JPH02120616A - Magnetic displacement detector - Google Patents

Magnetic displacement detector

Info

Publication number
JPH02120616A
JPH02120616A JP27502288A JP27502288A JPH02120616A JP H02120616 A JPH02120616 A JP H02120616A JP 27502288 A JP27502288 A JP 27502288A JP 27502288 A JP27502288 A JP 27502288A JP H02120616 A JPH02120616 A JP H02120616A
Authority
JP
Japan
Prior art keywords
displacement
magnets
diamagnetic
detected
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27502288A
Other languages
Japanese (ja)
Inventor
Seiji Okada
誠二 岡田
Okifumi Kageyama
陰山 興史
Yoshinori Taio
良則 對尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP27502288A priority Critical patent/JPH02120616A/en
Publication of JPH02120616A publication Critical patent/JPH02120616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always detect minute displacement quantity by mounting a plurality of diamagnetic bodies between a pair of magnets opposed to each other so as to differentiate magnetic poles and generating relative displacement in accordance with the displacement of an object to be detected and detecting displacement quantity on the basis of a change of magnetic flux. CONSTITUTION:A pair of magnets 1, 2 opposed so as to differentiate magnetic poles are mounted so as to be relatively replaced each other with the displacement of an object to be detected and, when the diamagnetic bodies 3 mounted to the magnets 1, 2 are overlapped with each other, the magnetic flux between the magnets 1, 2 is generated only in a region where the diamagnetic bodies 3 are absent by the diamagnetic action of each of the diamagnetic bodies 3 and detected by a Hall element 4 to input the output voltage corresponding to the magnetic flux to a displacement quantity calculation circuit 5 and the relative displacement quantity of the magnets 1, 2 is detected. As mentioned above, since displacement quantity is led out by grasping the displacement of magnetic flux, minute displacement quantity can be detected with the reduction of the pattern widths of the diamagnetic bodies 3 without receiving the effect of dust or contamination.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気式変位検出装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a magnetic displacement detection device.

(従来技術) 変位検出装置には、光学式変位検出装置が広く用いられ
ている。この光学式変位検出装置には、特開昭62−7
3120号公報に示すように、位置検出用スケールとし
て、ピッチ間隔がわずかに異なる主尺と副尺を用い、両
スケール目盛の一致点を検出することにより、両スケー
ルピッチ間隔の差の分解能で位置検出して位置検出精度
を高めたものがあるが、光学式変位検出装置においては
、基本的には1発光素子、格子編状の透過パターン、反
射パターン等の変位量検出用の光学パターン、受光素子
等が必要となっている。
(Prior Art) Optical displacement detection devices are widely used as displacement detection devices. This optical displacement detection device has the following features:
As shown in Publication No. 3120, a main scale and a vernier scale with slightly different pitch intervals are used as position detection scales, and by detecting the coincident point of both scale graduations, the position can be determined with the resolution of the difference in pitch interval of both scales. Although there are devices that improve position detection accuracy, optical displacement detection devices basically consist of one light-emitting element, an optical pattern for detecting displacement such as a lattice-like transmission pattern or a reflection pattern, and a light receiving device. elements, etc. are required.

そして、最近では、上記光学パターンを薄膜化技術によ
りかなり微小化することが0■能となっており、これに
伴って光学式変位検出装置においても、微小変位液の検
出を行うことが可能となっている。
Recently, it has become possible to make the optical pattern considerably smaller using thin film technology, and with this, it has become possible to detect minutely displaced liquids with optical displacement detection devices as well. It has become.

(発明が解決しようとする問題点) しかし、その反面、上記光学パターンが埃、ゴミ等によ
り汚され、光が遮ぎられるような場合には、その汚れ等
により分解能が低下し、微小変位騎の検出ができなくな
る虞れがあった。
(Problem to be Solved by the Invention) However, on the other hand, if the optical pattern is contaminated with dust, dirt, etc. and the light is blocked, the resolution decreases due to the stain, etc. There was a risk that detection would become impossible.

また、光学式変位検出装置においては、光学パターンを
かなり微小化できるにもかかわらず、光の波長によって
制約を受け、微小変位量の検出にも限度があった。
In addition, in the optical displacement detection device, although the optical pattern can be made quite small, it is limited by the wavelength of light, and there is a limit to the detection of minute displacement amounts.

本発明は上記実情に鑑みてなされたもので、その目的は
、極めて微小な変位量の検出を常時可能とすることにあ
る。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to enable detection of extremely small amounts of displacement at all times.

(問題点を解決するための手段、作用)かかる目的を達
成するために本発明にあっては、 磁極を異ならせて対向され、検出対象の変位に伴って相
対変位する一対のマグネットと、前記一対のマグネット
間に設けられ、該一対のマグネットの一方に前記相対変
位方向に等間隔毎に取付けられる複数の反磁性体と、 前記一対のマグネット間に設けられ、該一対のマグネッ
トの他方に取付けられる磁気検出手段と、を備えている
、 ことを特徴とする磁気式変位検出装置、とした構成とし
である。
(Means and operations for solving the problem) In order to achieve this object, the present invention includes a pair of magnets that are opposed to each other with different magnetic poles and that are relatively displaced in accordance with the displacement of the detection target; a plurality of diamagnetic bodies provided between the pair of magnets and attached to one of the pair of magnets at regular intervals in the relative displacement direction; and a plurality of diamagnetic substances provided between the pair of magnets and attached to the other of the pair of magnets. A magnetic displacement detection device comprising: magnetic detection means according to the present invention.

−L述の構成により、複数の反磁性体を既存の薄膜化技
術により極めて微小な間隔配置にした場合であっても、
一対のマグネットを相対変位すれば、反磁性体の反磁性
作用を利用して、磁気検出手段が検出する磁束を、磁性
体の配置状11;に応じて変化させることができ、その
磁束変化に基づき、極めて微小な変位針であっても検出
できることになる。
- With the configuration described above, even when multiple diamagnetic materials are arranged at extremely small intervals using existing thin film technology,
By relatively displacing a pair of magnets, the magnetic flux detected by the magnetic detection means can be changed according to the arrangement 11 of the magnetic bodies by utilizing the diamagnetic action of the diamagnetic body, and the magnetic flux can be changed according to the magnetic flux change. Based on this, even extremely small displacement needles can be detected.

また、磁束を検出するため、マグネッ)1の反磁性体等
によるパターンが汚れていても、磁束検出においては、
汚れ等によっては同等影響を受けず、分解能が低下する
ようなことはない。
In addition, in order to detect magnetic flux, even if the pattern made of diamagnetic material etc. of magnet 1 is dirty, the magnetic flux will be detected.
It is not affected by dirt, etc., and the resolution does not deteriorate.

このため、−I−両弱項により極めて微小な変位ψを常
時検出することができることになる。
Therefore, it is possible to constantly detect extremely small displacements ψ using the −I− double weak terms.

(実施例) 以下、本発明の実施例を図面に基づいて1悦明する。(Example) Hereinafter, embodiments of the present invention will be explained based on the drawings.

第1図〜第3図において、lは例えばバリウムフェライ
ト等からなる−・対のマグネット1.2で、a一対のマ
グネットl、2は図示を略す検出対象に該検出対象の変
位に伴って互いに相対変位するように適宜数句けられる
。この一対のマグネット1.2は所定間隔(例えば5m
m)をあけて平行に相対向されることになっており、一
方のマグネット1は、そのS極面1aを他方のマグネッ
ト2に向けており、他方のマグネット2は、そのN極面
2aを一方のマグネット1に向けている。
In FIGS. 1 to 3, l is a pair of magnets 1 and 2 made of, for example, barium ferrite, and a pair of magnets l and 2 are attached to a detection target (not shown) and mutually move with the displacement of the detection target. A number of phrases can be used as appropriate to indicate relative displacement. The pair of magnets 1.2 are spaced at a predetermined distance (for example, 5m).
m), and one magnet 1 has its south pole face 1a facing the other magnet 2, and the other magnet 2 has its north pole face 2a facing It is pointing towards magnet 1 on the other hand.

前記一方のマグネット1のS極面1aには複数の反磁性
体3が取付けられている。この複数の反磁性体3は前記
相対変位方向(第1図、第2図中、左右方向)に等間隔
毎に配設されており、その間隔幅(ピッチ)として、例
えば10gm幅等が用いられる。また、上記反磁性体と
しては1例えば完全反磁性体としての多結晶YBCO系
超伝系材伝導材られる。
A plurality of diamagnetic bodies 3 are attached to the S-pole surface 1a of the one magnet 1. The plurality of diamagnetic bodies 3 are arranged at regular intervals in the relative displacement direction (left and right direction in FIGS. 1 and 2), and the interval width (pitch) is, for example, 10 gm width. It will be done. The diamagnetic material may be, for example, a polycrystalline YBCO superconducting material as a completely diamagnetic material.

前記他方のマグネット2のN極面2aにも前記一方のマ
グネットlと同様に反磁性体3が設けられている。この
ような反磁性体3の取付けは、反磁性体3をスパッタ成
膜し、次にフォトレジスト技法により一定幅1例えば1
0gm幅の微小化パターンに形成することにより行なわ
れる。これらの技法等については薄膜化技術として既知
であるので説明は省略する。
A diamagnetic material 3 is also provided on the N-pole surface 2a of the other magnet 2, similarly to the one magnet 1. To attach the diamagnetic material 3, the diamagnetic material 3 is sputter-formed, and then a certain width 1, for example 1
This is done by forming a miniaturized pattern with a width of 0 gm. Since these techniques are known as thin film techniques, their explanations will be omitted.

前記−・対のマグネット1.2間には磁気検出手段とし
ての板状のホール素子4が設けられている。このホール
素子24は一対のマグネット1.2間に、没けられ、該
ホール素子4は第1図に示すように、他方のマグネット
2の−の反磁性体3と該−の反磁性体3に隣合う反磁性
体3との間を跨ぐようして該他方のマグネット2に取付
けられている。このホール素子4は検出磁束(磁界の強
さ)に応じた出力電圧を出力する機能を有している。
A plate-shaped Hall element 4 serving as magnetic detection means is provided between the pair of magnets 1.2. This Hall element 24 is sunk between a pair of magnets 1.2, and as shown in FIG. The diamagnetic material 3 is attached to the other magnet 2 so as to straddle the space between the diamagnetic material 3 and the adjacent diamagnetic material 3. This Hall element 4 has a function of outputting an output voltage according to the detected magnetic flux (magnetic field strength).

このホール素子4の出力電圧は変位I−算出回路5に入
力されるようになっている。この変位rUB算出回路5
には既知のものが用いられ、該変化11(算出回路5は
ホール素子4からの出力電圧に基づき検出対象の変位1
i1−を算出する機能を有している。
The output voltage of this Hall element 4 is input to a displacement I calculation circuit 5. This displacement rUB calculation circuit 5
A known value is used for the change 11 (the calculation circuit 5 calculates the displacement 1 of the detection target based on the output voltage from the Hall element 4).
It has a function of calculating i1-.

したがって、上記の構成によれば、第1図に示すように
、一方のマグネットlの反磁性体3と他方のマグネット
2の反磁性体3とが互いに屯なったときには、各反磁性
体3の反磁性作用により、両マグネット1,2間の磁束
は(矢印で示す)は、反磁性体3が存在しない領域での
み生じることになる。この磁束をホール素子4が検出す
ることになり、ホール素子4は、磁束に応じた出力電圧
を出力することになる。この場合、ホール素子4が検出
する磁束(ホール素子の出力電圧)は、第3図に示すよ
うに最も大きい値(山)となる。
Therefore, according to the above configuration, as shown in FIG. Due to the diamagnetic effect, the magnetic flux (indicated by the arrow) between the magnets 1 and 2 is generated only in the region where the diamagnetic material 3 is not present. The Hall element 4 will detect this magnetic flux, and the Hall element 4 will output an output voltage according to the magnetic flux. In this case, the magnetic flux (output voltage of the Hall element) detected by the Hall element 4 takes the largest value (peak) as shown in FIG.

上記状態から両マグネットl、2間に相対変位が生じた
とき、例えば、反磁性体3のパターン幅だけずれたとき
には、磁束は、第2図に示すように反磁性体の反磁性作
用により湾曲されることになり、ホール素子4が検出す
る磁束は上記状態の場合よりも減って最も少なくなる。
When a relative displacement occurs between the magnets 1 and 2 from the above state, for example, when the pattern width of the diamagnetic material 3 deviates, the magnetic flux is curved due to the diamagnetic action of the diamagnetic material, as shown in Figure 2. Therefore, the magnetic flux detected by the Hall element 4 is reduced to the minimum compared to the above state.

このため、変位量に対する磁束は、第3図において最も
小さい値(谷)を示すことになる。
Therefore, the magnetic flux with respect to the amount of displacement shows the smallest value (trough) in FIG. 3.

このように、マグネッ)l、2上の反磁性体3のパター
ンが微小化されていても、両ヤグネットl、2の相対変
位に伴って、ホール素子4が検出する磁束は、第3図に
示すように変化することになり、ホール素子4の出力電
圧も同様に変化することになる。
In this way, even if the pattern of the diamagnetic material 3 on the magnets 1 and 2 is miniaturized, the magnetic flux detected by the Hall element 4 due to the relative displacement of both magnets 1 and 2 is as shown in Fig. 3. The voltage will change as shown, and the output voltage of the Hall element 4 will also change in the same way.

この後1.ヒ記出力電圧は、変位量算出回路に入力され
、そこにおいて、出力電圧(又は検出磁束)の山と谷と
がカウントされ、それに基づき両マグネッ)1.2の相
対変位量が算出される。
After this 1. The output voltage described above is input to a displacement calculation circuit, where the peaks and valleys of the output voltage (or detected magnetic flux) are counted, and based on this, the relative displacement of both magnets 1 and 2 is calculated.

このように、磁束の変化をとらえて変位量を導きだすこ
とから、ゴミ、汚れ等の影響を受けることはなく、しか
も、パターン幅が、例えば10gmであれば10ILm
の分解能をもって変位量が求められることになり、反磁
性体3のパターン幅の微小化に伴って変位量の微小検出
が可能となる。
In this way, since the amount of displacement is derived by capturing changes in magnetic flux, it is not affected by dust, dirt, etc. Moreover, if the pattern width is, for example, 10gm, the amount of displacement is calculated by 10ILm.
The amount of displacement can be determined with a resolution of , and as the pattern width of the diamagnetic material 3 becomes smaller, it becomes possible to detect minute amounts of displacement.

第4図は他の実施例を示すものである。この実施例にお
いて前記実施例と同一構成要素については同一符号を付
してその説明を省略する。
FIG. 4 shows another embodiment. In this embodiment, the same components as those in the previous embodiment are given the same reference numerals, and the explanation thereof will be omitted.

この実施例は、板状のホール素子4に超伝導材6を用い
て検出感度を高めたものを示している。
In this embodiment, a superconducting material 6 is used in a plate-shaped Hall element 4 to increase detection sensitivity.

すなわち、ホール素子4の上下面にYBCO系の超伝導
材6をスパッタ成膜し、上下同位置に例えばlOJLm
径の穴7をリングラフィ法によって形成する。この際、
上記穴7はテーパエツチング(エツチング液H20)若
しくはリフトオフ法によってテーパ状のものとする。
That is, a YBCO-based superconducting material 6 is sputter-formed on the upper and lower surfaces of the Hall element 4, and a film of, for example, lOJLm is formed at the same position on the upper and lower surfaces.
A hole 7 of the same diameter is formed by the phosphorography method. On this occasion,
The hole 7 is made into a tapered shape by taper etching (etching liquid H20) or lift-off method.

これにより、大きい径をrQ、小さい径をrとすればホ
ール素子4が検出する磁束は(ro/r)2に増幅され
ることになり、小さな磁界領域においても感度良く検出
することができることになる。
As a result, if the larger diameter is rQ and the smaller diameter is r, the magnetic flux detected by the Hall element 4 will be amplified to (ro/r)2, making it possible to detect with high sensitivity even in a small magnetic field region. Become.

(発明の効果) 本発明は以上述べたように極めて微小な変位量を常時検
出することができる。
(Effects of the Invention) As described above, the present invention can constantly detect extremely small amounts of displacement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する説明図、 第2図は第1図の動作状態図、 第3図は磁束−変位量特性曲線を示す特性図、第4図は
他の実施例を説明する拡大説明図である。 l、2:マグネット la:s極面 2a:N極面 3:反磁性体 4:ホール素子
Fig. 1 is an explanatory diagram for explaining one embodiment of the present invention, Fig. 2 is an operating state diagram of Fig. 1, Fig. 3 is a characteristic diagram showing a magnetic flux-displacement characteristic curve, and Fig. 4 is another embodiment. It is an enlarged explanatory diagram explaining an example. l, 2: Magnet la: S pole face 2a: N pole face 3: Diamagnetic material 4: Hall element

Claims (1)

【特許請求の範囲】[Claims] (1) 磁極を異ならせて対向され、検出対象の変位に
伴って相対変位する一対のマグネットと、前記一対のマ
グネット間に設けられ、該一対のマグネットの一方に前
記相対変位方向に等間隔毎に取付けられる複数の反磁性
体と、 前記一対のマグネット間に設けられ、該一対のマグネッ
トの他方に取付けられる磁気検出手段と、を備えている
、 ことを特徴とする磁気式変位検出装置。
(1) A pair of magnets that face each other with different magnetic poles and are relatively displaced in accordance with the displacement of the object to be detected, and a pair of magnets provided between the pair of magnets and arranged at equal intervals in the relative displacement direction on one of the pair of magnets. A magnetic displacement detection device comprising: a plurality of diamagnetic bodies attached to the magnet; and magnetic detection means provided between the pair of magnets and attached to the other of the pair of magnets.
JP27502288A 1988-10-31 1988-10-31 Magnetic displacement detector Pending JPH02120616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27502288A JPH02120616A (en) 1988-10-31 1988-10-31 Magnetic displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27502288A JPH02120616A (en) 1988-10-31 1988-10-31 Magnetic displacement detector

Publications (1)

Publication Number Publication Date
JPH02120616A true JPH02120616A (en) 1990-05-08

Family

ID=17549784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27502288A Pending JPH02120616A (en) 1988-10-31 1988-10-31 Magnetic displacement detector

Country Status (1)

Country Link
JP (1) JPH02120616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384441B1 (en) * 2000-11-09 2003-05-22 (주) 동희산업 Apparatus for detecting the differential range in an accelerator and clutch pedal for use in a car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384441B1 (en) * 2000-11-09 2003-05-22 (주) 동희산업 Apparatus for detecting the differential range in an accelerator and clutch pedal for use in a car

Similar Documents

Publication Publication Date Title
JP4569979B2 (en) Magnetic encoder with index pulse
US7521922B2 (en) Linear position sensor
KR20020015275A (en) Sensor for the detection of the direction of a magnetic field
JPH0626884A (en) Position detection device
JPH03123811A (en) Sheet thickness measuring instrument
CN101315286B (en) Position detector and positioning device
US4678910A (en) Reference position-detecting device for photoelectric encoder
JPH02120616A (en) Magnetic displacement detector
JPS62229002A (en) Position detector
JPH05264326A (en) Linear position sensor
JPS5822914A (en) Zero point detecting device of photoelectric encoder
JP2004361411A (en) Light-receiving device
WO2018098689A1 (en) Wheel assembly and associated input device
EP0987821A2 (en) Apparatus for and method of generating a pulse signal
JPS5452567A (en) Position detector
SU717596A1 (en) Sensor for measuring pressure change in high-vacuum system
JPH04366701A (en) Position detecting device
JPS61175504A (en) Positioning sensor
JPH10176933A (en) Solar sensor
WO1992008946A3 (en) Device for measuring linear dimensions on a structured surface of an object
JPH10260059A (en) Magnetic scale and magnetic type detecting device having it
JPS6275307A (en) Solar sensor
JPS62215801A (en) Linear scale
JP2021071334A (en) Magnetic position detecting device
JPS6166117A (en) Solar angle detector