JPH021219B2 - - Google Patents
Info
- Publication number
- JPH021219B2 JPH021219B2 JP12476180A JP12476180A JPH021219B2 JP H021219 B2 JPH021219 B2 JP H021219B2 JP 12476180 A JP12476180 A JP 12476180A JP 12476180 A JP12476180 A JP 12476180A JP H021219 B2 JPH021219 B2 JP H021219B2
- Authority
- JP
- Japan
- Prior art keywords
- content
- nickel
- titanium
- cobalt
- niobium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 37
- 239000010936 titanium Substances 0.000 claims description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 23
- 239000000956 alloy Substances 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 23
- 239000010941 cobalt Substances 0.000 claims description 16
- 229910017052 cobalt Inorganic materials 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 15
- 239000010955 niobium Substances 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 13
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 238000005266 casting Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000004090 dissolution Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Heat Treatment Of Steel (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Physical Vapour Deposition (AREA)
- Preliminary Treatment Of Fibers (AREA)
- Mold Materials And Core Materials (AREA)
Description
本発明は鉄を主成分とし、ニツケル35〜45%、
チタン4%以下、ニオブ1%以下、溶解に基く不
可避の不純物、およびコバルトを含む5×10-6/
℃より小さい20〜300℃の線膨張係数および
350N/mm2より高い20℃の降伏点を有する時効硬
化可能の鉄ニツケル系鋳物合金に関する。
この種の鋳物合金は公知であり(スイス特許第
602949号明細書参照)、この合金の場合成分ニツ
ケル、チタン、コバルトおよびニオブが次式の条
件を充足する限り強度と線膨張係数の最適の組合
せが得られる:
Ni%+0.7×Co%−1.25(Ti%+0.35×Nb%)
−2×Ti%/(Ti%+Nb%)=37〜39
しかしこのような時効硬化した合金はその組成
が上式を満足しない限り、適当に高いチタン含量
において350N/mm2の20℃降伏点を有するけれど、
20〜300℃の温度範囲で5×10-6/℃より小さい
膨張係数は達成されない。
さらに目的の抗張力を得るにはチタンの最低所
要含量が少なくとも1.7重量%でなければならず、
かつ2%以上の高いチタン含量でしか鋳物の良効
な表面状態が達成されないといわれる。
この公知の鋳物合金の場合さらに線膨張係数を
300〜600℃の範囲で低く保つため5〜16%のコバ
ルト含量が必要である。
本発明の目的は前記スイス特許第602949号明細
書に記載の鉄−ニツケル系鋳物合金から出発して
この合金を線膨張係数を上昇せずに高価なコバル
ト含量が低下するように改善することである。
実験により意外にも最低量のチタンで、コバル
トを新規合金の特許請求の範囲第1項の特徴部に
示す含量1.5〜2.5%へ低下して公知合金と少なく
とも同等の性質が得られることが明らかになつ
た。
本発明の合金の組成は次の考慮に基づく:ニツ
ケル:
ニツケル含量35%の鉄―ニツケル合金は室温と
100℃の間で低い膨張係数を有する。もつと高い
温度では膨張係数の温度に対する経過は急上昇す
る(折点形成)。ニツケル含量が約45%へ上昇す
ると、低温の膨張係数の値は少し上昇するけれ
ど、折点は高温へ移動するので、広い温度範囲に
わたつて比較的小さい膨張係数が存在する。45%
より高いニツケル含量では膨張係数が不所望に上
昇するので、これを超えてはならない。
コバルト:
ニツケル含量を最高45%に制限しなければなら
ないので、コバルトが添加される。このコバルト
はニツケルの効果を一部補足し、高温範囲の膨張
係数を低下する。これは折点が高温の方へ移動
し、それゆえ線膨張曲線が全体として平坦になる
ことを意味する。
チタン:
チタンはNi3Tiの折出によつて時効硬化をひき
起こして合金の強度を上昇する。チタンの添加に
よつてNiが結合され、従つてNi含量が低下する。
それゆえチタンの添加は4%に制限しなければな
らない。もつと高いチタン含量では合金の靭性が
低下するので材料は脆くなる。さらに高いチタン
含量は膨張係数を大きくする。チタンの最小はさ
もなければ時効硬化が生じないので最低1%は必
要である。
ニオブ:
ニオブは極めて強力は炭化物形成剤である。ニ
オブは炭素を結合し、炭化物折出によつて耐熱性
を改善する。ニオブの添加は炭化物形成剤として
のチタンの代用とみなされる。この添加によつて
チタンがNi3Tiとして析出するため役立つ。ニオ
ブ含量はニツケルの一部が結合されるので、1%
を超えてはならない。
チタンおよびニツケルを含有するためこの新材
料は時効硬化性であり、合金組織は炭化物を有す
るγ―地および析出相γ′からなる。TiCおよび
NiC型炭化物は大表面積の初晶炭火物として、粒
界析出炭化物としてまたは粒子内部の球状炭化物
として現れる。
特殊な利点は本発明の合金が現在のコバルトの
高い調達費のため著しく安価になることである。
次に本発明を2つの実施例により説明する。
2つの試験合金を真空溶解し、金属の型で直径
14mmのロツドを鋳造し、真空中で凝固させた。多
孔性を除くためロツドを1120℃で直径6mmに熱間
圧延し、次に650℃で5時間熱処理した。このロ
ツド材料を切削加工して強度試片をつくつた。
ニツケル42.9%、コバルト2.14%、チタン1.66
%、ニオブ0.43%、アルミニウム0.13%、炭素
0.003%、ケイ素0.05%、残部鉄および溶解に基
く不純物の組成を有する第1合金ならびにニツケ
ル37.4%、コバルト1.99%、チタン1.70%、ニオ
ブ0.51%、アルミニウム0.07%、炭素0.002%、ケ
イ素0.04%、残部鉄および溶解に基く不純物の組
成を有する第2合金は次の性質を示した:
The main component of this invention is iron, nickel 35-45%,
5×10 -6 / containing 4% or less titanium, 1% or less niobium, unavoidable impurities due to dissolution, and cobalt.
Linear expansion coefficient of 20~300℃ smaller than ℃ and
The present invention relates to an age-hardenable iron-nickel casting alloy having a yield point of 20°C higher than 350N/mm 2 . Casting alloys of this type are known (Swiss patent no.
602949), in the case of this alloy, the optimum combination of strength and coefficient of linear expansion can be obtained as long as the components nickel, titanium, cobalt and niobium satisfy the conditions of the following formula: Ni% + 0.7 × Co% - 1.25 (Ti% + 0.35 x Nb%) -2 x Ti% / (Ti% + Nb%) = 37 ~ 39 However, such age-hardened alloys have a suitably high titanium content unless their composition satisfies the above formula. Although it has a 20℃ yield point of 350N/mm 2 in the content,
Expansion coefficients of less than 5x10 -6 /°C are not achieved in the temperature range from 20 to 300°C. Furthermore, to obtain the desired tensile strength, the minimum required content of titanium must be at least 1.7% by weight,
It is said that a good surface condition of the casting can only be achieved with a high titanium content of 2% or more. In the case of this known casting alloy, the coefficient of linear expansion is
A cobalt content of 5-16% is required to keep it low in the range of 300-600°C. The object of the present invention is to start from the iron-nickel casting alloy described in Swiss Patent No. 602,949 and to improve this alloy in such a way that the expensive cobalt content is reduced without increasing the coefficient of linear expansion. be. Experiments have surprisingly shown that with a minimum amount of titanium, the cobalt content can be reduced to 1.5 to 2.5% as indicated in the characterizing part of claim 1 of the new alloy, and properties at least equivalent to those of the known alloy can be obtained. It became. The composition of the alloy of the present invention is based on the following considerations: Nickel: An iron-nickel alloy with a nickel content of 35% is
It has a low expansion coefficient between 100℃. At higher temperatures, the curve of the expansion coefficient with respect to temperature increases rapidly (formation of a break point). As the nickel content increases to about 45%, the value of the low temperature coefficient of expansion increases slightly, but the break point moves to higher temperatures so that a relatively small coefficient of expansion exists over a wide temperature range. 45%
This must not be exceeded, since higher nickel contents undesirably increase the coefficient of expansion. Cobalt: Cobalt is added because the nickel content must be limited to a maximum of 45%. This cobalt partially supplements the effect of nickel and reduces the coefficient of expansion in the high temperature range. This means that the break point moves towards higher temperatures and therefore the linear expansion curve becomes flat as a whole. Titanium: Titanium increases the strength of the alloy by causing age hardening through the precipitation of Ni 3 Ti. The addition of titanium binds Ni and thus reduces the Ni content.
The addition of titanium must therefore be limited to 4%. Higher titanium contents reduce the toughness of the alloy, making the material brittle. Even higher titanium content increases the coefficient of expansion. A minimum of 1% of titanium is required since otherwise age hardening will not occur. Niobium: Niobium is an extremely strong carbide former. Niobium binds carbon and improves heat resistance through carbide precipitation. The addition of niobium is considered a replacement for titanium as a carbide former. This addition is useful because titanium precipitates as Ni 3 Ti. The niobium content is 1% because part of the nickel is combined.
shall not exceed. This new material is age hardenable due to its titanium and nickel content, and the alloy structure consists of a γ-base with carbides and a precipitated phase γ'. TiC and
NiC-type carbides appear as primary charcoals with a large surface area, as grain boundary precipitated carbides, or as spherical carbides inside grains. A particular advantage is that the alloy according to the invention is significantly cheaper due to the current high procurement costs of cobalt. Next, the present invention will be explained by two examples. The two test alloys were melted in vacuum and the diameters were measured using metal molds.
14 mm rods were cast and solidified in vacuum. To remove porosity, the rods were hot rolled to a diameter of 6 mm at 1120°C and then heat treated at 650°C for 5 hours. This rod material was machined to create strength specimens. Nickel 42.9%, Cobalt 2.14%, Titanium 1.66
%, Niobium 0.43%, Aluminum 0.13%, Carbon
A first alloy having a composition of 0.003% silicon, 0.05% silicon, balance iron and impurities based on dissolution and 37.4% nickel, 1.99% cobalt, 1.70% titanium, 0.51% niobium, 0.07% aluminum, 0.002% carbon, 0.04% silicon, A second alloy with a composition of balance iron and dissolution-based impurities exhibited the following properties:
【表】
この結果はニツケル、コバルト、チタンおよび
ニオブの含量が前記式によれば第1合金の場合
40.5%、第2合金の場合34.9%であるにもかかわ
らず達成された。
ケイ素は不純物である。ケイ素は鉄の同伴元素
であり、または銑鉄の溶解から混入する。ケイ素
は膨張係数に関して不利な性質を有するので、最
低に低下しなければならない。その完全な除去は
費用の問題である。
炭素は同様鉄の同伴元素であり、または溶解の
際必然的に伴われる。アルミニウムは脱酸剤およ
び脱チツ素剤として添加される。それによつて酸
素およびチツ素が析出硬化に必要なチタンを結合
することが防止される。
2つの合金の機械的性質を室温および600℃で
測定して次の結果を得た:[Table] This result is obtained when the content of nickel, cobalt, titanium and niobium is the first alloy according to the above formula.
This was achieved in spite of the fact that it was 40.5% and 34.9% for the second alloy. Silicon is an impurity. Silicon is a companion element to iron or is introduced from the melting of pig iron. Silicon has disadvantageous properties with respect to expansion coefficient, so it must be reduced to a minimum. Its complete removal is a matter of cost. Carbon is also an accompanying element of iron, or is necessarily accompanied during dissolution. Aluminum is added as a deoxidizing agent and a deoxidizing agent. This prevents oxygen and nitrogen from binding the titanium necessary for precipitation hardening. The mechanical properties of the two alloys were measured at room temperature and 600°C with the following results:
【表】
この結果から本発明の鋳物合金は機械的および
熱的負荷の高い機械部材たとえば気体力学的圧力
波機械のロータにとくに適することが明らかであ
る。It is clear from the results that the casting alloys according to the invention are particularly suitable for machine parts with high mechanical and thermal loads, such as rotors of gas-dynamic pressure wave machines.
Claims (1)
4〜1%、ニオブ1%以下、溶解に基く不可避の
不純物、およびコバルトを含む5×10-6/℃より
小さい20〜300℃の線膨張係数および350N/mm2よ
り高い20℃の降伏点を有する時効硬化可能の鉄ニ
ツケル系鋳物合金において、コバルト含量が1.5
〜2.5重量%であることを特徴とする時効硬化可
能の鉄ニツケル系鋳物合金。 2 ニツケル含量が42.9%、コバルト含量が2.14
%、チタン含量が1.66%、ニオブ含量が0.43%で
ある特許請求の範囲第1項記載の合金。 3 ニツケル含量が37.4%、コバルト含量が1.99
%、チタン含量が1.70%、ニオブ含量が0.51%で
ある特許請求の範囲第1項記載の合金。[Scope of Claims] 1 Mainly composed of iron, containing 35 to 45% nickel, 4 to 1% titanium, 1% or less niobium, unavoidable impurities due to dissolution, and cobalt smaller than 5×10 -6 /°C In an age-hardenable iron-nickel casting alloy with a coefficient of linear expansion between 20 and 300 °C and a yield point of 20 °C higher than 350 N/ mm2 , with a cobalt content of 1.5
An age-hardenable iron-nickel casting alloy characterized by ~2.5% by weight. 2 Nickel content is 42.9%, cobalt content is 2.14
%, a titanium content of 1.66% and a niobium content of 0.43%. 3 Nickel content is 37.4%, cobalt content is 1.99
%, a titanium content of 1.70% and a niobium content of 0.51%.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH823979A CH643594A5 (en) | 1979-09-12 | 1979-09-12 | Iron-nickel casting alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5647548A JPS5647548A (en) | 1981-04-30 |
JPH021219B2 true JPH021219B2 (en) | 1990-01-10 |
Family
ID=4337282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12476180A Granted JPS5647548A (en) | 1979-09-12 | 1980-09-10 | Timeehardable ironnnickel casting alloy |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS5647548A (en) |
CH (1) | CH643594A5 (en) |
DE (1) | DE2940532C2 (en) |
SE (1) | SE448744B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03245815A (en) * | 1990-02-23 | 1991-11-01 | Kubota Corp | Biological deodorizing apparatus using ceramic carrier for immobilizing bacteria and waste water treatment apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2266481A (en) * | 1939-10-27 | 1941-12-16 | Int Nickel Co | Age hardenable, low expansion, nickel-iron-titanium alloy |
GB1401259A (en) * | 1973-05-04 | 1975-07-16 | Int Nickel Ltd | Low expansion alloys |
-
1979
- 1979-09-12 CH CH823979A patent/CH643594A5/en not_active IP Right Cessation
- 1979-10-05 DE DE19792940532 patent/DE2940532C2/en not_active Expired
-
1980
- 1980-09-08 SE SE8006248A patent/SE448744B/en not_active IP Right Cessation
- 1980-09-10 JP JP12476180A patent/JPS5647548A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03245815A (en) * | 1990-02-23 | 1991-11-01 | Kubota Corp | Biological deodorizing apparatus using ceramic carrier for immobilizing bacteria and waste water treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
SE8006248L (en) | 1981-03-13 |
DE2940532A1 (en) | 1981-04-02 |
DE2940532C2 (en) | 1986-04-30 |
SE448744B (en) | 1987-03-16 |
JPS5647548A (en) | 1981-04-30 |
CH643594A5 (en) | 1984-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0306758A1 (en) | Silicon modified low chromium ferritic alloy for high temperature use | |
JPH0321622B2 (en) | ||
JP4768919B2 (en) | Ring shape parts for gas turbine blade rings and seal ring retaining rings made of high strength low thermal expansion cast steel and high strength low thermal expansion cast steel | |
JPS626634B2 (en) | ||
JPH021219B2 (en) | ||
JPS5853703B2 (en) | Molybdenum material with excellent hot workability | |
JP4213901B2 (en) | Low thermal expansion casting alloy having excellent hardness and strength at room temperature and low cracking susceptibility during casting, and method for producing the same | |
KR900003224B1 (en) | Ni alloy | |
US3969160A (en) | High-strength ductile uranium alloy | |
US4049432A (en) | High strength ferritic alloy-D53 | |
JPH1096038A (en) | High cr austenitic heat resistant alloy | |
JPS6134497B2 (en) | ||
JPS6341976B2 (en) | ||
JPS6330379B2 (en) | ||
JPS6341977B2 (en) | ||
KR20010045728A (en) | A heat resistant stainless steel having good heat resistant strength | |
JPS628497B2 (en) | ||
JPH0243815B2 (en) | GASUTAABINYOKOKYODOC0KITAINETSUGOKIN | |
JPS6147900B2 (en) | ||
JPH0225979B2 (en) | ||
JPH07179984A (en) | Cast iron of high strength and low expansion and its production | |
JPS621460B2 (en) | ||
JPS635464B2 (en) | ||
JPH08239734A (en) | Cast austenitic stainless steel | |
JPS60258444A (en) | Heat resistant alloy |