept constant as long as the cell or light source is not changed.

そこで、光音響信号Sを励起光波長λ、光強度変調周波
数ω、測定時刻tの関数としてS(λ。
Therefore, the photoacoustic signal S is expressed as S(λ) as a function of the excitation light wavelength λ, the light intensity modulation frequency ω, and the measurement time t.

ω+1)と書くことにする。まず、測定時刻tを一定時
刻t。とじ、異なる2つの波長λ3.λ2と光強度変調
周波数ω3.ω2の励起光を同時に照射する場合につい
て説明する。
I will write it as ω+1). First, the measurement time t is set to a constant time t. binding, two different wavelengths λ3. λ2 and light intensity modulation frequency ω3. A case where excitation light of ω2 is simultaneously irradiated will be explained.

光音響信号は本質的に波であるため、重ね合せの原理が
働く。第1の励起光の波長λ、を分析対象物の光吸収ピ
ークに合わせ、第2の励起光波長λ2を夾雑物の光吸収
ピークに合わせるとする。
Since photoacoustic signals are essentially waves, the principle of superposition works. It is assumed that the wavelength λ of the first excitation light is matched to the light absorption peak of the analyte, and the second excitation light wavelength λ2 is matched to the light absorption peak of the contaminant.

各々の励起光により発生する光音響信号は、各々分析対
象物と夾雑物に起因するものであるが、これらは重なり
合って検出される。したがって、検出される光音響信号
Sは、次式のようになる。
The photoacoustic signals generated by each excitation light are caused by an analyte and a contaminant, respectively, but these are detected in an overlapping manner. Therefore, the detected photoacoustic signal S is as shown in the following equation.

5(to)”5(zi、ωx、to)+S(λz+ C
112,jo)”・(1)一方、検出された光音響信号
はロックインアンプなどにより、励起光の強度変調周期
に同期した成分を雑音場より回復する。数学的には、回
復すべき信号と同期した正弦関数、即ち、参照信号と光
音響信号Sとのコンボリューションを取ることになり、
以下のように表現される。
5(to)”5(zi, ωx, to)+S(λz+C
112, jo)"・(1) On the other hand, the detected photoacoustic signal uses a lock-in amplifier or the like to recover the component synchronized with the intensity modulation period of the excitation light from the noise field. Mathematically, the signal to be recovered is A sine function synchronized with , that is, a convolution of the reference signal and the photoacoustic signal S, is taken,
It is expressed as follows.

ここに、Sr(ω。)は回復された信号、Oは参照信号
の位相である。光音響信号5(tO)は周期関数である
からフーリエ分解することができ、また、正弦関数の直
交規格性から(2)式より回復される信号Srは、参照
信号に同期した5(to)の第1フーリエ成分であるこ
とは容易に理解することかできる。
Here, Sr(ω.) is the recovered signal and O is the phase of the reference signal. Since the photoacoustic signal 5(tO) is a periodic function, it can be subjected to Fourier decomposition, and due to the orthogonal normality of the sine function, the signal Sr recovered from equation (2) is 5(tO) synchronized with the reference signal. It can be easily understood that this is the first Fourier component of .

従って、検出した信号5(to)から、分析対象物から
の信号を回復する場合には、参照信号の周波数をω、と
すると(2)式より S r(C1)=fei(””−I)S(t、)d t
Therefore, when recovering the signal from the analyte from the detected signal 5(to), if the frequency of the reference signal is ω, then from equation (2) S r(C1)=fei(""-I )S(t,)d t
.

=S□(λ1.ω、)         ・・・・・ 
・・(3)となり、ここにs i、 (λ□、ω1)は
S(λ1 g C1) 1.f、 O)の周期ω、に関
する第1フーリエ成分である。(3)式から明らかなよ
うに、周期ω1に同期しないC2の周波数を持つ第2励
起光により発生した光音響信号の成分は回復されないこ
とがわかる。同様にして、参照信号の周波数をC2とす
れば、回復される信号はS□(λ2.ω2)となり、第
2励起光の成分のみが回復される。そこで、第1励起光
と第2励起光を同時にセルに入射しても、それぞれの励
起光に対応する2つの参照信号を持つ信号処理装置に入
力すれば、両励起光に対応する信号成分を同時に回復す
ることができる。
=S□(λ1.ω,) ・・・・・・
...(3), where s i, (λ□, ω1) is S(λ1 g C1) 1. f, is the first Fourier component with respect to the period ω of O). As is clear from equation (3), it can be seen that the component of the photoacoustic signal generated by the second excitation light having the frequency C2 that is not synchronized with the period ω1 is not recovered. Similarly, if the frequency of the reference signal is C2, the recovered signal will be S□(λ2.ω2), and only the second excitation light component will be recovered. Therefore, even if the first excitation light and the second excitation light enter the cell at the same time, if they are input to a signal processing device that has two reference signals corresponding to each excitation light, the signal components corresponding to both excitation lights can be processed. can be recovered at the same time.

特に、パックグラウンドが問題となるのは、第3図に示
すように、夾雑物の光吸収スペクトルの裾が、分析対象
物の吸収ピークに重なる場合である。この場合、夾雑物
の吸収ピークλ2と分析対象物の吸収ピークλ、におけ
るモル吸光係数を各々ε(λ2)、ε(λ、)とすると
、λ、における夾雑物の吸光度α□は となる。ここにα、はλ1における夾雑物の吸光度であ
る。光音響信号の強度は吸光度に比例するため、第1励
起光で測定した光音響信号強度のうち、夾雑物に由来す
るのは、(4)式より となる。ここに、C2/ω□の項は、光音響信号強度が
光強度変調周波数に反比例するための補正項である。し
たがって、以上より、芳性対象物のみの光音響信号強度
S。は、(5)式より以上の原理から明らかなように、
本発明によれば、ブランクを用いなくてもパックグラウ
ンドを補正することができる。
In particular, pack ground becomes a problem when the tail of the optical absorption spectrum of a contaminant overlaps the absorption peak of the analyte, as shown in FIG. In this case, if the molar extinction coefficients at the absorption peak λ2 of the contaminant and the absorption peak λ of the analyte are ε(λ2) and ε(λ,), respectively, then the absorbance α□ of the contaminant at λ is as follows. Here, α is the absorbance of contaminants at λ1. Since the intensity of the photoacoustic signal is proportional to the absorbance, the portion of the photoacoustic signal intensity measured with the first excitation light that is derived from contaminants is determined by equation (4). Here, the term C2/ω□ is a correction term for the photoacoustic signal intensity to be inversely proportional to the light intensity modulation frequency. Therefore, from the above, the photoacoustic signal intensity S of only the aromatic object. As is clear from the above principle from equation (5),
According to the present invention, back ground can be corrected without using a blank.

次に、異なる2つの時刻における測定により、バックグ
ラウンドを補正する方法について説明する。試料の光音
響信号の成分は、分析対象物からの信号成分Ssと夾雑
物に由来する成分Sbに分けることができ、 S(λ、ω、t)=Ss(λ、ω、t)+Sb(λ、 
(,1、t )  −(7)と書くことができる。試料
が反応進行中のものであり、分析対象物が反応生成物で
ある場合、分析対象物に起因する信号成分は時々変化す
るが、夾雑物に由来する信号成分は一定である。したが
って、側室時刻をt□及びt2とすると、sb(λ、ω
、1;□)=sb(λ、ω、t2)であるから、 ΔS−(λ、ω、tZ)  S(λ、ω、t□)=Ss
(λ+ω+t2)  ss(λ+ω+t+)  ”’(
Uとなる。時刻t1が反応開始時刻で、t2が反応終了
時刻である場合、ΔSは反応生成物の量に比例する信号
強度となる。
Next, a method of correcting the background by measuring at two different times will be described. The components of the photoacoustic signal of the sample can be divided into a signal component Ss from the analyte and a component Sb derived from impurities, and S (λ, ω, t) = Ss (λ, ω, t) + Sb ( λ,
It can be written as (,1,t)−(7). If the sample is in the process of a reaction and the analyte is a reaction product, the signal component attributable to the analyte changes from time to time, but the signal component attributable to contaminants remains constant. Therefore, if the concubine times are t□ and t2, then sb(λ, ω
, 1;□)=sb(λ, ω, t2), so ΔS-(λ, ω, tZ) S(λ, ω, t□)=Ss
(λ+ω+t2) ss(λ+ω+t+) ”'(
It becomes U. When time t1 is the reaction start time and t2 is the reaction end time, ΔS is a signal intensity proportional to the amount of reaction product.

また、反応生成物の生成速度が一定の場合、各々の試料
に対して一定のし、とt2で測定すれば、ΔSから検量
線を求め、定量分析することができる。この場合、反応
が完了するのに要する時間をt3とすると、最終的な反
応生成物に対する信号強度S3は となる。したがって、反応進行中の試料においては、異
なる2つの時刻における光音響信号の強度を測定するこ
とにより、ブランクを用いずとも、バックグラウンドを
補正することができる。
Further, when the production rate of the reaction product is constant, if the measurement is performed at a constant time t2 for each sample, a calibration curve can be obtained from ΔS and quantitative analysis can be performed. In this case, if the time required for the reaction to complete is t3, the signal strength S3 for the final reaction product is as follows. Therefore, in a sample during a reaction, by measuring the intensity of the photoacoustic signal at two different times, the background can be corrected without using a blank.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図と第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

本実施例は、2つの異なる波長と光強度変調周波数を持
つ励起光を用いる場合と、異なる2つの時刻で測定する
場合の両方に適用することができる。
This embodiment can be applied both to cases where excitation light having two different wavelengths and light intensity modulation frequencies are used and to cases where measurements are made at two different times.

本実施例の装置構成を第1図に示す。光源はArレーザ
を励起レーザとする2系統の色素レーザ1及び2で構成
され、紫外及び可視領域の波長を発振することができる
。各々の光源から発つしたレーザ光は回転ブレード式の
光強度変調器3及び4、即ち、光チョッパーにより、相
異なる変調周波数の矩形波に強度変調され、励起光5及
び6となる。
The apparatus configuration of this embodiment is shown in FIG. The light source is composed of two systems of dye lasers 1 and 2 using an Ar laser as an excitation laser, and is capable of oscillating wavelengths in the ultraviolet and visible regions. The laser beams emitted from each light source are intensity-modulated by rotating blade type optical intensity modulators 3 and 4, ie, optical choppers, into rectangular waves having different modulation frequencies, and become excitation lights 5 and 6.

2つの励起光5及び6はハーフミラ−7を介して同一光
路を進み、セル8に入射する。セル8は円筒状の光音響
セルで、ガラス円筒の中心部に同一内径の円筒状圧電素
子を組み込み、これを光音響信号の検出器とする。励起
光5,6は円筒の中心軸に沿って入射する。
The two excitation lights 5 and 6 travel along the same optical path via a half mirror 7 and enter a cell 8. The cell 8 is a cylindrical photoacoustic cell, in which a cylindrical piezoelectric element having the same inner diameter is built into the center of a glass cylinder, and is used as a photoacoustic signal detector. The excitation lights 5 and 6 are incident along the central axis of the cylinder.

円筒状の光音響セル8の内部に液体試料を充填し、励起
光5,6を入射すると、2つの励起光に対応して発生し
た光音響信号は互に重なり合い、一つの音響波として圧
電素子により電気信号9に変換される。この電気信号9
に変換された光音響信号は2つの信号に分岐し、信号処
理装置である2つの位相検波装置10及び11に入力す
る。
When a liquid sample is filled inside a cylindrical photoacoustic cell 8 and excitation lights 5 and 6 are incident, the photoacoustic signals generated in response to the two excitation lights overlap with each other and form one acoustic wave on the piezoelectric element. is converted into an electrical signal 9 by. This electric signal 9
The converted photoacoustic signal is branched into two signals and input to two phase detection devices 10 and 11, which are signal processing devices.

位相検波装置10では、光強度変調器3の変調に同期し
た信号12を参照信号として、検出した光音響信号9か
ら、励起光5に対応する光音響信号13のみを抽出し、
データ処理装置]−4に入力する。
The phase detection device 10 extracts only the photoacoustic signal 13 corresponding to the excitation light 5 from the detected photoacoustic signal 9 using the signal 12 synchronized with the modulation of the optical intensity modulator 3 as a reference signal,
Data processing device]-4.

同様に、位相検波装置11では、光強度変調器4からの
信号15を参照して、励起光6に対応する光音響信号」
6のみを抽出し、データ処理装置14に入力する。デー
タ処理装置14では、光音響信号13及び16をもとに
、前述の(6)及び(6″)式、あるいは(8)及び(
9)式から、分析対象物の検量線を作成し、未知試料を
定量分析する。ここで、(6′)式の比例定数には、予
め実験的レコ求めておくこともできる。
Similarly, the phase detection device 11 refers to the signal 15 from the optical intensity modulator 4 to generate a photoacoustic signal corresponding to the excitation light 6.
6 is extracted and input to the data processing device 14. In the data processing device 14, based on the photoacoustic signals 13 and 16, the above-mentioned equations (6) and (6'') or (8) and (
9) From the formula, create a calibration curve for the analyte and quantitatively analyze the unknown sample. Here, the proportionality constant of equation (6') can be determined experimentally in advance.

以下、本発明を免疫分析に応用した応用例について説明
する。
An example of application of the present invention to immunoassay will be described below.

血清を試料とする場合の免疫分析では、夾雑物にビリル
ビンを含むが、ビリルビンは光に対して不安定で、光退
色性を示す。従って測定中にビリルビンによるバックグ
ラウンドが変動し、従来の1つの励起光を使った光音響
免疫分析法では正確な測定ができない。そこで、本例で
は、2つの励起光を用いてブランクを用いずにバックグ
ラウンドを補正する。尚、図中17はミラー、18はビ
ームストッパである。
In immunoassays using serum as a sample, bilirubin is included as a contaminant, but bilirubin is unstable to light and exhibits photobleaching. Therefore, the background due to bilirubin fluctuates during measurement, making accurate measurement impossible with the conventional photoacoustic immunoassay method using one excitation light. Therefore, in this example, the background is corrected using two excitation lights without using a blank. In the figure, 17 is a mirror, and 18 is a beam stopper.

上述の実施例による装置を用いて、α−フェトプロティ
ン(以下AFPと略す)を測定した。
α-Fetoprotein (hereinafter abbreviated as AFP) was measured using the apparatus according to the above-described example.

(1)AFP測定用試薬の調製 抗ヒトAFP抗体の0.1Mプリジン緩衝液(pH6,
5)10mRに平均粒径がQ、22pmの白色ポリスチ
レンラテックス(固形分濃度10%)1mQを加えて室
温において3時間撹拌したのち、2〜4℃の冷却下で4
0分間、12.OOOrpmにて遠心した。得られた沈
殿を、0.5%牛血清アルブミン、0.1MNaCQ、
2 mM M g CQ2を含む10mM リン酸緩衝
液(pH6,5)に懸濁させて、該感作ラテツクス粒子
濃度が1%の抗AFP抗体感作ラテックス試薬を調製し
た。
(1) Preparation of reagent for AFP measurement Anti-human AFP antibody in 0.1M pridine buffer (pH 6,
5) Add 1 mQ of white polystyrene latex (solid content concentration 10%) with an average particle size of Q and 22 pm to 10 mR, stir at room temperature for 3 hours, and then cool to 4°C under cooling at 2 to 4°C.
0 minutes, 12. Centrifugation was performed at OOOrpm. The obtained precipitate was mixed with 0.5% bovine serum albumin, 0.1M NaCQ,
An anti-AFP antibody sensitized latex reagent having a concentration of 1% of the sensitized latex particles was prepared by suspending the sensitized latex particles in 10 mM phosphate buffer (pH 6.5) containing 2 mM M g CQ2.

(2)試料の測定 試料溶液であるヒトAFP及びビリルビン10■/准を
添加した牛血清アルブミン溶液10μQに(1)で調製
した抗AFP抗体感作ラテックス試薬試薬50μΩ、1
0mM リン酸緩衝液(pH6,5)200μQを加え
て、37℃ 10分間抗抗原体反応させた。この反応液
を光音響セル8に充填し、光音響信号を測定した。光音
響セル8内の反応液に33 Hz、465nm及び1.
818 z520nmの励起光を同時に照射して、それ
ぞれの光音響信号S、、(465nm、33Hz)及び
S、(520nm、181Hz)を測定した。
(2) Measurement of sample To 10μQ of bovine serum albumin solution to which human AFP and bilirubin were added 10μΩ/semi, anti-AFP antibody sensitized latex reagent prepared in (1), 50μΩ, 1
200 μQ of 0 mM phosphate buffer (pH 6,5) was added, and anti-antigen reaction was carried out at 37° C. for 10 minutes. This reaction solution was filled into a photoacoustic cell 8, and a photoacoustic signal was measured. The reaction solution in the photoacoustic cell 8 was exposed to 33 Hz, 465 nm and 1.
The respective photoacoustic signals S, (465 nm, 33 Hz) and S, (520 nm, 181 Hz) were measured by simultaneously irradiating with 818 z 520 nm excitation light.

Sl(465nm、33Hz)は、試料中に含まれる夾
雑成分由来の信号を主に含むが、反応生成物由来の信号
も含む。しかしながら、後者は非常に微少であり測定上
無視して支障ない。
Sl (465 nm, 33 Hz) mainly contains signals derived from contaminant components contained in the sample, but also contains signals derived from reaction products. However, the latter is very small and can be ignored in measurement.

S、(520nm、181Hz)は、抗原抗体反応生成
物に由来する信号と反応生成物や夾雑物由来の信号を含
む。後者は前者に比へると少量ではあるが、測定対象で
ある前者が微弱であるため無視することはできない。
S, (520 nm, 181 Hz) includes signals derived from antigen-antibody reaction products and signals derived from reaction products and impurities. Although the latter is a small amount compared to the former, it cannot be ignored because the former, which is the measurement target, is weak.

予め、ヒト血清試料を使用して可視光測光したときに夾
雑成分として問題となるビリルビンの光音響信号を測定
して(6)式の関係を上記の波長について求めると(6
′)式のkの値は1/100であった。すなわち、測定
対象信号S。は、と求まる。以上のようにして求めたA
FP定量用の検量線を第2図に示す。
If we first measure the photoacoustic signal of bilirubin, which is a problem as a contaminant when performing visible light photometry using a human serum sample, and find the relationship of equation (6) for the above wavelength, we get (6
') The value of k in formula was 1/100. That is, the measurement target signal S. is determined. A obtained as above
A calibration curve for FP quantification is shown in Figure 2.

なお、5.0fg/mflのAFPサンプルの同時再現
性はn=30  CV=2.3%と良好であった。
Note that the simultaneous reproducibility of the 5.0 fg/mfl AFP sample was good with n=30 and CV=2.3%.

このように本実施例によれば、ブランクを用いずにバッ
クグラウンドを補正できるため、以下の効果がある。
As described above, according to this embodiment, the background can be corrected without using a blank, so the following effects can be achieved.

(1)バックグラウンドが変動する試料でも分析対象分
を正確に定量できる。
(1) Even in samples with varying backgrounds, the amount to be analyzed can be quantified accurately.

(2)  ブランク用のセル、試料が不用となる。(2) Blank cells and samples are no longer needed.

(3)免疫分析に応用した場合、夾雑物の個人差。(3) Individual differences in contaminants when applied to immunoassays.

症例差、症状の変化による差なども定量分析を妨げない
Differences between cases and differences due to changes in symptoms do not impede quantitative analysis.

(4)試薬の純度による定量分析の不確実性を解消する
ことができる。
(4) Uncertainty in quantitative analysis due to reagent purity can be eliminated.

(5)夾雑物に光反応性の化学性が含まれていても、分
光分析が可能となる。
(5) Even if the contaminants contain photoreactive chemicals, spectroscopic analysis becomes possible.

〔発明の効果〕〔Effect of the invention〕

上述のとおり本発明によれば、ブランクを別途用意しな
くても、試料に対する測定結果のみからバックグラウン
ドの影響を排除し、短時間に分析対象物質の濃度を求め
ることができる。
As described above, according to the present invention, the concentration of the substance to be analyzed can be determined in a short time by eliminating the influence of the background from only the measurement results for the sample without separately preparing a blank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置構成図、第2図は
本実施例の装置を用いた場合のアルファフェトプロティ
ンの検量線を示すグラフ、第3図は分析対象物質と夾雑
物が混在する場合の光音響スペクトルを示すグラフであ
る。 1.2・・・光源、3,4・・光強度変調器、5,6励
起光、7・・・ハーフミラ−18・・・光音響セル、9
・・光音響信号、10.11・・・位相検波装置、12
.15・参照信号、」5・・ビームストッパ、16 光
音響信号、13・・・励起光5による光音響信号、14
・・・データ処理装置、16・・励起光6による光音響
信号、17・・ミラー、18・・・ビームストッパ。
Fig. 1 is a diagram showing the configuration of an apparatus showing an embodiment of the present invention, Fig. 2 is a graph showing a calibration curve of alpha-fetoprotein when using the apparatus of this embodiment, and Fig. 3 is a graph showing analyte substances and contaminants. It is a graph which shows the photoacoustic spectrum when . 1.2... Light source, 3, 4... Light intensity modulator, 5, 6 Excitation light, 7... Half mirror 18... Photoacoustic cell, 9
...Photoacoustic signal, 10.11...Phase detection device, 12
.. 15. Reference signal, 5. Beam stopper, 16 Photoacoustic signal, 13. Photoacoustic signal by excitation light 5, 14
...Data processing device, 16.. Photoacoustic signal by excitation light 6, 17.. Mirror, 18.. Beam stopper.

Claims (1)

【特許請求の範囲】 1、試料に励起光を照射し、光音響効果により発生する
光音響信号の強度から、前記試料に含まれる分析対象物
質を定量する光音響分析方法において、前記試料に相異
る光波長と光強度変調周波数を持つ二以上の励起光を同
時に照射し、それぞれの励起光の光強度変調に同期した
光音響信号を検出し、それらの信号強度の差から前記分
析対象物質を定量することを特徴とする光音響分析方法
。 2、試料に励起光を照射し、光音響効果により発生する
光音響信号の強度から、前記試料に含まれる分析対象物
質を定量する光音響分析方法において、前記試料に対し
て相異る二以上の時刻における光音響信号の強度を測定
し、それぞれの信号強度の差から前記分析対象物質を定
量することを特徴とする光音響分析方法。 3、試料に励起光を照射し、光音響効果により発生する
光音響信号の強度から、前記試料に含まれる分析対象物
質を定量する光音響分析装置において、前記試料に照射
する相異なる光波長と光強度変調周波数とを有する二以
上の励起光の発生手段と、該励起光を前記試料に入射し
てそれぞれの光強度変調に同期した光音響信号を検出す
る検出手段とを備えたことを特徴とする光音響分析装置
。 4、試料に励起光を照射し、光音響効果により発生する
光音響信号の強度から、前記試料に含まれる分析対象物
質を定量する光音響分析装置において、前記試料の光音
響信号を異なる二以上の時刻で測定する測定手段と、該
測定値の差に基づいて分析対象物質を定量する処理手段
とを備えたことを特徴とする光音響分析装置。 5、請求項1記載の方法において、前記励起光のうち一
つの励起光の波長が免疫反応生成物の光吸収波長に一致
することを特徴とする光音響分析方法。 6、請求項1記載の方法において、前記励起光のうち一
つの励起光の波長が免疫反応生成物の光吸収波長に一致
し、他の励起光の少なくとも一つの波長が夾雑物あるい
は未反応物質の光吸収波長に一致することを特徴とする
光音響分析方法。 7、請求項2記載の方法において、前記試料が免疫反応
による生成物であり、該免疫反応の過程における異なる
二以上の時刻での光音響信号の差から免疫反応生成物の
生成量を求めることを特徴とする光音響分析方法。 8、請求項3記載の装置において、前記試料の免疫反応
を行なわせる反応容器と、免疫反応後の試料を該試料を
保持して前記励起光を入射するセルに送る輸送手段を有
することを特徴とする光音響分析装置。 9、請求項3記載の光音響分析装置において、前記試料
を保持して前記励起光を入射するセルが免疫反応を行な
わせる機能を兼ね備えたものであることを特徴とする光
音響分析装置。 10、請求項4記載の装置において、前記試料の免疫反
応の過程における異なる二以上の時刻での光音響信号の
差から免疫反応生成物の生成量を求めることを特徴とす
る光音響分析装置。 11、請求項8記載の装置において、前記セルに入射す
る励起光のうち一つの励起光の波長が免疫反応生成物の
光吸収波長に一致するものであることを特徴とする光音
響分析装置。 12、請求項8記載の装置において、前記セルに入射す
る励起光のうち一つの励起光の波長が免疫反応生成物の
光吸収波長に一致し、他の励起光の少なくとも一つの波
長が夾雑物あるいは未反応物質の光吸収波長に一致する
ものであることを特徴とする光音響分析装置。
[Scope of Claims] 1. In a photoacoustic analysis method in which a sample is irradiated with excitation light and an analyte contained in the sample is quantified from the intensity of a photoacoustic signal generated by a photoacoustic effect, Two or more excitation lights with different light wavelengths and light intensity modulation frequencies are irradiated simultaneously, a photoacoustic signal synchronized with the light intensity modulation of each excitation light is detected, and the target substance to be analyzed is detected from the difference in signal strength. A photoacoustic analysis method characterized by quantifying. 2. In a photoacoustic analysis method in which a sample is irradiated with excitation light and an analyte substance contained in the sample is determined from the intensity of a photoacoustic signal generated by the photoacoustic effect, two or more different substances are used for the sample. A photoacoustic analysis method characterized by measuring the intensity of a photoacoustic signal at a time of , and quantifying the substance to be analyzed from the difference between the respective signal intensities. 3. In a photoacoustic analyzer that irradiates a sample with excitation light and quantifies the target substance contained in the sample from the intensity of a photoacoustic signal generated by the photoacoustic effect, different wavelengths of light irradiated onto the sample and and a detection means for making the excitation light incident on the sample and detecting a photoacoustic signal synchronized with each light intensity modulation. Photoacoustic analysis device. 4. In a photoacoustic analyzer that irradiates a sample with excitation light and quantifies the target substance contained in the sample from the intensity of the photoacoustic signal generated by the photoacoustic effect, two or more different photoacoustic signals of the sample are used. A photoacoustic analysis device comprising: a measuring means for measuring at a time of , and a processing means for quantifying a substance to be analyzed based on a difference between the measured values. 5. The photoacoustic analysis method according to claim 1, wherein the wavelength of one of the excitation lights matches the optical absorption wavelength of the immune reaction product. 6. The method according to claim 1, wherein the wavelength of one of the excitation lights matches the light absorption wavelength of the immunoreaction product, and at least one wavelength of the other excitation light matches the wavelength of the light absorbed by the immune reaction product, and the wavelength of at least one of the other excitation lights matches the wavelength of the light absorbed by the immunoreaction product. A photoacoustic analysis method characterized by matching the optical absorption wavelength of. 7. In the method according to claim 2, the sample is a product of an immune reaction, and the amount of the immune reaction product produced is determined from the difference in photoacoustic signals at two or more different times in the course of the immune reaction. A photoacoustic analysis method characterized by: 8. The apparatus according to claim 3, further comprising a reaction container in which the sample is subjected to an immune reaction, and a transport means for holding the sample after the immune reaction and transporting the sample to a cell into which the excitation light is incident. Photoacoustic analysis device. 9. The photoacoustic analyzer according to claim 3, wherein the cell that holds the sample and receives the excitation light also has the function of causing an immune reaction. 10. The photoacoustic analysis device according to claim 4, wherein the amount of the immune reaction product produced is determined from the difference between photoacoustic signals at two or more different times during the course of the immune reaction of the sample. 11. The photoacoustic analyzer according to claim 8, wherein the wavelength of one of the excitation lights incident on the cell matches the optical absorption wavelength of the immune reaction product. 12. The device according to claim 8, wherein the wavelength of one of the excitation lights incident on the cell matches the light absorption wavelength of the immunoreaction product, and at least one wavelength of the other excitation light matches the wavelength of light absorption of the immunoreaction product. Alternatively, a photoacoustic analyzer characterized in that the wavelength matches the light absorption wavelength of an unreacted substance.
JP63275373A 1988-10-31 1988-10-31 Method and device for acoustooptical analysis Granted JPH02122243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275373A JPH02122243A (en) 1988-10-31 1988-10-31 Method and device for acoustooptical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275373A JPH02122243A (en) 1988-10-31 1988-10-31 Method and device for acoustooptical analysis

Publications (2)

Publication Number Publication Date
JPH02122243A true JPH02122243A (en) 1990-05-09
JPH0514219B2 JPH0514219B2 (en) 1993-02-24

Family

ID=17554580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275373A Granted JPH02122243A (en) 1988-10-31 1988-10-31 Method and device for acoustooptical analysis

Country Status (1)

Country Link
JP (1) JPH02122243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296245A (en) * 2001-03-30 2002-10-09 Hitachi Zosen Corp Method and device for discriminating material of body, and sorting facility
JP2009219800A (en) * 2008-03-18 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measuring concentration of component
JP2015219026A (en) * 2014-05-14 2015-12-07 昭和電工株式会社 Photoacoustic spectroscopic method and photoacoustic spectroscopic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296245A (en) * 2001-03-30 2002-10-09 Hitachi Zosen Corp Method and device for discriminating material of body, and sorting facility
JP2009219800A (en) * 2008-03-18 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measuring concentration of component
JP2015219026A (en) * 2014-05-14 2015-12-07 昭和電工株式会社 Photoacoustic spectroscopic method and photoacoustic spectroscopic device

Also Published As

Publication number Publication date
JPH0514219B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
Davoust et al. Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules.
US4725140A (en) Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field
Golonzka et al. Separation of cascaded and direct fifth-order Raman signals using phase-sensitive intrinsic heterodyne detection
US5869346A (en) Method of and apparatus for analyzing immunity by raman spectrometry
EP0256474B1 (en) Method and apparatus for detecting particular particulate substance
US4799796A (en) Method and apparatus for measuring immunological reaction with the aid of phase-modulation of light
JPH0666808A (en) Chromogen measurement method
JP7366069B2 (en) Method for analyzing aqueous fluids using two-dimensional infrared spectroscopy
US11199496B2 (en) Methods and devices for measuring changes in the polarization response of a sample by field-resolved vibrational spectroscopy
JPH02122243A (en) Method and device for acoustooptical analysis
JPH02118453A (en) Method and apparatus for optoacoustic immunoassay
JP4031712B2 (en) Spectroscopic measurement method and spectroscopic measurement apparatus for semiconductor multilayer film
Kliger et al. Recent advances in time resolved circular dichroism spectroscopy
JPS63236945A (en) Crystal bearing analysis instrument which utilizes polarization characteristic of raman scattering light
JPS6238346A (en) Fluorescent polarized light measuring instrument
Schaertel et al. Study of polarization CRS and polarization ICRS with application to benzena
JPH11173982A (en) Method and apparatus for measuring concentration of protein in serum
JPH02108968A (en) Immunoassay
JPH03110447A (en) Method and apparatus for measuring particle by using photosound and immunoassay utilizing this method and apparatus
JPH0213962Y2 (en)
JPH0346540A (en) Detection of particulate material
JPH0743294A (en) Photoreflectance measuring equipment
CN116930485A (en) Trace pollutant infrared signal enhancement and in-situ rapid detection method and detection system based on immune biological reaction
JPH1090062A (en) Method and equipment for measuring protein concentration
JPH01169342A (en) Fluorescence measurement