JPH01214761A - Immunological analysis method using opto-acoustic spectroscopy - Google Patents

Immunological analysis method using opto-acoustic spectroscopy

Info

Publication number
JPH01214761A
JPH01214761A JP63039397A JP3939788A JPH01214761A JP H01214761 A JPH01214761 A JP H01214761A JP 63039397 A JP63039397 A JP 63039397A JP 3939788 A JP3939788 A JP 3939788A JP H01214761 A JPH01214761 A JP H01214761A
Authority
JP
Japan
Prior art keywords
antibody
antigen
carrier
measured
labeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039397A
Other languages
Japanese (ja)
Inventor
Kyoko Imai
恭子 今井
Yasushi Nomura
靖 野村
Hiroko Makiguchi
牧口 浩子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP63039397A priority Critical patent/JPH01214761A/en
Publication of JPH01214761A publication Critical patent/JPH01214761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To shorten a measuring time and to enhance measuring sensitivity, by projecting intermittent light to reaction liquid wherein a labeled antigen or antibody that is bonded to a carrier and a labeled antigen or antibody that is not bonded are separated, and measuring a generated acoustic wave. CONSTITUTION:A sample incorporating a material to be measured, a labeled antigen or antibody labeled with a specified material and a carrier wherein antigen or antibody is solidified undergo antigen/antibody reaction in a reaction liquid. The reaction liquid is inputted in an opto-acoustic cell 4. Light emitted from a light source 1 is made to be intermittent light through a light chopper 2 and inputted into the cell 4. The intermittent light is absorbed with the sample in the cell 4. As a result, an acoustic signal is generated. The signal is measured by using an acoustic sensor 5. In this way, the labeled antigen or antibody bonded to a carrier and the labeled antigen or antibody that is not bonded are separately measured. The amount of the material to be measured is obtained by using a calibration curve that is prepared beforehand. The carrier to be used has a minute carrier particle having the average diameter of 0.01-100mum. It is desirable that the inactive carrier particles of 0.1-10mum are used in a solid state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、免疫分析方法に係り、特に光音響分光法によ
り試料中の成分を分析するに好適な免疫分析方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an immunoassay method, and particularly to an immunoassay method suitable for analyzing components in a sample by photoacoustic spectroscopy.

〔従来の技術〕[Conventional technology]

抗原、抗体、ハブテンなどの試料中の測定対象物質をこ
れらと特異的に反応する受容体(抗体あるいは抗〃■)
と反応させて、生成する免疫複合体によるisパターン
や濁度あるいは光散乱の強度を測定して、測定対象物質
の濃度を求める方法は従来より知られている。しかしな
がら、これらの方法は、試料中の夾雑成分の影響をうけ
やすい」二に、測定感度の面からみても問題があり、測
定対象成分の濃度が低い場合(10−8M以下)には:
II!1定できない。   ゛ このような低濃度の物質を測定するために従来用いられ
ている方法は、ラジオアイソトープを標識として用いる
RIA法である。しかしラジオアイソトープの扱いが部
列であることから、アイソトープの代わりに螢光物質や
酵素を標識とする方法が開発された。これらの方法には
一長一短がある。定トま性に優れた測定方法のうち、操
作性のよい均一反応系の方法では測定感度が不十分であ
るし、不均一反応系を用いる測定方法は、感度は比較的
高いが結果を得られるまで長時間を要するため1通常の
臨床検査の場においては不便なものであった。不均一反
応系のうち、標識抗原と抗体の結合物(BOUNDまた
はBと略す)と、遊離の状m (FREEまたはF)で
残った過剰の標識抗原とを分離するいわゆるB/F分離
方法のなかでは液相中では沈降してしまう大粒径の同相
担体やあるいは反応管壁を同相として反応を進行させ、
その後洗浄して遊離標識抗原を除去してBの活性を測定
する方法が広く使われている。同相担体の扱いが容易で
あるために、近年普及してきているが、これらの同相法
は反応の効率が極めて悪いために測定結果を得るまでに
数時間を要する。また測定感度においても、従来の検知
手段である吸光度あるいは螢光強度の検出限界とのかね
あいから10−12M程度の測定感度を達成するのが限
界であった。すなわち、この測定検出感度よりもさらに
低濃度に存在する試料成分は、その濃度はもとより存在
の有無さえも確認できなかった。
A receptor (antibody or anti-■) that specifically reacts with the substance to be measured in a sample, such as an antigen, antibody, or habten.
A method for determining the concentration of a substance to be measured is conventionally known by measuring the IS pattern, turbidity, or intensity of light scattering caused by the immune complex produced. However, these methods are easily affected by contaminant components in the sample.Secondly, there are problems in terms of measurement sensitivity, and when the concentration of the component to be measured is low (10-8M or less):
II! 1 cannot be determined. ``The conventional method used to measure such low concentrations of substances is the RIA method, which uses radioisotopes as labels. However, since the treatment of radioisotopes is limited, methods have been developed that use fluorescent substances or enzymes as labels instead of isotopes. These methods have advantages and disadvantages. Among measurement methods with excellent constant tolerability, methods using a homogeneous reaction system with good operability have insufficient measurement sensitivity, while measurement methods using a heterogeneous reaction system have relatively high sensitivity but are difficult to obtain results. Because it takes a long time to complete the test, it is inconvenient in ordinary clinical examinations. In a heterogeneous reaction system, the so-called B/F separation method separates the bound product of labeled antigen and antibody (abbreviated as BOUND or B) from the excess labeled antigen remaining in a free form (FREE or F). Among them, the reaction proceeds using large-sized in-phase carriers that settle in the liquid phase or the reaction tube wall as the in-phase,
A widely used method is to then wash to remove free labeled antigen and measure B activity. These in-phase methods have become popular in recent years because they are easy to handle, but these in-phase methods require several hours to obtain measurement results due to extremely low reaction efficiency. Also, in terms of measurement sensitivity, the limit was to achieve a measurement sensitivity of about 10-12M due to conflicts with the detection limits of conventional detection means such as absorbance or fluorescence intensity. In other words, it was not possible to confirm the concentration or even the presence or absence of sample components present at a lower concentration than this measurement detection sensitivity.

さらにB/F分離の工程は、測定結果のバックグラウン
ド値に直接影響するために、d1q定値の再現性の低下
をまねく大きな要因となっている。さらに、一般に装置
構成−ヒからみると、機構と最も精度が要求されるため
、装置の性能の良否がH1ll定僅の信頼性にも大きく
影響しているという実状にありB/F分離の不要な、高
感度および高精度な分析方法が望まれている。
Furthermore, the B/F separation process directly affects the background value of the measurement results, and is therefore a major factor in reducing the reproducibility of the d1q constant value. Furthermore, in general, from the perspective of the equipment configuration, the mechanism and precision are the most required, so the fact is that the quality of the equipment's performance has a great impact on the reliability of the H1ll constant, so there is no need for B/F separation. Therefore, a highly sensitive and highly accurate analytical method is desired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術による固相法において、B/F分離が必要
なために操作が面倒であり測定結果を得るまでに長時間
を要し、さらに吸光度あるいは螢光強度の検出限界によ
る測定感度が低いといった問題あった。
In the solid-phase method according to the conventional technology described above, the operation is troublesome due to the necessity of B/F separation, and it takes a long time to obtain measurement results. Furthermore, the measurement sensitivity is low due to the detection limit of absorbance or fluorescence intensity. There was a problem.

本発明の目的は、操作時間が短縮できて、しかも測定感
度を高めた免疫分析方法を提供することにある。
An object of the present invention is to provide an immunoassay method that can shorten operation time and increase measurement sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

]−記目的を達成するために、本発明の免疫分析゛方法
においては、測定対象物質を含む試料と、抗原または抗
体を所定の物質で標識した標識抗原または抗体と、抗原
または抗体を固相化した担体とを抗原抗体反応させた反
応液に断続光を照射して発生する音響波を測定する光音
響分光法によって。
] - In order to achieve the above object, the immunoassay method of the present invention involves combining a sample containing a substance to be measured, a labeled antigen or antibody obtained by labeling an antigen or antibody with a predetermined substance, and a solid phase containing the antigen or antibody. by photoacoustic spectroscopy, which measures the acoustic waves generated by irradiating a reaction solution with intermittent light to react the antigen-antibody reaction with the carrier.

前記担体に結合した前記標識抗原または抗体と、結合し
ない前記標識抗原または抗体とを分離測定し、測定対象
物質量を求める。
The labeled antigen or antibody bound to the carrier and the unbound labeled antigen or antibody are separated and measured to determine the amount of the substance to be measured.

〔作用〕[Effect]

上記本発明による免疫分析方法によれば、測定対象物質
を含む試料と、抗原または抗体を所定の物質で標識した
標識抗原または抗体と、抗原または抗体を固相化した担
体とを抗原抗体反応させて、前記担体に結合した前記標
識抗原または抗体と結合しないものとに分離した反応液
に、断続光を照射して発生する音響波を測定することに
よって、測定対象物質量を定量する。
According to the above immunoassay method of the present invention, an antigen-antibody reaction is performed between a sample containing a substance to be measured, a labeled antigen or antibody obtained by labeling an antigen or antibody with a predetermined substance, and a carrier on which the antigen or antibody is immobilized. Then, the amount of the substance to be measured is quantified by irradiating intermittent light to the reaction solution separated into those that do not bind to the labeled antigen or antibody bound to the carrier and measuring the generated acoustic waves.

〔実施例〕〔Example〕

本発明による一実施例を図面を参照して説明する。 An embodiment according to the present invention will be described with reference to the drawings.

まず、本発明で用いる光音響分光法の詳細について説明
する。光音響分光法では、まず光を吸収することが不可
欠である。物質が光を吸収するということは、物質が光
エネルギーを取りこみ、物質を構成している原子あるい
は分子がエネルギーが富んだ状態に上がることを意味す
る。この原子あるいは分子がとりこんだ光エネルギーが
、熱を放出して元の状態に戻る過程を測定する分光法が
光音響分光法である。放出された熱により音響波が発生
するので、この光音響信号を検出する。
First, details of the photoacoustic spectroscopy used in the present invention will be explained. In photoacoustic spectroscopy, it is essential to first absorb light. When a substance absorbs light, it means that the substance takes in the light energy and the atoms or molecules that make up the substance rise to an energy-rich state. Photoacoustic spectroscopy is a spectroscopy method that measures the process by which light energy absorbed by atoms or molecules releases heat and returns to its original state. The emitted heat generates acoustic waves, and this photoacoustic signal is detected.

光音響分光計における主要な構成要素は、第1図に示す
ように、光源1.光チョッパ2.レンズ3、光音響セル
4.音響センサー5.増幅器6゜データ処理部7である
。光源1から出た光は、分光器を通ったのちに光チョッ
パ2により断続光にされ、光音響セル4に入射する。光
音響セル4内では試料が断続光を吸収する結果、光音響
信号が発生する。これをマイクロフォンなどの音響セン
サー5を用いて検出する。試料用の光音響セル4として
は、試料自体を圧力媒体として、試料中に発生した熱を
圧力変化に変えて、圧電素子を用いて検出する方式のセ
ルがよい。試料を、気体を封入した気密容器に入れ、試
料中に発生した熱を気体の圧力変化に変えて高感度マイ
クロフォンで検出するタイプのセルもある。しかし臨床
検査で多く用いる試料は水溶液であり高感度マイクロフ
ォンは水蒸気を嫌うので取扱いにくい。
The main components of a photoacoustic spectrometer are, as shown in FIG. 1, a light source 1. Light chopper 2. Lens 3, photoacoustic cell 4. Acoustic sensor 5. The amplifier 6° is the data processing section 7. The light emitted from the light source 1 passes through a spectroscope, is turned into intermittent light by an optical chopper 2, and enters a photoacoustic cell 4. In the photoacoustic cell 4, a photoacoustic signal is generated as a result of the sample absorbing the intermittent light. This is detected using an acoustic sensor 5 such as a microphone. The photoacoustic cell 4 for the sample is preferably a cell that uses the sample itself as a pressure medium and converts the heat generated in the sample into a pressure change, which is detected using a piezoelectric element. There is also a type of cell in which a sample is placed in an airtight container filled with gas, and the heat generated in the sample is converted into a pressure change in the gas, which is detected using a highly sensitive microphone. However, samples often used in clinical tests are aqueous solutions, and high-sensitivity microphones dislike water vapor, making them difficult to handle.

試料としては、試料中の測定対象成分濃度に比例した量
の微小担体粒子を含む最終反応液を、光音響セル4に入
れて光音響信号強度を測定する。
As a sample, a final reaction solution containing microscopic carrier particles in an amount proportional to the concentration of the component to be measured in the sample is placed in the photoacoustic cell 4 and the photoacoustic signal intensity is measured.

つまり、前記最終反応液を光音響セル4に導き。That is, the final reaction solution is introduced into the photoacoustic cell 4.

入射光を照射する。試料内に発生する圧力変化(光音響
信号)は、圧電セラミックスにより電気信号(電圧の発
生)に変換される。あらかじめ濃度既知の抗原を用いて
、抗原濃度と光音響信号との間で検量線を作成しておく
ことにより、抗原抗体反応を光音響分光法を用いて定量
的に測定し、これにより目的の抗原又は抗体を定量する
ことができる。
Irradiate incident light. Pressure changes (photoacoustic signals) generated within the sample are converted into electrical signals (voltage generation) by piezoelectric ceramics. By creating a calibration curve between the antigen concentration and the photoacoustic signal using an antigen whose concentration is known in advance, the antigen-antibody reaction can be quantitatively measured using photoacoustic spectroscopy. Antigens or antibodies can be quantified.

本発明の望ましい実施例によれば、従来実用的には、R
IAによって初めて測定可能であったような微量成分を
、それよりもはるかに高感度で迅速に定量的に測定でき
る。
According to a preferred embodiment of the present invention, in conventional practice, R
Trace components that could be measured for the first time by IA can be quantitatively measured with much higher sensitivity and quickly.

本発明に使用する微小担体粒子は、平均粒径が0.01
 μmから100μmのものが目的にかない、特に好ま
しくは、平均粒径0.1  μmから10μmの不活性
担体粒子を固相として用いるのがよい。このような担体
を測定試料と反応させると反応効率が非常によくなるた
め測定が迅速に進行する。
The micro carrier particles used in the present invention have an average particle diameter of 0.01
Inert carrier particles of .mu.m to 100 .mu.m are suitable for the purpose, particularly preferably inert carrier particles with an average particle size of 0.1 .mu.m to 10 .mu.m are used as the solid phase. When such a carrier is reacted with a measurement sample, the reaction efficiency becomes very high, so that the measurement proceeds quickly.

試料中の測定対象物質を、本発明による方法によって、
高感度、迅速に定量するためには、例えばラックス粒子
のような不活性担体に担持させた反応物質となるべく高
濃度でこれと反応する測定試料とを接触させることが望
ましいことはいうまでもない。
By the method according to the present invention, the substance to be measured in the sample is
Needless to say, in order to perform high-sensitivity and rapid quantitative determination, it is desirable to bring the reactant supported on an inert carrier such as lux particles into contact with the reacting sample at as high a concentration as possible. .

種々の粒子径を有する不溶性担体を用いて、ヒトIgG
定量のために抗原抗体反応をさせたところ、担体の平均
粒径100μm以下のものを用いると反応時間が1時間
以内に抗原であるヒトIgGを定量的に検出できること
がわかった。また、特に10μm以下の不溶性担体粒子
を用いると反応時間15分以内に定量が可能であること
がわかった。測定試料の分析にあたり、処理スピードの
点から許容される反応時間は、1時間、好ましくは15
分以内であることから平均粒径10μm以下の不活性担
体粒子を使用することが好ましいといえる。また測定感
度とS/N比に着目して比較すると、平均粒径0.01
μm以上、好ましくは、0.1μm以上の粒子径が必要
であることが判明した。以上の結果から、不活性担体粒
子は、平均粒子径が0.1μmから10μmの担体が好
適であることが判明した。
Using insoluble carriers with various particle sizes, human IgG
When performing an antigen-antibody reaction for quantitative determination, it was found that human IgG, which is an antigen, could be quantitatively detected within 1 hour by using a carrier with an average particle size of 100 μm or less. Furthermore, it has been found that quantitative determination is possible within a reaction time of 15 minutes, especially when insoluble carrier particles of 10 μm or less are used. In analyzing the measurement sample, the permissible reaction time from the viewpoint of processing speed is 1 hour, preferably 15 hours.
It can be said that it is preferable to use inert carrier particles having an average particle diameter of 10 μm or less. Also, when comparing the measurement sensitivity and S/N ratio, the average particle size is 0.01
It has been found that a particle size of .mu.m or more, preferably 0.1 .mu.m or more is required. From the above results, it was found that inert carrier particles having an average particle diameter of 0.1 μm to 10 μm are suitable.

不活性の担体粒子としては、生体液の測定を行なうとき
に用いられる液体媒体に実質的に不溶で前記平均粒径を
有する有機高分子のラテックス。
The inert carrier particles include an organic polymer latex which is substantially insoluble in the liquid medium used for measuring biological fluids and has the above-mentioned average particle size.

細胞、あるいは例えばシリカ、シリカアルミナ。cells, or for example silica, silica alumina.

アルミナのような無機酸化物、その他鉱物粉末。Inorganic oxides such as alumina and other mineral powders.

金属等が用いられる。Metal etc. are used.

光音響分光法では1粒子径の異なる物質についてそれぞ
れの信号強度を区別して取り出すことができる。このた
めには1粒子径に対応した波長を選択して照射すればよ
い。本発明による分析方法においては、標識抗体が結合
した一定粒径の担体粒子を標的粒径とすればよく、残余
の標識物質の信号を取り出す必要はない。
In photoacoustic spectroscopy, it is possible to distinguish and extract signal intensities of substances with different particle diameters. For this purpose, it is sufficient to select and irradiate a wavelength corresponding to one particle diameter. In the analysis method according to the present invention, carrier particles of a fixed particle size to which a labeled antibody is bound may be used as the target particle size, and there is no need to extract the signal of the remaining labeling substance.

次に5本発明による具体的な一実施例について説明する
Next, a specific embodiment according to the present invention will be described.

まず、抗α−フェトプロティン抗体感作ラテックス試薬
(抗ヒトAFPラテックス試薬)を以下のようにして調
製する。
First, an anti-α-fetoprotein antibody sensitized latex reagent (anti-human AFP latex reagent) is prepared as follows.

抗ヒトAFP抗体のグリシン緩衝液(0,1M。Anti-human AFP antibody in glycine buffer (0.1M.

p I(6、5) 10 m Qに、平均粒径がQ、2
2 μmのポリスチレンラテックス(固形分濃度、10
重量%)1mQを加えて室温において3時間撹拌したの
ち、2〜4℃の冷却下で40分間、12.00Orpm
にて遠心した。得られた沈澱を、0.5 %牛血清アル
ブミン、0.1M NaCQ、2mMMgCQzを含む
10mMリン酸緩衝液(pH6,5)に懸濁させて、該
感作ラテックス粒子濃度が1重量%の抗AFPラテック
ス試薬を調製した。
p I (6, 5) 10 m Q, the average particle size is Q, 2
2 μm polystyrene latex (solids concentration, 10
After adding 1 mQ of weight%) and stirring at room temperature for 3 hours, the mixture was stirred at 12.00 rpm for 40 minutes under cooling at 2 to 4°C.
It was centrifuged at The obtained precipitate was suspended in 10 mM phosphate buffer (pH 6.5) containing 0.5% bovine serum albumin, 0.1M NaCQ, and 2mM MgCQz, and the sensitized latex particles were added to an antimicrobial solution with a concentration of 1% by weight. AFP latex reagent was prepared.

次に、試料溶液100μQと、抗AFPラテックス試薬
50μQと、標識抗体溶液501tΩと、反応用緩衝液
100μQとを混合して、37℃。
Next, 100 μQ of sample solution, 50 μQ of anti-AFP latex reagent, 501 tΩ of labeled antibody solution, and 100 μQ of reaction buffer were mixed and heated at 37°C.

20分間抗抗原体反応させた。これによって固相抗体と
、抗原と、標識抗体からなる免疫反応複合体と、抗原量
に応じて残存する標識抗体とができる。
The anti-antigen was reacted for 20 minutes. As a result, an immune reaction complex consisting of the solid-phase antibody, the antigen, and the labeled antibody, and the remaining labeled antibody depending on the amount of the antigen are formed.

次に、反応液をフロー型の光音響セルに導き、光音響信
号を測定した。光源にはアルボイオンレーザを用いた。
Next, the reaction solution was introduced into a flow-type photoacoustic cell, and the photoacoustic signal was measured. An alboion laser was used as the light source.

測定装置の構成概略は第1図に示すとおりである。The schematic configuration of the measuring device is as shown in FIG.

又、ヒトへFP測定のために作成した検量線を第2図に
示す。第2図からあきらかなように従来の方法では測定
することのできなかったIQmg/mQ以下の低濃度領
域を定量的に測定できていることがわかる。
Furthermore, a calibration curve prepared for human FP measurement is shown in FIG. As is clear from FIG. 2, it is possible to quantitatively measure the low concentration region below IQmg/mQ, which could not be measured by conventional methods.

このように、光音響分光法により測定すると、免疫反応
複合体と、残余の標識抗体との粒子としての大きさが著
しく異なるために測定上の識別が容易である。さらに、
反応溶液のB/F分離が不要であるため、操作性が向上
する。
As described above, when measured by photoacoustic spectroscopy, the immunoreaction complex and the remaining labeled antibody have significantly different particle sizes, making it easy to distinguish them on the measurement. moreover,
Since B/F separation of the reaction solution is not necessary, operability is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上述の通りの方法によるので以下に記
載する効果を奏する。
According to the present invention, since the method is as described above, the following effects can be achieved.

抗原抗体反応をB/F分離を必要とせずに、光音響分光
法を用いて定量的に測定し、これにより目的の抗原又は
抗体を定量することができ、測定感度を高め、低濃度の
領域を測定することができるといった効果がある。さら
に、固相化した担体としては、ラテックスに限らず1分
子量の均一な人工細胞など任意のものを用いることがで
き、該担体の粒子径を0.01〜100μmの範囲とす
ることで、抗原抗体反応の反応時間が短く、操作時間を
短縮できて、微量成分を、高感度で迅速に定量的に測定
できるといった優れた効果がある。
Antigen-antibody reactions can be quantitatively measured using photoacoustic spectroscopy without the need for B/F separation, which allows the target antigen or antibody to be quantified, increases measurement sensitivity, and allows detection in low-concentration areas. It has the effect of being able to measure Furthermore, the immobilized carrier is not limited to latex, but any material such as artificial cells with a uniform molecular weight of 1 can be used, and by setting the particle size of the carrier in the range of 0.01 to 100 μm, antigen This method has excellent effects such as the short reaction time of the antibody reaction, shortening operation time, and the ability to quantitatively measure trace components quickly and with high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明による免疫分析方法の一実施例で使用
した光音響分光器の概略構成図、第2図はAFP測定の
ための検量線を示す図である。 ■・・・光源、2・・・光チョッパ、3・・・レンズ、
4・・・光音響セル、5・・・音響センサー、6・・・
増幅器、7・・・データ処理部。
FIG. 1 is a schematic diagram of a photoacoustic spectrometer used in an embodiment of the immunoassay method according to the present invention, and FIG. 2 is a diagram showing a calibration curve for AFP measurement. ■...Light source, 2...Light chopper, 3...Lens,
4... Photoacoustic cell, 5... Acoustic sensor, 6...
Amplifier, 7... data processing section.

Claims (1)

【特許請求の範囲】 1、測定対象物質を含む試料と、抗原または抗体を所定
の物質で標識した標識抗原または抗体と、抗原または抗
体を固相化した担体とを抗原抗体反応させた反応液に断
続光を照射して発生する音響波を測定する光音響分光法
によつて、前記担体に結合した前記標識抗原または抗体
と、結合しない前記標識抗原または抗体とを分離測定し
、測定対象物質量を求めることを特徴とする光音響分光
法による免疫分析方法。 2、前記担体の粒子径が、0.01〜100μmの範囲
内であることを特徴とする特許請求の範囲第1項記載の
光音響分光法による免疫分析方法。
[Claims] 1. A reaction solution in which a sample containing a substance to be measured is subjected to an antigen-antibody reaction with a labeled antigen or antibody labeled with a predetermined substance and a carrier on which the antigen or antibody is immobilized. The labeled antigen or antibody bound to the carrier and the unbound labeled antigen or antibody are separated and measured by photoacoustic spectroscopy, in which the acoustic waves generated by irradiating intermittent light are measured. An immunoanalysis method using photoacoustic spectroscopy, which is characterized by determining the amount. 2. The immunoassay method using photoacoustic spectroscopy according to claim 1, wherein the particle size of the carrier is within the range of 0.01 to 100 μm.
JP63039397A 1988-02-24 1988-02-24 Immunological analysis method using opto-acoustic spectroscopy Pending JPH01214761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039397A JPH01214761A (en) 1988-02-24 1988-02-24 Immunological analysis method using opto-acoustic spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039397A JPH01214761A (en) 1988-02-24 1988-02-24 Immunological analysis method using opto-acoustic spectroscopy

Publications (1)

Publication Number Publication Date
JPH01214761A true JPH01214761A (en) 1989-08-29

Family

ID=12551860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039397A Pending JPH01214761A (en) 1988-02-24 1988-02-24 Immunological analysis method using opto-acoustic spectroscopy

Country Status (1)

Country Link
JP (1) JPH01214761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516851A (en) * 2008-04-02 2011-05-26 ビバクタ、リミテッド Chemical substance detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516851A (en) * 2008-04-02 2011-05-26 ビバクタ、リミテッド Chemical substance detection method

Similar Documents

Publication Publication Date Title
US3973129A (en) Fluorimetric apparatus and method for analysis of body fluid
US4368047A (en) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
US4313929A (en) Method of measurement of antigens and antibodies
JPH0521185B2 (en)
JPH01282447A (en) Immunoassay system for internal total reflection scattered
EP0183524A2 (en) Portable analyzer
CA2521773C (en) Optical chemical sensing device with pyroelectric or piezoelectric transducer
JP3693680B2 (en) Assays using magnetic particles
US4988630A (en) Multiple beam laser instrument for measuring agglutination reactions
EP3236242A1 (en) Surface plasmon-enhanced fluorescence measurement device and surface plasmon-enhanced fluorescence measurement method
JPH0545361A (en) Analysis for liquid sample and liquid sample analyzing substrate used for the analysis
JPS638560A (en) Immunological analytic system
US8084002B2 (en) Chemical sensing device
WO2020260865A1 (en) A method for detecting an analyte
JPH0743381B2 (en) Photoacoustic immunoassay method and apparatus
EP0369176A2 (en) Method for immunoassay using photoacoustic spectroscopy
JPH06105256B2 (en) Immunoassay method
JPH01214761A (en) Immunological analysis method using opto-acoustic spectroscopy
JPH03272466A (en) Multiple immunologocal evaluating analyzing system
CN116930485B (en) Trace pollutant infrared signal enhancement and in-situ rapid detection method and detection system based on immune biological reaction
JPH01187459A (en) Immune analysis
RU2753856C1 (en) Method for detecting antibodies in biomaterial using glass microstructure waveguides
GB1600069A (en) Method for the measurement of antigens and antibodies
JPWO2006028174A1 (en) Measuring apparatus and measuring method
JPS6262291B2 (en)