JPH0346540A - Detection of particulate material - Google Patents

Detection of particulate material

Info

Publication number
JPH0346540A
JPH0346540A JP1180354A JP18035489A JPH0346540A JP H0346540 A JPH0346540 A JP H0346540A JP 1180354 A JP1180354 A JP 1180354A JP 18035489 A JP18035489 A JP 18035489A JP H0346540 A JPH0346540 A JP H0346540A
Authority
JP
Japan
Prior art keywords
sample
detected
signal
particulate matter
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1180354A
Other languages
Japanese (ja)
Inventor
Yuji Matsui
祐二 松井
Takehiko Kitamori
武彦 北森
Masaharu Sakagami
坂上 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1180354A priority Critical patent/JPH0346540A/en
Publication of JPH0346540A publication Critical patent/JPH0346540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To quantitatively determine the material to be detected regardless of the grain size of the product of agglutination reaction by adding a prescribed amt. of the particulate material of the specific diameter which induces the agglutination reaction with the material to be detected in a sample to the sample and irradiating the sample with the stimulating light adjusted to the wavelength equal to the diameter thereof. CONSTITUTION:The stimulating light 9 from a light source 1 is made incident to a cell 4. The prescribed amt. of the particulate material of the specific diameter which induces the agglutination reaction with the material to be detected is added to the sample in the cell 4 and the stimulating light 9 is absorbed by this material, by which an optoacoustic signal is generated. The sensitivity increases when the size of the particles coincides with the wavelength of the stimulating light 9 and, therefore, the particles of the coinciding diameter are added to the sample and are selectively detected and determined. The generated optoacoustic signal is detected by a detector of the cell 4 and the detected optoacoustic signal 12 is amplified by a lock-in amplifier 7 with the signal from an intensity modulator 2 as a reference signal 11. The intensity 14 of the measurement signal measured by such optoacoustic device is proportional to the concn. of the material to be detected. The calibration curve of the material to be detected is, therefore, obtd. by the intensity of the optoacoustic signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体中の粒子状物質の検出方法に係り、特に、
免疫分析に好適な光音響分析方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for detecting particulate matter in a liquid, and in particular,
The present invention relates to a photoacoustic analysis method suitable for immunoassay.

〔従来の技術〕[Conventional technology]

従来の粒子状物質の検出は、特開昭63−44149号
公報に記載のように、免疫分析において凝集反応の生成
物の粒径に励起光を一致させていた。従って、凝集反応
生成物が、必ずしも、一定の粒径をとらない点について
考慮されていなかった。
In the conventional detection of particulate matter, as described in Japanese Patent Application Laid-Open No. 63-44149, excitation light was matched to the particle size of the agglutination reaction product in immunoassay. Therefore, consideration has not been given to the fact that the aggregation reaction product does not necessarily have a constant particle size.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、凝集反応生成物が必ずしも一定の粒径
をとらない点については考慮がされておらず、添加した
特定の径の粒子と凝集反応を起こす試料中の検出目的物
質を必ずしも感度良く検出できない問題があった。
The above conventional technology does not take into consideration the fact that the agglutination reaction product does not necessarily have a constant particle size, and does not necessarily detect the detection target substance in the sample that causes an agglutination reaction with added particles of a specific diameter with good sensitivity. There was a problem that could not be detected.

本発明の目的は、凝集反応生成物の粒径に無関係に試料
中の検出目的物質を定量する方法を提供することにある
An object of the present invention is to provide a method for quantifying a substance to be detected in a sample regardless of the particle size of the agglutination reaction product.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、試料中の検出目的物質と凝集反応を起こす
特定の径をもつ粒子状物質を所定量添加し、特定の粒子
状物質の径と事実上等しく波長を調整した励起光を上記
試料に照射することにより、未反応の特定の径をもつ粒
子状物質の存在量を検出し、特定の径をもつ粒子状物質
の添加量と未反応の特定の径をもつ粒子状物質の存在量
との差がら試料中の検出目的物質の濃度を検出すること
により達成することができる。
The above purpose is to add a predetermined amount of particulate matter with a specific diameter that causes an agglutination reaction with the detection target substance in the sample, and to apply excitation light whose wavelength is adjusted to be virtually equal to the diameter of the specific particulate matter to the sample. By irradiating, the amount of unreacted particulate matter with a specific diameter is detected, and the amount of added particulate matter with a specific diameter and the amount of unreacted particulate matter with a specific diameter are calculated. This can be achieved by detecting the concentration of the substance to be detected in the sample based on the difference in .

〔作用〕[Effect]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図に、本発明による抗原抗体未反応粒子定量装置の
基本構成の一例を示す。レーザなどの光源1からの励起
光9はセル4に入射する。セル6内の液体試料に含まれ
る粒子状物質は、励起光を吸収し、光音響信号を発生す
る。発生した光音響信号は、セルに取り付けられた圧電
素子などの検出器により検出される。検出された光音響
信号12は、光チョッパなどの強度変調器2からの信号
を参照信号11とし、ロックインアンプ7により増幅さ
れる。このような光音響装置で測定された光音響信号の
強度は、試料に含まれる粒子状物質の量(濃度)に比例
する。従って、光音響信号の強度による粒子状物質の検
量線を得ることができる。
FIG. 1 shows an example of the basic configuration of the antigen-antibody unreacted particle quantification device according to the present invention. Excitation light 9 from a light source 1 such as a laser is incident on the cell 4. Particulate matter contained in the liquid sample within the cell 6 absorbs the excitation light and generates a photoacoustic signal. The generated photoacoustic signal is detected by a detector such as a piezoelectric element attached to the cell. The detected photoacoustic signal 12 is amplified by a lock-in amplifier 7 using a signal from an intensity modulator 2 such as an optical chopper as a reference signal 11. The intensity of the photoacoustic signal measured by such a photoacoustic device is proportional to the amount (concentration) of particulate matter contained in the sample. Therefore, a calibration curve of particulate matter based on the intensity of the photoacoustic signal can be obtained.

次に、第2図に、光音響分析装置の感度、即ち、検量線
の傾きの粒径依存性を示す。第2図の測定結果は、ポリ
スチレン粒子について測定したものであり、励起光の強
度1.8W、波長488nm、変調周波数181 Hz
による測定である。第2図に示すように、粒子の大きさ
が、励起光の波長488nm (約0.5μm)に一致
すると、光音響分光装置の感度が共鳴的に増大する。こ
の効果により、第1図の励起光9の波長と一致する粒径
の粒子状物質を試料に添加することにより、この粒子を
選択的に検出・定量することができる。特に、添加粒子
が試料中の分析目的物質と抗原抗体反応による凝集で粒
径が変化すると、この光音響分光装置では検出されなく
なるので、粒子の添加3 量と未反応粒子の存在量の差から分析目的物質を選択的
、かつ、高感度に測定することができる。
Next, FIG. 2 shows the particle size dependence of the sensitivity of the photoacoustic analyzer, that is, the slope of the calibration curve. The measurement results shown in Figure 2 were measured on polystyrene particles, and the excitation light intensity was 1.8 W, the wavelength was 488 nm, and the modulation frequency was 181 Hz.
This is a measurement by As shown in FIG. 2, when the particle size matches the excitation light wavelength of 488 nm (approximately 0.5 μm), the sensitivity of the photoacoustic spectrometer increases resonantly. Due to this effect, by adding particulate matter having a particle size that matches the wavelength of the excitation light 9 in FIG. 1 to a sample, it is possible to selectively detect and quantify the particles. In particular, if the particle size of the added particles changes due to aggregation due to an antigen-antibody reaction with the substance of interest in the sample, this photoacoustic spectrometer will no longer be able to detect it. Analytical target substances can be measured selectively and with high sensitivity.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第3図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 3.

本実施例の装置構成を第1図に示す。光源lはArレー
ザで、488nmのレーザ光9を発振する。レーザ光9
は回転ブレード式の光強度変調器2、即ち、光チョッパ
により、変調周波数181Hzの矩形波に強度変調され
、励起光10となる。
The apparatus configuration of this embodiment is shown in FIG. The light source 1 is an Ar laser and oscillates a laser beam 9 of 488 nm. Laser light 9
is intensity-modulated into a rectangular wave with a modulation frequency of 181 Hz by a rotating blade type optical intensity modulator 2, that is, an optical chopper, and becomes excitation light 10.

励起光10はセル4に入射する。セル4は円筒状の光音
響セルで、ガラス円筒の中心部に同一内径の円筒状圧電
素子を組み込み、これを光音響信号の検出器とする。励
起光は円筒の中心軸に沿って入射する。セル4の内部に
液体試料を充填し、励起光10を入射した時に発生する
光音響信号は圧電素子によって電気信号に変換される。
Excitation light 10 enters cell 4 . The cell 4 is a cylindrical photoacoustic cell, in which a cylindrical piezoelectric element with the same inner diameter is built into the center of a glass cylinder, and this is used as a photoacoustic signal detector. The excitation light is incident along the central axis of the cylinder. A photoacoustic signal generated when the cell 4 is filled with a liquid sample and the excitation light 10 is incident is converted into an electrical signal by a piezoelectric element.

この電気信号に変換された光音響信号12はロックイン
アンプ7に入力する。ロックインアンプ7では、光強度
検出器2の変調に同期した信号11を参照信4− 号として、検出した光音響信号12から励起光10に対
応する光音響信号のみを抽出し、光音響信号強度14を
記録計8に入力する。
The photoacoustic signal 12 converted into an electrical signal is input to the lock-in amplifier 7. The lock-in amplifier 7 extracts only the photoacoustic signal corresponding to the excitation light 10 from the detected photoacoustic signal 12 using the signal 11 synchronized with the modulation of the optical intensity detector 2 as a reference signal 4-, and extracts the photoacoustic signal corresponding to the excitation light 10 from the detected photoacoustic signal 12. Input intensity 14 into recorder 8.

以下、本発明を免疫分析に応用した実施例について説明
する。上述の装置を用いてα−フェトプロティン(以下
AFPと略す)を測定する。
Examples in which the present invention is applied to immunoassay will be described below. α-Fetoprotein (hereinafter abbreviated as AFP) is measured using the above-mentioned apparatus.

(1)AFP測定用試料の調整 抗ヒトAFP抗体の0.1M グリシン緩衝液(pH6
,5)10m+2に粒径0.5μm の白色ポリスチレ
ンラテックス(固形分濃度10%)1mQを加えて室温
で三時間撹拌したのち、2〜4℃の冷却下で40分間、
1200Orpmで遠心分離した。得られた沈殿を、0
.5%牛血清アルブミン、0.1MNaCQ、2mMM
gCf1zを含む10mMリン酸緩衝液(pH6,5)
に懸濁させて、感作ラテツクス粒子濃度が1%の抗AF
P抗体感作ラテックス試薬を調整した。
(1) Preparation of sample for AFP measurement Anti-human AFP antibody in 0.1M glycine buffer (pH 6)
, 5) Add 1 mQ of white polystyrene latex (solid content concentration 10%) with a particle size of 0.5 μm to 10 m + 2, stir at room temperature for 3 hours, and then cool for 40 minutes at 2 to 4 ° C.
Centrifugation was performed at 1200 rpm. The obtained precipitate was reduced to 0
.. 5% bovine serum albumin, 0.1M NaCQ, 2mM
10mM phosphate buffer containing gCf1z (pH 6,5)
Anti-AF with a concentration of 1% sensitized latex particles
A P antibody sensitized latex reagent was prepared.

(2)試料の測定 試料溶液であるヒトAFPを添加した牛血清アルブミン
溶液10μ悲ら(1)で調整した抗ヒトAFP抗体感作
ラテックス試薬50μ氾。
(2) Measurement of sample Sample solution: 10 μl of bovine serum albumin solution added with human AFP. 50 μl of anti-human AFP antibody sensitized latex reagent prepared with (1).

10mMリン酸緩衝溶液(pH6,5)200μ氾を加
えて、37℃、10分間抗抗原体反応させた。この反応
液を光音響セルに充填し、光音響信号を測定した。
A 200μ flood of 10mM phosphate buffer solution (pH 6.5) was added and anti-antigen reaction was carried out at 37°C for 10 minutes. This reaction solution was filled into a photoacoustic cell, and the photoacoustic signal was measured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料中の検出目的物質と添加する特定
の径をもつ粒子状添加物質の凝集反応生成物の粒径に無
関係に検出目的物質を定量できるので、以下の効果があ
る。すなわち、 (1)、凝集反応生成物の粒径が一定でない場合でも、
検出目的物質を正確に定量できる。
According to the present invention, the detection target substance can be quantified regardless of the particle size of the aggregation reaction product of the detection target substance in the sample and the added particulate additive substance having a specific diameter, so that the following effects can be achieved. That is, (1), even if the particle size of the aggregation reaction product is not constant,
The substance to be detected can be accurately quantified.

(2)、試料に添加する粒子状物質の径を励起光に一致
させることにより、励起光の波長掃引機構が不要となる
(2) By matching the diameter of the particulate matter added to the sample with the excitation light, a wavelength sweeping mechanism for the excitation light becomes unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は感度
の粒径依存性を示す特性図、第3図は第1図の装置を用
いたアルファフェトプロティンの検量線を示す特性図で
ある。 1・・光源、2・強度変調器、3・・ハーフミラ−4・
・セル、5 ・ビームストッパ、6・・光強度モニタ、
7・・ロックインアップ、8・・・記録計、9 ・レー
ザ光、10・・・励起光、]1・・参照信号、12・・
光音響信号、↓3 モニタ信号、14・・信号強度。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the dependence of sensitivity on particle size, and Fig. 3 is a characteristic diagram showing the calibration curve of alpha-fetoprotein using the apparatus shown in Fig. 1. It is a diagram. 1. Light source, 2. Intensity modulator, 3. Half mirror 4.
・Cell, 5 ・Beam stopper, 6...Light intensity monitor,
7.Lock-in up, 8.Recorder, 9.Laser light, 10.Excitation light, ]1..Reference signal, 12..
Photoacoustic signal, ↓3 Monitor signal, 14...Signal strength.

Claims (1)

【特許請求の範囲】 1、励起光を試料中の粒子状物質に照射して前記励起光
の波長と等しい径をもつ前記粒子状物質の濃度を求める
方法において、 前記試料に前記試料の一部の成分と凝集反応を起こす特
定の径の粒子状物質を所定量添加し、前記特定の径をも
つ粒子状物質の径と事実上等しく波長を調整した光を前
記試料に照射することにより、未反応の前記特定の径を
もつ粒子状物質の存在量を検出し、前記特定の径をもつ
粒子状物質の添加量と前記未反応の特定の径をもつ粒子
状物質の存在量との差から、前記試料の一部の成分と凝
集した特定の径をもつ粒子状物質の量を検出する光音響
分析方法。 2、請求項1において、 前記凝集した特定の径をもつ粒子状物質の量から、前記
試料の一部の成分の濃度を求める光音響分析方法。
[Claims] 1. A method for determining the concentration of particulate matter having a diameter equal to the wavelength of the excitation light by irradiating particulate matter in a sample with excitation light, the method comprising: exposing part of the sample to the sample; By adding a predetermined amount of particulate matter with a specific diameter that causes an agglutination reaction with the components of Detecting the amount of reacting particulate matter with a specific diameter, and determining the difference between the amount of added particulate matter with the specific diameter and the amount of unreacted particulate matter with the specific diameter. , a photoacoustic analysis method for detecting the amount of particulate matter having a specific diameter that has aggregated with some components of the sample. 2. The photoacoustic analysis method according to claim 1, wherein the concentration of some components of the sample is determined from the amount of the aggregated particulate matter having a specific diameter.
JP1180354A 1989-07-14 1989-07-14 Detection of particulate material Pending JPH0346540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180354A JPH0346540A (en) 1989-07-14 1989-07-14 Detection of particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180354A JPH0346540A (en) 1989-07-14 1989-07-14 Detection of particulate material

Publications (1)

Publication Number Publication Date
JPH0346540A true JPH0346540A (en) 1991-02-27

Family

ID=16081773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180354A Pending JPH0346540A (en) 1989-07-14 1989-07-14 Detection of particulate material

Country Status (1)

Country Link
JP (1) JPH0346540A (en)

Similar Documents

Publication Publication Date Title
US4725140A (en) Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field
Zhao et al. Nanoparticle-based photoacoustic analysis for highly sensitive lateral flow assays
JPS5990053A (en) Antigen-antibody reaction measuring device
US4115699A (en) Apparatus for sensitive detection and quantitative analysis of biological and biochemical substances
EP0256474B1 (en) Method and apparatus for detecting particular particulate substance
US4799796A (en) Method and apparatus for measuring immunological reaction with the aid of phase-modulation of light
JPS62291547A (en) Method for measuring concentration of substance
JPH0743381B2 (en) Photoacoustic immunoassay method and apparatus
JPH0346540A (en) Detection of particulate material
JPS62116263A (en) Method and apparatus for measuring immunoreaction using multiple scattering of linearly polarized light
JPS6259841A (en) Method and instrument for measuring immunoreaction using linearly polarized light
JPS6166150A (en) Immunoreaction measuring method
JPH09251004A (en) Method and device for optical-acoustic analyzing
CN116930485B (en) Trace pollutant infrared signal enhancement and in-situ rapid detection method and detection system based on immune biological reaction
JPH0233097B2 (en)
JPH0514219B2 (en)
GB1600069A (en) Method for the measurement of antigens and antibodies
JPH03110447A (en) Method and apparatus for measuring particle by using photosound and immunoassay utilizing this method and apparatus
JPS61173138A (en) Method for measuring immune reaction by intensity fluctuation of light
JPH02275361A (en) Measurement of immunoreaction
JPH01214761A (en) Immunological analysis method using opto-acoustic spectroscopy
JPS6165144A (en) Instrument for measuring immune reaction using intensity fluctuation of light
JPH06100600B2 (en) Immunoassay method
JPH01187459A (en) Immune analysis
US8529837B2 (en) System and method for detecting specific binding reactions using magnetic labels