JPS5822914A - Zero point detecting device of photoelectric encoder - Google Patents

Zero point detecting device of photoelectric encoder

Info

Publication number
JPS5822914A
JPS5822914A JP12202581A JP12202581A JPS5822914A JP S5822914 A JPS5822914 A JP S5822914A JP 12202581 A JP12202581 A JP 12202581A JP 12202581 A JP12202581 A JP 12202581A JP S5822914 A JPS5822914 A JP S5822914A
Authority
JP
Japan
Prior art keywords
zero point
point detection
light
zero
photoelectric encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12202581A
Other languages
Japanese (ja)
Other versions
JPS6051650B2 (en
Inventor
Morimasa Ueda
上田 守正
Satoshi Omori
聡 大森
Toshiaki Horikawa
俊朗 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP12202581A priority Critical patent/JPS6051650B2/en
Publication of JPS5822914A publication Critical patent/JPS5822914A/en
Publication of JPS6051650B2 publication Critical patent/JPS6051650B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Abstract

PURPOSE:To obtain an exact zero point detecting signal having no directional error, by detecting 2 kinds of zero point reference signals being opposite in polarity, at a desired zero point position. CONSTITUTION:On a main scale 10, 2 rows of zero point detecting optical lattices 10c, 10d are provided, and on each lattice 10c, 10d, its light screening part and light transmitting part are provided in reverse to each other. Also, at a position opposed to the lattices 10c, 10d, a zero point detecting optical lattice 12c is provided on an index scale 12. At the side of the lattice 12c, zero point detecting photodetectors 20, 22 are placed at a position opposed to the lattices 10c, 10d, light, and shade of light are detected, and zero point reference signals 200, 202 being opposite in polarity are supplied to a comparator 24. Subsequently, a comparison output 204 is converted to a pulse 26, and a zero point detecting signal 206 is obtained.

Description

【発明の詳細な説明】 本発明は光電型エンコーダの零点検出装置、特に物理量
変化と共に相対移動するスケール対に設けられた零点検
出用光学格子から得られる零点基準信号によってスケー
ルの零点位置を正確に検出する零点検出装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a zero point detection device for a photoelectric encoder, in particular, a zero point reference signal obtained from a zero point detection optical grating provided on a pair of scales that move relative to each other as physical quantities change, to accurately determine the zero point position of a scale. This invention relates to an improvement of a zero point detection device.

測長器、座標測定機或いは工作機械の位置決め等におい
て長さ或いは物理量変化を正確な電気信号として検出す
るために光電型エンコーダが好適であり、直線型或いは
回転型のエンコー〆として種々の分野において実用化さ
れている。
Photoelectric encoders are suitable for detecting changes in length or physical quantities as accurate electrical signals in length measuring instruments, coordinate measuring machines, positioning of machine tools, etc., and are used in various fields as linear or rotary encoders. It has been put into practical use.

前記光電型エンコーIにおいて、電気的な検出信号は通
常の場合カランタに供給されるカラントノ臂ルス信号と
して処理されるが、エンコーIの零点位置たとえば絶対
測定における零点或いは長尺スケール内の複数の基準位
置を示すために零点検出装置が設けられている。
In the photoelectric encoder I, the electrical detection signal is normally processed as a current signal that is supplied to the current sensor. A zero point detection device is provided to indicate the position.

第1図には一般的な光電型エンコーIの要部が示され、
主スケールlO及びインデックススケール12により直
線蓋エンコーダが形成されている。
Figure 1 shows the main parts of a general photoelectric encoder I.
The main scale lO and the index scale 12 form a linear lid encoder.

前記両スケール10.12はその表面に遮光部と光透過
部とが交互に整列配置された光学格子を有し、主スケー
ル10にその全長に渡って設けられた光学格子10mと
インデックススケール12に設けられた2個の光学格子
12a、12bによって2組の光学格子対が形成され、
両光学格子対から後述する2個の検出信号が得られる。
Both scales 10 and 12 have optical gratings on their surfaces in which light-shielding parts and light-transmitting parts are arranged alternately. Two pairs of optical gratings are formed by the two provided optical gratings 12a and 12b,
Two detection signals, which will be described later, are obtained from both pairs of optical gratings.

前記インデックススケール12に設けられた両光学格子
12婁、12bはそれぞれ異なる位相たとえば9σの位
相差で整列配置されCおり、このことKよって、両スケ
ール10.12の相対移動から位相の異なる2種類の検
出信号を得ることが可能となる。
Both the optical gratings 12 and 12b provided on the index scale 12 are arranged in alignment with different phases, for example, a phase difference of 9σ, and therefore, due to the relative movement of both scales 10 and 12, two types of different phases can be generated. It becomes possible to obtain a detection signal of

すなわち、主スケールIOの一方側には発光ダイオード
等から成る発光器14が設けられ、また発光器14と対
向する他方側には両スケール10.12を介しC2個の
受光器16.1Bが設けられ、両受光器16.18はそ
れぞれ前記光学格子12m、12bと対向する位置に配
置されている。従って、実施例において、主スケール1
0またはインデックススケール12を長さ或いは物理量
変化に対応して移動すれば、光学格子対を透過する光透
過量が変化し、両受光器16.18からは周期的な光量
変化を電気的な検出信号として得ることが可能となる。
That is, a light emitter 14 made of a light emitting diode or the like is provided on one side of the main scale IO, and C2 light receivers 16.1B are provided on the other side facing the light emitter 14 via both scales 10.12. Both light receivers 16 and 18 are arranged at positions facing the optical gratings 12m and 12b, respectively. Therefore, in the example, main scale 1
0 or the index scale 12 in response to a change in length or physical quantity, the amount of light transmitted through the pair of optical gratings changes, and both light receivers 16 and 18 electrically detect periodic changes in the amount of light. It becomes possible to obtain it as a signal.

通常の場合、前記検出信号は90”位相の異なるサイン
波信号及びコサイン波信号として検出され、これらが図
示していない後段の処理回路により【カラン・トノルス
信号に変換され、長さ或いは物理量変化をデジタル値と
して表示し或いは他の制御信号として用いることができ
る。
In a normal case, the detection signal is detected as a sine wave signal and a cosine wave signal with a 90" phase difference, and these are converted into a Callan-Thonors signal by a processing circuit (not shown) at a subsequent stage, and changes in length or physical quantity are detected. It can be displayed as a digital value or used as another control signal.

前記スケール、図における主スケール10の零点位置を
検出するために、主スケール10及びインデックススケ
ール12にはそれぞれ零点検出用光学格子10c及び1
2Cが設けられ、これらの光学格子IQc、12Gはそ
れぞれ前記各光学格子10畠、12,1.12bと同様
の整列配置された遮光部及び光透過部から形成され或い
は零点検出用光学格子とし′c4I殊なランダムノぐタ
ーンから形成される。そし【、インデックススケール1
2の零点検出用光学格子12cと対向して、零点検出用
受光器20が設けられ、主スケール10の零点がインデ
ックススケール12と対向した時に、受光器20からは
零点基準信号を出力することができ、これによってカウ
ント値をリセットして絶対測定を行ない或いは他の任意
の比較信号としてこの零点基準信号を用いることができ
る。
In order to detect the zero point position of the scale, the main scale 10 in the figure, the main scale 10 and the index scale 12 are provided with zero point detection optical gratings 10c and 1, respectively.
2C, and these optical gratings IQc, 12G are each formed from a light shielding part and a light transmitting part arranged in the same manner as the optical gratings 10, 12, 1.12b, or are used as an optical grating for zero point detection. c4I is formed from special random nog turns. So [, index scale 1
A light receiver 20 for zero point detection is provided opposite to the optical grating 12c for zero point detection of No. 2, and when the zero point of the main scale 10 faces the index scale 12, the light receiver 20 can output a zero point reference signal. This allows the zero point reference signal to be used to reset the count value to make an absolute measurement or as any other comparison signal.

前記スケールの零点位置はスケール全長中の単一位置で
も或いは複数の任意に選択された位置でもよく、これら
の1個或いは複数の零点基準信号を必要に応じて任意に
使用可能である。
The zero point position of the scale may be a single position or a plurality of arbitrarily selected positions within the entire length of the scale, and one or more of these zero point reference signals can be used as desired.

前述した一般の光電型エンコーダによれば、以上の説明
から、零点基準信号を得ることができるが、従来装置に
おいては、この零点基準信号は以下のとと(処理されて
いた。
According to the above-mentioned general photoelectric encoder, the zero point reference signal can be obtained from the above explanation, but in the conventional device, this zero point reference signal is processed as follows.

第2図には従来の零点検出回路が示され、零点検出用受
光器20から検出された第3図に示さりる零点基準信号
100は比較器22によって基準電圧102と比較され
その比較出力104が微分回路或いはワンシ田ット回路
等から成るパルス化回路24によってその前縁と同期し
た零点検出信号106に変換され、これが後段の処理回
路に供給される。
FIG. 2 shows a conventional zero point detection circuit, in which the zero point reference signal 100 shown in FIG. is converted into a zero point detection signal 106 synchronized with its leading edge by a pulse forming circuit 24 consisting of a differentiating circuit or a one-shot circuit, and this is supplied to a subsequent processing circuit.

前述した従来装置によれば、簡単な回路構成で容易に零
点検出信号106を得ることができるとい5列点を有す
るが、比較出力104には無視できないパルス幅が在す
るため、主スケール10の移動方向によって、零点検出
信号106に方向性誤差が生じるという問題があった。
According to the conventional device described above, the zero point detection signal 106 can be easily obtained with a simple circuit configuration and has five rows of points, but since the comparison output 104 has a pulse width that cannot be ignored, the main scale 10 There is a problem in that a directional error occurs in the zero point detection signal 106 depending on the direction of movement.

すなわち、主スケール100をインデックススケール1
2に対して第1図の矢印ム方向に移動した時には、前述
した零点検出信号106が得られるが、これを逆方向B
に移動した場合には、第3図に示される零点検出信号1
06′が生じ、比較出力104のパルス幅だけずれた信
号となる。
That is, the main scale 100 is changed to the index scale 1.
When moving in the direction of the arrow B in FIG.
When the zero point detection signal 1 shown in FIG.
06' occurs, resulting in a signal shifted by the pulse width of the comparison output 104.

そして、この方向性誤差は受光器16.18から得られ
るカウントパルス信号のパルス間隔以内であれば、いず
れの方向に対してもカウント誤差を生じることはないが
、エンコーダ及び処理回路の応答速度を考慮すると、こ
の方向性誤差の許容範囲は著しく小さくなり、従来装置
においては、零点基準信号100或いは比較出力104
のパルス幅な著しく小さく設定しなければならず、この
ために、零点検出用光学格子10c、12cの加工に際
して極めて厳重な高精度を必要とし、また基準電圧10
2を零点基準信号Zooの頂部近傍に設定するために発
光量の低下時或いはノイズ発生時等に零点検出不能或い
は誤信号の混入等が生じるという問題があった。
This directional error will not cause a count error in any direction as long as it is within the pulse interval of the count pulse signal obtained from the photoreceiver 16, 18, but it will affect the response speed of the encoder and processing circuit. Taking this into consideration, the tolerance range for this directional error becomes extremely small, and in the conventional device, the zero point reference signal 100 or the comparison output 104
The pulse width of the reference voltage 10c and 12c must be set extremely small for this reason, and very strict precision is required when processing the optical gratings 10c and 12c for zero point detection.
2 near the top of the zero point reference signal Zoo, there is a problem that the zero point cannot be detected or an erroneous signal is mixed in when the amount of light emission decreases or when noise occurs.

本発明は上記従来の課題に鑑みなされたものであり、そ
の目的は、方向性誤差などのない正確な零点検出信号を
得ることのできる改良された零点検出装置を提供するこ
とにある。□ 上記目的を達成するために、本発明は、整列配置された
光学格子を有する主スケールと、互に異なる位相で整列
配置された2個の光学格子を有するインデックススケー
ルと、を含み、前記両スケールを相対移動させて両光学
格子対を透過または反射する光の明暗から位相の異なる
2種類の信号を検出する光電型エンコーダにおい【、所
望の零点位置にて極性の異なる2種類の零点基準信号を
得る零点検出手段を設け、前記両零点基準信号の交叉時
に零点検出信号を出力することを特徴とする。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide an improved zero point detection device that can obtain an accurate zero point detection signal without directional errors. □ In order to achieve the above object, the present invention includes a main scale having aligned optical gratings, and an index scale having two optical gratings aligned with mutually different phases. In a photoelectric encoder that detects two types of signals with different phases from the brightness and darkness of light transmitted or reflected by both optical grating pairs by relatively moving the scale, two types of zero point reference signals with different polarities are detected at a desired zero point position. The present invention is characterized in that a zero point detection means is provided for obtaining the zero point reference signal, and outputs a zero point detection signal when the two zero point reference signals intersect.

以下図面に基づいて本発明の好適な実施例を示す。Preferred embodiments of the present invention will be described below based on the drawings.

第4図には本発明の第1実施例が示され、第1図の従来
装置と同一部材には同一符号を付して説明を省略する。
A first embodiment of the present invention is shown in FIG. 4, and the same members as those in the conventional device shown in FIG.

本発明において特徴的なことは、所望の零点位置におい
て極性の異なる2種類の零点基準信号が検出されること
であり、このために、第4図の実施例においては、主ス
ケール10に主スケー刈0の移動方向に油って並列配置
された2列の零点検出用光学格子10c、10!が設け
られ、これらの光学格子10c、10dは図のハツチン
グを施した遮光部とそれ以外の光透過部とから成り両光
学格子10c、101は互いkその遮光部及び光透過部
が逆転して設けられている。
A characteristic feature of the present invention is that two types of zero point reference signals with different polarities are detected at a desired zero point position. For this reason, in the embodiment shown in FIG. Two rows of zero point detection optical gratings 10c, 10 arranged in parallel in the moving direction of the mower 0! These optical gratings 10c and 10d consist of a hatched light-shielding part and a light-transmitting part other than the hatched part. It is provided.

前記主スケール10の零点検出用光学格子10C110
dと対向する位置に、インデックススケール12には零
点検出用光学格子12Cが設けられ、前記主スケール1
0側の光学格子10c及び10dと誼光学格子12cと
の協働によって発光器14からの透過光の明暗が零点位
置において変化することが理解される。そして、インデ
ックススケール12の零点検出用光学格子12−の側方
には、前記主スケール10偶の光学格子10c%10d
とそれぞれ対向する位置に零点検出用受光器20.22
が配置されており、前記光の明暗を該受光器20.22
によって電気的な検出信号として出力することができる
Optical grating 10C110 for zero point detection of the main scale 10
The index scale 12 is provided with an optical grating 12C for zero point detection at a position opposite to the main scale 1.
It is understood that the brightness of the transmitted light from the light emitter 14 changes at the zero point position due to the cooperation of the zero-side optical gratings 10c and 10d and the zero-side optical grating 12c. On the side of the zero point detection optical grating 12- of the index scale 12, there is an optical grating 10c%10d of the main scale 10 even.
Zero point detection light receivers 20 and 22 are located opposite each other.
is arranged, and the light/darkness of the light is detected by the light receiver 20.22.
can be output as an electrical detection signal.

前記零点検出用受光器20122の出力はそれぞれ極性
の異なる零点基準信号200,202を形成し、その零
点基準信号が第5図の処理回路によって処理され、また
その波形が第6図に示されている。第6図から明らかな
ように、両零点基準信号200,202は零点検出用光
学格子10c10dの遮光部と光透過部との境界部にお
いて反転する波形となり、実施例におい【は、主スケー
ル10の移動方向に沿って複数の零点位置が設定されて
いる状態が示され、各零点位置毎に1零点基準信号20
0,202は互いに逆極性に反転することとなる。
The outputs of the zero point detection light receiver 20122 form zero point reference signals 200 and 202 having different polarities, respectively, and the zero point reference signals are processed by the processing circuit shown in FIG. 5, and the waveform thereof is shown in FIG. There is. As is clear from FIG. 6, both zero point reference signals 200 and 202 have waveforms that are inverted at the boundary between the light shielding part and the light transmitting part of the zero point detection optical grating 10c10d. A state in which a plurality of zero point positions are set along the movement direction is shown, and one zero point reference signal 20 is set for each zero point position.
0 and 202 are reversed to have opposite polarities.

従って、本発明にお−・ては、前記零点基準信号200
.202を第5図で示されるように、比較器24で互い
に比較し、その比較出力204をノルス化回路26によ
ってleルス化することkより、零点検出信号206を
極めて容易に得ることが可能となる。
Therefore, in the present invention, the zero point reference signal 200
.. As shown in FIG. 5, the zero point detection signal 206 can be obtained very easily by comparing the signals 202 with each other using the comparator 24 and converting the comparison output 204 into a Norsing circuit 26. Become.

第7図には本発明の第2実施例が示され、第1実施例と
同一部材には同一符号を付して説明を省略する。
FIG. 7 shows a second embodiment of the present invention, in which the same members as those in the first embodiment are given the same reference numerals and their explanations will be omitted.

第2実施例において特徴的なことは、主スケール10に
設けられた零点検出用光学格子が1列であり、この1列
の零点検出用光学格子12cから2種類の互いに極性が
反対の零点基準信号を得るために、インデックススケー
ル1:lは主スケール10の移動方向に所定の間隔を保
って配置された2個の零点検出用光学格子12c、12
dを有することであり、零点検出用受光器20.22は
咳光学格子12c、12dと対向した位置に配置されて
いる。
A characteristic feature of the second embodiment is that the main scale 10 has one row of zero point detection optical gratings, and from this one row of zero point detection optical gratings 12c, two types of zero points with opposite polarities are In order to obtain a signal, the index scale 1:l has two zero point detection optical gratings 12c, 12 arranged at a predetermined distance in the moving direction of the main scale 10.
d, and the zero point detection light receiver 20.22 is disposed at a position facing the cough optical gratings 12c, 12d.

そして、本実施例では、主スケール10の零点検出用光
学格子12cはその遮光部及び光透過部が互いに等間隔
で配列され、またインデックススケール12に設けられ
た受光器20.22もその間隙が前記遮光部と光透過部
との間隙に等しく設定されている。
In this embodiment, the optical grating 12c for zero point detection of the main scale 10 has its light shielding portions and light transmitting portions arranged at equal intervals, and the light receivers 20 and 22 provided on the index scale 12 also have gaps between them. The gap is set to be equal to the gap between the light shielding part and the light transmitting part.

従って、一方の受光器20が遮光部から光透過部への境
界と対向して増加特性の零点基準信号を出力する時、他
方の受光器20には光透過部から遮光部への境界と対向
し、減少特性の零点基準信号を出力する。従って、第5
図及び6図で説明したと同様に、極性の異なる両零点基
準信号を比較すれば、両特性の交叉時に、正確な零点検
出信号を得ることが可能となる。
Therefore, when one photoreceiver 20 outputs a zero point reference signal with an increasing characteristic facing the boundary from the light-transmitting portion to the light-transmitting portion, the other photoreceiver 20 outputs the zero point reference signal facing the boundary from the light-transmitting portion to the light-shielding portion. and outputs a zero point reference signal with decreasing characteristics. Therefore, the fifth
As described in FIGS. and 6, by comparing both zero point reference signals having different polarities, it becomes possible to obtain an accurate zero point detection signal when both characteristics intersect.

第8図には本発明の第3実施例が示され、第1及び第2
実施例と同一部材には同一符号を付して説明を省略する
A third embodiment of the present invention is shown in FIG.
The same members as those in the embodiment are given the same reference numerals, and the description thereof will be omitted.

第3実施例において%像的なことは、主スケール10に
設けられた零点検出用光学格子12cが1列であり、さ
らに、零点検出用光学格子と対向する位置に般けられた
零点検出用受光器20が1個であることである。そして
、1列の零点検出用光学格子12cと1個の零点検出用
受光器20とから、零点検出信号を検出するために第9
図に示される零点検出回路が用いられる。
In the third embodiment, the optical grating 12c for zero point detection provided on the main scale 10 is arranged in one row, and furthermore, the optical grating 12c for zero point detection provided at the position facing the optical grating for zero point detection is arranged in one row. The number of light receivers 20 is one. Then, in order to detect a zero point detection signal from one row of zero point detection optical gratings 12c and one zero point detection light receiver 20, a ninth
The zero point detection circuit shown in the figure is used.

第9図において、零点検出用受光器20の零点基準信号
200を反転する反転回路28が設けられ、零点基準信
号200と反転回路28からの極性の異なる反転零点基
準信号2001とから、零点検出信号206が検出され
る。すなわち、第9図、第10図の波形図において、比
較器24により零点基準信号200と反転零点基準信号
200′とを比較すれば、両特性の交叉時に、正確な零
点検出信号206を得ることができる。
In FIG. 9, an inverting circuit 28 is provided to invert the zero point reference signal 200 of the zero point detection light receiver 20, and a zero point detection signal is generated from the zero point reference signal 200 and an inverted zero point reference signal 2001 having a different polarity from the inverting circuit 28. 206 is detected. That is, in the waveform diagrams of FIGS. 9 and 10, if the comparator 24 compares the zero point reference signal 200 and the inverted zero point reference signal 200', an accurate zero point detection signal 206 can be obtained when both characteristics intersect. I can do it.

以上のように、本発明によれば、エンコーダの機械的な
ギャップ変化や光量変化に影響を5けることのない且つ
ソイ5ek強い零点検出信号を容易に得ることが可能と
なり、また零点検出用光学格子はそのノダターンが極め
て簡単であるため、加工が容易であるという利点を有す
る。また、本発明によれば、スケールの移動方向誤差が
なく、特に、実施例のように、複数の零点位置を必要と
する場合に極めて有効である。
As described above, according to the present invention, it is possible to easily obtain a strong zero point detection signal that is not affected by changes in the mechanical gap of the encoder or changes in the amount of light. The lattice has the advantage of being easy to process because its nodata turns are extremely simple. Further, according to the present invention, there is no error in the moving direction of the scale, which is extremely effective, especially when a plurality of zero point positions are required as in the embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な光電型エンコーダの概略構成を示す要
部斜視図、 第2図は第1図の零点検出回路図、 第3図は第2図の要部波形図、 第4図は本発明に係る零点検出装置が組み込まれた光電
型エンコーダの好適な実施例を示す要部斜視図、 第5図は第4図における光電検出回路図、第6図は第5
図の要部波形図、 第7図は本発明の第2実施例を示す要部斜視図、第8図
は本発明の第3実施例を示す要部斜視図、第9図は第8
図における零点検出回路図、第1θ図は第9図の波形図
である。 10−−・主スケール、 12・・・イン、デックススケール、 10m、12m、12b・−光学格子、10c、10d
、12c・−零点検出用光学格子、14・−・発光器、 16.18・・・受光器、 20.22−・零点検出用受光器、 24・・・比較器、 26−−・パルス化回路、 28−・・反転回路、 200.202・−零点基準信号、 200′−・反転零点基準信号、 206・−・零点検出信号。 第1図 一十デ′ 第5VU 第6図 06 11E?!!!!1 2c
Fig. 1 is a perspective view of the main parts showing the schematic configuration of a general photoelectric encoder, Fig. 2 is a zero point detection circuit diagram of Fig. 1, Fig. 3 is a waveform diagram of the main parts of Fig. 2, and Fig. 4 is a diagram of the main parts of Fig. 2. A perspective view of a main part showing a preferred embodiment of a photoelectric encoder incorporating a zero point detection device according to the present invention, FIG. 5 is a photoelectric detection circuit diagram in FIG. 4, and FIG.
FIG. 7 is a perspective view of the main part showing the second embodiment of the present invention, FIG. 8 is a perspective view of the main part showing the third embodiment of the invention, and FIG.
The zero point detection circuit diagram in the figure, FIG. 1θ is the waveform diagram of FIG. 9. 10--Main scale, 12...in, dex scale, 10m, 12m, 12b--Optical grating, 10c, 10d
, 12c - Optical grating for zero point detection, 14 - Light emitter, 16.18 - Light receiver, 20.22 - Light receiver for zero point detection, 24 - Comparator, 26 - Pulsing Circuit, 28--Inverting circuit, 200.202--Zero point reference signal, 200'--Inverted zero point reference signal, 206--Zero point detection signal. Figure 1 10d' 5VU Figure 6 06 11E? ! ! ! ! 1 2c

Claims (1)

【特許請求の範囲】 (1)  整列配置された光学格子を有する主スケール
と、互に異なる位相で整列配置された2個の光学格子を
有するインデックススケールと、を含み、前記両スケー
ルを相対移動させて両光学格子対を透過または反射する
光の明暗から位相の異なる2種類の信号を検出する光電
型エンコーダにおいて、所望の零点位置にて極性の異な
る2種類の零点基準信号を得る零点検出手段を設け、前
記両零点基準信号の交叉時に零点検出信号を出力するこ
とを特徴とする光電型エンコーダの零点検出装置。 (2、特許請求の範囲(1)記載の装置において、主ス
ケールにはその移動方向に沿って並列配置された少なく
とも2列の零点検出用光学格子が設けられ、両零点検出
用光学格子から互いに逆極性の零点基準信号を検出する
ことを特徴とする光電型エンコーダの零点検出装置。 (3)特許請求の範囲(11記載の装置において、主ス
ケールにはその移動方向に沿って一列の零点検出用光学
格子が設けられ、該零点検出用光学格子は複数の所望零
点位置に対応して遮光部及び光透過部が等間隔で整列配
置され、また前記零点検出用光学格子の遮光及び光透過
間隔と同一の間隔でインデックススケールには2個の零
点検出用受光器が設けられ、前記両受光器から逆極性の
零点基準信号を検出することを特徴とする光電型エンコ
ーダの零点検出装置。 (4)特許請求の範囲(1)記載の装置において、主ス
ケールにはその移動方向に沿って一列の零点検出用光学
格子が設けられ、該零点検出用光学格子は複数の所望零
点位置に対応して遮光部及び光透過部が等間隔で整列配
置され、また前記零点検出用光学格子と対向する位置に
1個の零点検出用受光器が設けられ、該零点検出用受光
器の零点基準信号とその反転零点基準信号との交叉時に
零点検出信号を検出することを特徴とする光電型エンコ
ーダの零点検出装置。
[Scope of Claims] (1) A main scale having optical gratings arranged in alignment, and an index scale having two optical gratings arranged in alignment with mutually different phases, wherein both scales are moved relative to each other. In a photoelectric encoder that detects two types of signals with different phases from the brightness and darkness of light transmitted or reflected by both optical grating pairs, zero point detection means obtains two types of zero point reference signals with different polarities at a desired zero point position. A zero point detection device for a photoelectric encoder, characterized in that the zero point detection device for a photoelectric encoder is provided with: and outputs a zero point detection signal when the two zero point reference signals intersect. (2. In the apparatus described in claim (1), the main scale is provided with at least two rows of zero point detection optical gratings arranged in parallel along the movement direction of the main scale. A zero point detection device for a photoelectric encoder, characterized in that it detects a zero point reference signal of opposite polarity. The optical grating for zero point detection has light shielding parts and light transmitting parts arranged at equal intervals corresponding to a plurality of desired zero point positions, and the light shielding and light transmitting intervals of the zero point detecting optical grating are arranged at equal intervals. A zero point detection device for a photoelectric encoder, characterized in that two light receivers for zero point detection are provided on the index scale at the same interval as , and a zero point reference signal of opposite polarity is detected from both of the light receivers. ) In the apparatus according to claim (1), the main scale is provided with a line of zero point detection optical gratings along its movement direction, and the zero point detection optical gratings are arranged in a row corresponding to a plurality of desired zero point positions. The light-shielding portions and the light-transmitting portions are arranged at regular intervals, and one zero-point detection light receiver is provided at a position facing the zero-point detection optical grating, and the zero-point reference signal of the zero-point detection light receiver and its A zero point detection device for a photoelectric encoder, characterized in that a zero point detection signal is detected when it crosses an inverted zero point reference signal.
JP12202581A 1981-08-04 1981-08-04 Zero point detection device for photoelectric encoder Expired JPS6051650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12202581A JPS6051650B2 (en) 1981-08-04 1981-08-04 Zero point detection device for photoelectric encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12202581A JPS6051650B2 (en) 1981-08-04 1981-08-04 Zero point detection device for photoelectric encoder

Publications (2)

Publication Number Publication Date
JPS5822914A true JPS5822914A (en) 1983-02-10
JPS6051650B2 JPS6051650B2 (en) 1985-11-15

Family

ID=14825720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12202581A Expired JPS6051650B2 (en) 1981-08-04 1981-08-04 Zero point detection device for photoelectric encoder

Country Status (1)

Country Link
JP (1) JPS6051650B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122412A (en) * 1983-12-07 1985-06-29 Canon Inc Controller of scanning position
JPS60127406A (en) * 1983-11-10 1985-07-08 Yokogawa Hewlett Packard Ltd Position measuring apparatus
JPS6138512A (en) * 1984-07-25 1986-02-24 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Measuring device
JPS61155720U (en) * 1985-03-19 1986-09-27
JPS61288105A (en) * 1985-06-14 1986-12-18 Makita Denki Seisakusho:Kk Motor-driven anthropometer
JPH0243899A (en) * 1988-08-03 1990-02-14 Kazuo Baba Ultrasonic probe
JP2015224908A (en) * 2014-05-27 2015-12-14 株式会社ミツトヨ Scale and optical encoder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192066A (en) * 1985-02-20 1986-08-26 Copal Co Ltd Magnetic disk drive
JPS61174058U (en) * 1985-04-17 1986-10-29

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127406A (en) * 1983-11-10 1985-07-08 Yokogawa Hewlett Packard Ltd Position measuring apparatus
JPS60122412A (en) * 1983-12-07 1985-06-29 Canon Inc Controller of scanning position
JPS6138512A (en) * 1984-07-25 1986-02-24 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Measuring device
JPH0548841B2 (en) * 1984-07-25 1993-07-22 Heidenhain Gmbh Dr Johannes
JPS61155720U (en) * 1985-03-19 1986-09-27
JPH0421072Y2 (en) * 1985-03-19 1992-05-14
JPS61288105A (en) * 1985-06-14 1986-12-18 Makita Denki Seisakusho:Kk Motor-driven anthropometer
JPH0243899A (en) * 1988-08-03 1990-02-14 Kazuo Baba Ultrasonic probe
JP2015224908A (en) * 2014-05-27 2015-12-14 株式会社ミツトヨ Scale and optical encoder
CN105300420A (en) * 2014-05-27 2016-02-03 株式会社三丰 Scale and optical encoder

Also Published As

Publication number Publication date
JPS6051650B2 (en) 1985-11-15

Similar Documents

Publication Publication Date Title
DE3035012C2 (en) Device for angle measurement
US4158509A (en) Instrument for measuring lengths
US4794251A (en) Apparatus for measuring lengths or angles
JPH0125010B2 (en)
JPH0132450B2 (en)
JPH06258102A (en) Measuring device
JPS5822914A (en) Zero point detecting device of photoelectric encoder
JPH08178700A (en) Incremental encoder
US4678910A (en) Reference position-detecting device for photoelectric encoder
GB1472876A (en) Position resolver
EP3891472B1 (en) Encoder apparatus
KR100326351B1 (en) Apparatus for generating origin signal of optical linear scale
JP4580060B2 (en) Scanning unit of optical position measuring device
EP3748284B1 (en) Digital displacement sensor, and displacement measurement method for same
JPS61182522A (en) Linear scale measuring device
US4468666A (en) Apparatus for determining a reference position of a moving member
JPS5853286B2 (en) digital scale device
JPS6243485B2 (en)
JPH0755458Y2 (en) Length measuring device
WO2003079555A2 (en) Encoder with reference marks
JPS6324110A (en) Optical position detecting device
JPH02157618A (en) High resolution encoder
JPH0226014Y2 (en)
JPH0783704A (en) Optical encoder
JPS6258448B2 (en)