JPH02120917A - Hybrid optical computing element - Google Patents

Hybrid optical computing element

Info

Publication number
JPH02120917A
JPH02120917A JP27389288A JP27389288A JPH02120917A JP H02120917 A JPH02120917 A JP H02120917A JP 27389288 A JP27389288 A JP 27389288A JP 27389288 A JP27389288 A JP 27389288A JP H02120917 A JPH02120917 A JP H02120917A
Authority
JP
Japan
Prior art keywords
optical
dimensional
discrete cosine
light modulator
spatial light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27389288A
Other languages
Japanese (ja)
Inventor
Tomoshi Matsuda
松田 知志
Yuzo Hayashi
林 佑三
Akito Nagatsu
永津 昭人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27389288A priority Critical patent/JPH02120917A/en
Publication of JPH02120917A publication Critical patent/JPH02120917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

PURPOSE:To rapidly execute both normal and inverse discrete cosine transformation by providing the title computing element with a two-dimensional space optical modulator arranged so that each optical signal corresponding to each picture element of an one-dimensional space optical modulator is modulated by a row or column element. CONSTITUTION:An optical operation part is a part for finding out a prescribed vector matrix product by means of an optical system, an input vector is inputted to the one-dimensional space optical modulator 12 as an electric signal 17 and light with uniform intensity radiated from a light source 11 is modulated and the two-dimensional space optical modulator 14 is irradiated with an input optical signal 18 through an optical system 13 such as a cylindrical lens. Since optical modulation elements with transmittance corresponding to respective element values in a prescribed matrix are set up in the modulator 14, a product result between the input vector and each element of the matrix is obtained as transmitted light. The transmitted light is converged upon an one-dimensional photoelectric converter 16 through an optical system 15 and an electric signal 19 is outputted as an output vector. Consequently, both the normal and inverse discrete cosine transformation can be highly accurately calculated, the processing of an electric circuit can be reduced and rapid operation can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ハイブリッド演算器に係り、詳しくは、通信
回線を介した静止画像伝送装置等での画像圧縮符号化法
として広く使用されている適応型離散コサイン変換(A
DCT)方式における主要な演算である離散コサイン変
換(DCT)および逆離散コサイン変換(IDCT)を
高速に行う光ハイブリッド演算器に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical hybrid arithmetic unit, and more specifically, it is widely used as an image compression encoding method in still image transmission devices via communication lines. Adaptive discrete cosine transform (A
The present invention relates to an optical hybrid arithmetic unit that performs discrete cosine transform (DCT) and inverse discrete cosine transform (IDCT), which are the main operations in the DCT (DCT) method, at high speed.

〔従来の技術〕[Conventional technology]

適応型コサイン変換(ADCT)方式は、画像圧縮符号
化効率が高いこと、および主要な演算処理である離散コ
サイン変換(DCT)及び逆数コサイン変換(IDCT
)の高速アルゴリズムが発見されていることから、静止
画像伝送用符号化法として使用されている。しかし、最
近では高精細度テレビジョン方式(HDTV)のような
画像の高精細化、高速高4W域なディジタル通信回線の
普及などから、画像伝送装置の高速化が一層求められて
おり、これには画像圧縮処理の高速化が必要であること
からDCTおよびI DCTの超高速化が要求されてい
る。
The adaptive cosine transform (ADCT) method has high image compression coding efficiency, and the main computational processing is discrete cosine transform (DCT) and inverse cosine transform (IDCT).
) has been discovered and is now used as a coding method for still image transmission. However, in recent years, there has been a demand for faster image transmission equipment due to the increasing definition of images such as high-definition television (HDTV) and the spread of high-speed, high-4W digital communication lines. Because it is necessary to speed up image compression processing, ultra-high speed DCT and IDCT are required.

従来、DCTおよびIDCTTの高速化に関しては、高
速アルゴリズムの専用LSI化というアプローチとは別
に、二次元画像情報に関する一部の画像処理を非常に高
速に実行できることが知られている光演算器を応用しよ
うという検討も為されている。この光演算器の応用に関
しては、コサイン変換とフーリエ変換の近似性のため、
レンズを用いて容易に実現できる光学フーリエ変換を拡
張して適用する例が多い、また、OCTのような直交変
換は本来行列積として定義されるため、ベクトル行列積
および行列積を計算する光行側演算器の適用も検討され
ている。
Conventionally, in order to speed up DCT and IDCTT, in addition to the approach of implementing dedicated LSIs for high-speed algorithms, we have also applied optical arithmetic units, which are known to be able to perform some image processing related to two-dimensional image information at extremely high speeds. Consideration is also being given to doing so. Regarding the application of this optical arithmetic unit, due to the approximation of cosine transform and Fourier transform,
There are many cases in which the optical Fourier transform, which can be easily realized using lenses, is extended and applied.Also, orthogonal transforms such as OCT are originally defined as matrix products, so optical lines that calculate vector-matrix products and matrix products are used. The application of side arithmetic units is also being considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光演算のなかで、光学フーリエ変換は本来、連続的画像
を処理する方式であるため、m敗画像に関する演算であ
るDCTに応用するためには、入力画像についての何ら
かの前処理、および連続空間領域でのDCTの近似が必
要である。IDCTについては、定義から連続空間領域
での近似が難しいため、光学フーリエ変換での実現は不
可能である。また、目的のDCT演算を実現するように
フーリエ変換光学系の複合化、変更が必要であるため、
光学系の人形化、演算速度・精度の低下の問題がある。
Among optical calculations, optical Fourier transform is originally a method for processing continuous images, so in order to apply it to DCT, which is a calculation on m-lost images, some preprocessing of the input image and continuous spatial domain are required. An approximation of the DCT is required. As for IDCT, it is difficult to approximate it in a continuous spatial domain from the definition, so it is impossible to realize it by optical Fourier transform. In addition, it is necessary to combine and change the Fourier transform optical system to achieve the desired DCT operation.
There are problems with the optical system turning into dolls and a decrease in calculation speed and accuracy.

一方、光行側演算器に関しては、負数の表現および演算
ができないという本質的問題がある。また、DCTおよ
びIDCTは定義から多段行列積演算となるが、このよ
うな行列積の実時間演算のため最近開発された光行側演
算器(例えば信学技報○QE84−122:実時間多段
マトリクス乗算用光学系)については、演算精度が俄い
という問題がある。
On the other hand, the optical side arithmetic unit has an essential problem in that it cannot express and calculate negative numbers. In addition, DCT and IDCT are multistage matrix multiplication operations by definition, but optical side arithmetic units recently developed for real-time calculations of matrix multiplications (for example, IEICE Technical Report ○QE84-122: Real-time multistage Regarding the matrix multiplication optical system), there is a problem that the calculation accuracy is low.

本発明の目的は、DCTおよびIDCTの専用高速演算
器を、高速な光演算を導入した光ハイブリッド演算器で
実現しようとするものである。
An object of the present invention is to realize a dedicated high-speed arithmetic unit for DCT and IDCT using an optical hybrid arithmetic unit incorporating high-speed optical arithmetic operations.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の光ハイブリッド演
算器は、2次元画像を縦または横方向に一画素単位で分
割し、それらの行または列ベクI・ルを順次連結して再
構成した一次元画像を入力する一次元空間光変調器と、
DCTおよびI DCTの係数行列の各要素値を一層バ
イアス透過率または反射率を加えた非負の光強度透過率
または反射率で設定した空間フィルタを、前記一次元入
力画像の各画素に対応する光信号がDCTおよびIDC
Tの定義に従って変調されるように配置し、さらにバイ
アス透過率または反射率と同じ透過率または反射率の空
間フィルタからなる行または列を追加し、前記一次元空
間光変調器の各画素に対応する光信号が各々一つの行ま
たは列要素で変調されるように配置した二次元空間光変
調器と、前記入力画像と同様に一次元に再構成される出
力画像の各画素と前記二次元空間光変調器の追加行また
は列とに対応する光電変換素子とからなる一次元光電変
換器と、前記一次元空間光変調器を均等な光量で照射す
る光源と、前記光源から照射され前記一次元空間光変調
器で変調された光信号を、DCTおよびIDCTの定義
に従って前記二次元空間光変調器に照射する光学系と、
前記二次元空間光変調器で変調された光信号を、DCT
およびよりCTの定義に従って1涌記一次元光電変換器
に集光する光学系とを有することを主たる特徴とする。
In order to achieve the above object, the optical hybrid arithmetic unit of the present invention divides a two-dimensional image vertically or horizontally in units of pixels, and sequentially connects the row or column vectors I and L to reconstruct it. a one-dimensional spatial light modulator inputting a one-dimensional image;
A spatial filter set with a non-negative light intensity transmittance or reflectance obtained by adding bias transmittance or reflectance to each element value of the coefficient matrix of DCT and IDCT is applied to the light corresponding to each pixel of the one-dimensional input image. Signal is DCT and IDC
further add a row or column consisting of a spatial filter with the same transmittance or reflectance as the bias transmittance or reflectance, corresponding to each pixel of the one-dimensional spatial light modulator; a two-dimensional spatial light modulator arranged such that an optical signal of the output image is modulated by each row or column element, each pixel of an output image reconstructed in one dimension similar to the input image, and the two-dimensional space; a one-dimensional photoelectric converter comprising a photoelectric conversion element corresponding to an additional row or column of a light modulator; a light source that irradiates the one-dimensional spatial light modulator with a uniform amount of light; an optical system that irradiates the two-dimensional spatial light modulator with an optical signal modulated by the spatial light modulator according to the definitions of DCT and IDCT;
The optical signal modulated by the two-dimensional spatial light modulator is subjected to DCT
and an optical system that focuses light onto a one-dimensional photoelectric converter according to the definition of CT.

さらに、前記一次元光電変換器での光電変換後に、前記
二次元空間光変調器の追加行または列に対応して設けた
光電変換素子の出力信号で他の光電変換素子の出力信号
の減算を行って前記バイアス寄与分を除去する電気的手
段を備えることを特徴とする。
Furthermore, after photoelectric conversion by the one-dimensional photoelectric converter, the output signal of another photoelectric conversion element is subtracted by the output signal of a photoelectric conversion element provided corresponding to an additional row or column of the two-dimensional spatial light modulator. The present invention is characterized in that it comprises electrical means for removing the bias contribution by removing the bias contribution.

〔作 用〕[For production]

本発明の光ハイブリッド演募器では、DCTおよびID
CTの両方の演算を実現でき、がっ、光学フーリエ変換
応用の場合のように非本質的な連続空間領域への変換処
理を必要としない光行列演算器を使用する。そして、D
CTおよびI 、D CTが多段行列演算となることに
対しては、定義式を変形し、光学系として最も単純な一
段ベクトル行列演算で実行可能とする。また、負数表現
および演算のために、定数行列に対応する空間光変調器
の光透過率または反射率を一層バイアス値のもとに設定
し、電気的手段で最終的な演算結果からバイアス成分を
除去する。このバイアス成分は、前記光演算器をわずか
に変更するだけでD CTおよびIDCTの演算と並列
に独立した信号として求めることができ、その除去はよ
く知られた電子的減算回路で実現できる。
In the optical hybrid director of the present invention, DCT and ID
An optical matrix operator is used that can realize both CT operations and does not require conversion processing to a non-essential continuous spatial domain as in the case of optical Fourier transform applications. And D
Since CT, I 2 , and D CT are multi-stage matrix operations, the definition formula is modified so that the optical system can be executed using the simplest one-stage vector matrix operation. In addition, for negative number expression and calculation, the light transmittance or reflectance of the spatial light modulator corresponding to the constant matrix is set based on a bias value, and the bias component is extracted from the final calculation result by electrical means. Remove. This bias component can be obtained as an independent signal in parallel with the DCT and IDCT operations by only slightly changing the optical arithmetic unit, and its removal can be realized by a well-known electronic subtraction circuit.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による光ハイブリッド演算器の一実施例
のブロック図で、1は光演算部、2はバイアス分除去回
路、3は制御部である。こ−では、水先ハイブリッド演
算器の動作を光透過型のDCT演算の例で説明する。
FIG. 1 is a block diagram of an embodiment of an optical hybrid computing device according to the present invention, in which 1 is an optical computing section, 2 is a bias removal circuit, and 3 is a control section. Here, the operation of the pilot hybrid arithmetic unit will be explained using an example of a light transmission type DCT operation.

初めに、DCTおよびIDCTを多段行列積から一段ベ
クトル行列積へ変換する手順を説明する。
First, a procedure for converting DCT and IDCT from multi-stage matrix product to single-stage vector matrix product will be described.

以下(7) (1)、 (2)式はそれぞれDCTおよ
びIDCTの定義式である。
The following equations (7) (1) and (2) are the definition equations of DCT and IDCT, respectively.

いま、二次画像(f (j、k) I jl k:o、
 1.−、 N−1)を行方向に1行ずつ分割し順次連
結して行べ’) ト)Ll (f ”(Q) I Q=
0.1.−、 N”−1) ヘ、(F(up v) l
 Ll、 v:0+ 1+ ・・、N−1)を同様に行
ベクトル(F” (w) l w=0.1.−、 N”
−1) ヘ、そられに応じて(4C(u)C(v) ・
cos [(2j+1) uπ/ 2 N]・cos 
 [(2に+1)  V 7C/ 2 N] /N21
 Jl  kr  u、v=o。
Now, the secondary image (f (j, k) I jl k:o,
1. -, N-1) in the row direction and sequentially connect them.') Ll (f ''(Q) I Q=
0.1. −, N”−1) h, (F(up v) l
Similarly, Ll, v:0+ 1+ . . . , N-1) is transformed into a row vector (F" (w) l w=0.1.-, N"
-1) F, depending on the distortion (4C(u)C(v) ・
cos [(2j+1) uπ/ 2 N]・cos
[(2 + 1) V 7C/ 2 N] /N21
Jl kr u, v=o.

1、−=、 N−1)を行列(g(R,%I) IQ、
 v=o、 1゜・=、 N”−1) ヘ、(C(u)
C(v) ・cos [(2j+l) uπ/ 2 N
] ・cos  [(2に+1)V7C/ 2 N] 
F+  L  up  V=O,l、−、N−1)  
を行列口1(R1、w) I Q 、 w:o。
1, -=, N-1) as a matrix (g(R,%I) IQ,
v=o, 1゜・=, N”-1) h, (C(u)
C(v) ・cos [(2j+l) uπ/ 2 N
] ・cos [(2 + 1) V7C/ 2 N]
F+ L up V=O, l, -, N-1)
matrix entrance 1 (R1, w) I Q , w:o.

1、−、 N”−1) ヘ変形する。即ち、Q =j十
kN、 w=u+νNと置くと、以下のバク1〜ル行列
積へと変形できる。 (3)、 (4)式は各//DC
”I’、IDCTである。
1, -, N"-1). That is, by setting Q = j 10 kN and w = u + νN, it can be transformed into the following back 1 - le matrix product. Equations (3) and (4) are Each//DC
"I', IDCT.

但し、C(u)=1/v’2  (u=O)、1  (
u=1,2.−N−1)、O(u=N、N+1.−) こ\でf(j、k)は二次元画像、F”(u、v)はそ
の画像のDCTパワースペクトラムである。
However, C(u)=1/v'2 (u=O), 1 (
u=1,2. -N-1), O(u=N, N+1.-) where f(j, k) is a two-dimensional image and F''(u, v) is the DCT power spectrum of that image.

第1図の光演算部1は上記のベクトル行列積を光学系で
求める部分である。第2図に光行列演算器の具体的構成
例を示す。第2図によ?いて、光源11と一次元空間光
変換器12とは一次元L E Dアレイで、二次元空間
光変調器14は設定透過率相当の面積の開[コを開けた
金属板で、一次元光゛社製換器16はリニアイメージセ
ンサで実現する。
The optical calculation unit 1 shown in FIG. 1 is a part that calculates the above-mentioned vector matrix product using an optical system. FIG. 2 shows a specific example of the configuration of the optical matrix calculator. According to Figure 2? The light source 11 and the one-dimensional spatial light converter 12 are one-dimensional LED arrays, and the two-dimensional spatial light modulator 14 is a metal plate with an open area corresponding to the set transmittance. The transducer 16 made by the company is realized by a linear image sensor.

D CTの演算を例として該光行力演算器の動作を説明
する。
The operation of the optical power calculator will be explained using DCT calculation as an example.

入力ベクトル(f“(Q)l Q=0.1.・・・、 
N”−13は、゛上気信号17として一次元空間光変調
器12に入力され、該一次元空間光変調器12によって
光源11からの均一強度の光が変調されて、入力光信号
18が生成される。該光信号18はX軸方向にのみ集光
能力をもつ円柱レンズのような光学系13でyllll
11方向に均等な光強度の平行ビームに拡げられ、二次
元空間光変調器14に照射される。
Input vector (f"(Q)l Q=0.1...,
N''-13 is input to the one-dimensional spatial light modulator 12 as the upper air signal 17, and the one-dimensional spatial light modulator 12 modulates the light of uniform intensity from the light source 11, so that the input optical signal 18 is The optical signal 18 is generated by an optical system 13 such as a cylindrical lens that can focus light only in the X-axis direction.
The beam is expanded into a parallel beam with uniform light intensity in 11 directions, and is irradiated onto the two-dimensional spatial light modulator 14.

該二次元光変調器14には、行列(gcQ、ν)Q、ド
0,1.−・・、 N2−1)の各要素値に対応した透
過率の光変調素子が、行をX軸方向5列をy方向という
配置で設定されており、入力ベクトルと行列の要素毎の
精算結果f“(Q)・g(Q、、w)が透過光として得
られる。」:記透過光はX軸方向にのみ集光能力をもつ
円柱レンズのような光学系15で光電変換器16に集光
され、光強度の総和が検出される。該光電変換器1Gは
集光された光信号に相当する電気信号19を出力ベクト
ル(F”(W)1讐=o、 1.・・・、 N”−1)
として出力する。
The two-dimensional optical modulator 14 includes a matrix (gcQ, ν)Q, do 0, 1 . -..., N2-1), the light modulation elements with transmittance corresponding to each element value are set in an arrangement with rows in the X-axis direction and five columns in the y-direction, and calculations are made for each element of the input vector and matrix. Result f"(Q)・g(Q,,w) is obtained as transmitted light.": The transmitted light is transmitted to a photoelectric converter 16 by an optical system 15 such as a cylindrical lens that has the ability to focus only in the X-axis direction. The total light intensity is detected. The photoelectric converter 1G outputs an electric signal 19 corresponding to the focused optical signal as a vector (F"(W)1=o, 1..., N"-1)
Output as .

第2図の如き光行力演算器では負の演算ができないが1
行列(gcQ 、誓)1Ω、ド0,1.・・・、N2−
1)は負の要素も含む。第1図のバイアス分除去回路2
は、この問題を解決するために付加したものである。第
3図にその場合の光演算部1とバイアス分除去回路2の
関係を示す。こ\で、バイアス分除去回路2は走査回路
21及び減算回路22よりなる。
Although negative calculations cannot be performed with an optical power calculator like the one shown in Figure 2, 1
Matrix (gcQ, omitted) 1Ω, do 0, 1. ..., N2-
1) also includes negative elements. Bias removal circuit 2 in Figure 1
was added to solve this problem. FIG. 3 shows the relationship between the optical calculation section 1 and the bias removal circuit 2 in that case. Here, the bias removal circuit 2 includes a scanning circuit 21 and a subtraction circuit 22.

次に第3図により、正逆両方のD CT演算が達成され
ることを説明する。
Next, referring to FIG. 3, it will be explained that both forward and reverse DCT operations are achieved.

二次元空間光変調器14をN+1行に拡張し、各素子に
以下の式で求められる透過率t(Q、ν)を設定する。
The two-dimensional spatial light modulator 14 is expanded to N+1 rows, and a transmittance t(Q, ν) determined by the following formula is set for each element.

t (Q、w)= a ・K (Q 、w)+β(w=
o、 1. ・・・、 N−1)    (5)β  
      (w=N) 但し、αは二次元空間光変換調器14の透過率ダイナミ
ックレンジに合わせるための係数、βはt (U 、W
)を非負とするためのバイアス透過率。
t (Q, w) = a ・K (Q , w) + β (w =
o, 1. ..., N-1) (5) β
(w=N) However, α is a coefficient to match the transmittance dynamic range of the two-dimensional spatial light conversion adjuster 14, and β is t (U, W
) to make it non-negative.

二\で、一次元空間光変調器12からの光信号18を1
(Q)=γ・f”(Q)(γは光強度への変換係数)と
し、途中での損失分を無視すると、一次元光電変換器1
6へ入射する光信号の強度は、途中での損失分を無視す
ると以下の式で表わされる。
2\, the optical signal 18 from the one-dimensional spatial light modulator 12 is
(Q)=γ・f”(Q) (γ is the conversion coefficient to light intensity), and if we ignore the loss on the way, one-dimensional photoelectric converter 1
The intensity of the optical signal incident on the optical signal 6 is expressed by the following equation, ignoring the loss on the way.

(リーN) バイアス分除去回路2の走査回路21は、一次元光電変
換器16から出力される。(w)に対応する電気信号の
うち、o (0)〜o(N”−1)の部分を走査し、順
次、減算回路22の一方の入力とするものである。減算
回路22の他方の入力は、o (N)とする。こNで、
バイアス成分の総和が。
(Lee N) The scanning circuit 21 of the bias removal circuit 2 receives an output from the one-dimensional photoelectric converter 16. Of the electrical signals corresponding to (w), the parts o (0) to o (N''-1) are scanned and sequentially input to one side of the subtraction circuit 22. The input is o (N). With this N,
The sum of the bias components is.

(N)として独立に求められるので、順次、減算回路2
2でo(0)−o(N”−1)と。(N)の減算を行っ
てバイアス分を除去することにより、容易に所要信号2
3を得ることができる。
(N), so the subtraction circuit 2
By subtracting o(0)-o(N''-1).(N) in 2 and removing the bias component, the desired signal 2 can be easily obtained.
You can get 3.

第1図の制御部3は、当該光ハイブリッドDCT演算器
が組み込まれた静止画像伝送装置等の制御下で、外部の
画像記憶手段からインタフェース31を介してDCT演
算対象サブブロックを順次読み出し、アナログの電気信
号17へ変換して光演算部1へ送出する。光演算部1の
演算結果は電気信号19としてバイアス分除去回路2へ
人力され、バイアス分を除去されて電気信号23として
出力される。制御部3は、−画像分の処理が完了するま
で該出力電気信号23を順次取り込んでディジタル電気
信号へ変換し、インタフェース31を介して画像記憶手
段へ格納する。
The control unit 3 in FIG. 1 sequentially reads sub-blocks to be subjected to DCT calculation from an external image storage means via an interface 31 under the control of a still image transmission device or the like in which the optical hybrid DCT calculation unit is incorporated, and converts them into analog It is converted into an electrical signal 17 and sent to the optical calculation section 1. The calculation result of the optical calculation unit 1 is input as an electric signal 19 to a bias component removal circuit 2, the bias component is removed, and the result is output as an electric signal 23. The control unit 3 sequentially takes in the output electrical signal 23 until the processing of -images is completed, converts it into a digital electrical signal, and stores it in the image storage means via the interface 31.

以上、光透過型DCT演算を例に説明したが、IDCT
および反射型についても容易に類推できるであろう。
Above, we have explained the light transmission type DCT operation as an example, but IDCT
And the reflective type can also be easily inferred.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、正逆両方の離散
コサイン変換を高い演算精度で演算できると−もに、電
子回路での処理を軽減して高速化を図った光ハイブリッ
ド演算器を実現できる。
As described in detail above, according to the present invention, an optical hybrid arithmetic unit is capable of calculating both forward and inverse discrete cosine transforms with high arithmetic precision, and is also capable of speeding up processing by reducing processing in electronic circuits. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は光行
列演算器の具体的購成図、第3図は第1図の光演算部と
バイアス分除去回路の関係を示す図である。 1・・・光演算部、 11・・・光源。 12・・・一次元空間光変調器、  13・・・光学系
、14・・・二次元空間光変調器、  15・・光学系
、16・・・一次元光電変換器、 2・・・バイアス分除去回路、 21・・・走査回路、
第 l r。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a detailed diagram of an optical matrix arithmetic unit, and FIG. 3 is a diagram showing the relationship between the optical arithmetic unit of FIG. 1 and the bias component removal circuit. It is. 1... Light calculation section, 11... Light source. 12... One-dimensional spatial light modulator, 13... Optical system, 14... Two-dimensional spatial light modulator, 15... Optical system, 16... One-dimensional photoelectric converter, 2... Bias component removal circuit, 21...scanning circuit,
No.lr.

Claims (3)

【特許請求の範囲】[Claims] (1)2次元画像を縦または横方向に一画素単位で分割
し、それらの行または列ベクトルを順次連結して再構成
した一次元画像を入力する一次元空間光変調器と、 離散コサイン変換および逆離散コサイン変換の係数行列
の各要素値を一定バイアス透過率または反射率を加えた
非負の光強度透過率または反射率で設定した空間フィル
タを、前記一次元入力画像の各画素に対応する光信号が
離散コサイン変換および逆離散コサイン変換の定義に従
って変調されるように配置し、さらにバイアス透過率ま
たは反射率と同じ透過率または反射率の空間フィルタか
らなる行または列を追加し、前記一次元空間光変調器の
各画素に対応する光信号が各々一つの行または列要素で
変調されるように配置した二次元空間光変調器と、 前記入力画像と同様に一次元に再構成される出力画像の
各画素と前記一次元空間光変調器の追加行または列とに
対応する光電変換素子とからなる一次元光電変換器と、 前記一次元空間光変調器を均等な光量で照射する光源と
、 前記光源から照射され前記一次元空間光変調器で変調さ
れた光信号を、離散コサイン変換および逆離散コサイン
変換の定義に従って前記二次元空間光変調器に照射する
光学系と、 前記二次元空間光変調器で変調された光信号を、散離コ
サイン変換および逆散離コサイン変換の定義に従って前
記一次元光電変換器に集光する光学系とを有することを
特徴とする光ハイブリッド演算器。
(1) A one-dimensional spatial light modulator that inputs a one-dimensional image obtained by dividing a two-dimensional image vertically or horizontally into pixel units and sequentially connecting the row or column vectors, and a discrete cosine transform. and a spatial filter set with a non-negative light intensity transmittance or reflectance obtained by adding a constant bias transmittance or reflectance to each element value of the coefficient matrix of the inverse discrete cosine transform, corresponding to each pixel of the one-dimensional input image. Arrange the optical signal to be modulated according to the definitions of the discrete cosine transform and inverse discrete cosine transform, and add a row or column of spatial filters with the same transmittance or reflectance as the bias transmittance or reflectance, and a two-dimensional spatial light modulator arranged such that an optical signal corresponding to each pixel of the original spatial light modulator is modulated by one row or column element, and one-dimensionally reconstructed in the same manner as the input image; a one-dimensional photoelectric converter comprising a photoelectric conversion element corresponding to each pixel of an output image and an additional row or column of the one-dimensional spatial light modulator; and a light source that illuminates the one-dimensional spatial light modulator with an even amount of light. and an optical system that irradiates the two-dimensional spatial light modulator with an optical signal emitted from the light source and modulated by the one-dimensional spatial light modulator in accordance with the definitions of discrete cosine transform and inverse discrete cosine transform; An optical hybrid arithmetic unit comprising: an optical system that focuses an optical signal modulated by a spatial light modulator onto the one-dimensional photoelectric converter according to definitions of discrete cosine transform and inverse discrete cosine transform.
(2)前記一次元光電変換器での光電変換後に、前記二
次元空間光変調器の追加行または列に対応して設けた光
電変換素子の出力信号で他の光電変換素子の出力信号の
減算を行って前記バイアス寄与分を除去する電気的手段
を有することを特徴とする請求項(1)記載の光ハイブ
リッド演算器。
(2) After photoelectric conversion by the one-dimensional photoelectric converter, subtracting the output signal of another photoelectric conversion element with the output signal of the photoelectric conversion element provided corresponding to the additional row or column of the two-dimensional spatial light modulator. 2. The optical hybrid arithmetic unit according to claim 1, further comprising an electric means for removing said bias contribution.
(3)外部の画像情報記憶手段とのインタフェースを有
し、前記一次元空間光変調器に入力画像信号を供給する
とゝもに、前記電気的手段からの出力信号を取り込んで
離散コサイン変換および逆散離コサイン変換を完結させ
、その演算結果を前記画像情報記憶手段へ出力する制御
部を備えた請求項(2)記載の光ハイブリッド演算器。
(3) It has an interface with an external image information storage means, and supplies an input image signal to the one-dimensional spatial light modulator, and also takes in the output signal from the electric means to perform discrete cosine transformation and inverse processing. 3. The optical hybrid arithmetic unit according to claim 2, further comprising a control unit that completes the discrete cosine transformation and outputs the result of the calculation to the image information storage means.
JP27389288A 1988-10-29 1988-10-29 Hybrid optical computing element Pending JPH02120917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27389288A JPH02120917A (en) 1988-10-29 1988-10-29 Hybrid optical computing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27389288A JPH02120917A (en) 1988-10-29 1988-10-29 Hybrid optical computing element

Publications (1)

Publication Number Publication Date
JPH02120917A true JPH02120917A (en) 1990-05-08

Family

ID=17534028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27389288A Pending JPH02120917A (en) 1988-10-29 1988-10-29 Hybrid optical computing element

Country Status (1)

Country Link
JP (1) JPH02120917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577258A2 (en) * 1992-05-27 1994-01-05 Sharp Kabushiki Kaisha Picture compressing and restoring system and record pattern forming method for a spatial light modulator
US7012749B1 (en) 1999-05-19 2006-03-14 Lenslet Ltd. Optical processing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577258A2 (en) * 1992-05-27 1994-01-05 Sharp Kabushiki Kaisha Picture compressing and restoring system and record pattern forming method for a spatial light modulator
EP0577258A3 (en) * 1992-05-27 1994-09-28 Sharp Kk Picture compressing and restoring system and record pattern forming method for a spatial light modulator
US5537492A (en) * 1992-05-27 1996-07-16 Sharp Kabushiki Kaisha Picture compressing and restoring system and record pattern forming method for a spatial light modulator
US7012749B1 (en) 1999-05-19 2006-03-14 Lenslet Ltd. Optical processing
US7194139B1 (en) 1999-05-19 2007-03-20 Lenslet Ltd. Image compression

Similar Documents

Publication Publication Date Title
US7194139B1 (en) Image compression
US8442342B2 (en) Generation of image data with correction for optical misfocus utilizing fractional powers of the fourier transform operator
JPH02120917A (en) Hybrid optical computing element
US6018351A (en) Computer system performing a two-dimensional rotation of packed data representing multimedia information
EP0686940B1 (en) Image processing systems and methods
JPH02157832A (en) Optical neural processor
KR960020541A (en) Discrete Cosine Transform Circuit, Discrete Cosine Inverse Transform Circuit, MPEG Video Encoder and MPEG Video Decoder
JP3335236B2 (en) Digital data processing device
KR930701899A (en) Image data conversion process and device
JPS63127223A (en) Image processor
US5905660A (en) Discrete cosine transform circuit for processing an 8×8 block and two 4×8 blocks
CN109636863B (en) Color space conversion circuit
RU2024214C1 (en) Method of color correction of picture signal
JP3852124B2 (en) Signal conversion apparatus and method
JP3519825B2 (en) Simulation method and apparatus for electronic imaging device
JPH02222389A (en) Moving picture encoder
JPH0488765A (en) Video signal processor
JPH0447860A (en) Resolution conversion processing method
KR100254393B1 (en) Dct core capable of multiplying of weighting coefficients architecture
JPS6233421Y2 (en)
JPH04227163A (en) Encoding data processor
JPS5937770A (en) Picture reduction device
Tanida et al. High-accuracy optical computing using motorized optical fractal synthesizer
JPH02155374A (en) Picture processing circuit
JPH04222122A (en) Data compressor