JPH0212032B2 - - Google Patents

Info

Publication number
JPH0212032B2
JPH0212032B2 JP55181463A JP18146380A JPH0212032B2 JP H0212032 B2 JPH0212032 B2 JP H0212032B2 JP 55181463 A JP55181463 A JP 55181463A JP 18146380 A JP18146380 A JP 18146380A JP H0212032 B2 JPH0212032 B2 JP H0212032B2
Authority
JP
Japan
Prior art keywords
conversion device
light
photoelectric conversion
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55181463A
Other languages
Japanese (ja)
Other versions
JPS57104277A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP55181463A priority Critical patent/JPS57104277A/en
Publication of JPS57104277A publication Critical patent/JPS57104277A/en
Publication of JPH0212032B2 publication Critical patent/JPH0212032B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Description

【発明の詳細な説明】 本発明は光電変換装置において、太陽光の如き
連続光において短波長側の光を利用して光起電力
を発生せしめるとともに、この装置に対し昇温に
より特性劣化用にしか作用しない赤外光の如き光
エネルギをこの光電変換装置内で熱に変換せしめ
ることなく透過させてしまうことを目的としてい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention generates photovoltaic force in a photoelectric conversion device by using light on the short wavelength side of continuous light such as sunlight, and also provides a photovoltaic device for generating photovoltaic power by using light on the short wavelength side of continuous light such as sunlight. The purpose of this is to allow light energy such as infrared light, which only acts on the photoelectric conversion device, to pass through the photoelectric conversion device without converting it into heat.

本発明はこのため従来より行われている光照射
面側の電極を透光性にするに加えて、半導体の裏
面に設けられている電極をも金属の面電極とする
のではなく透光性電極とせしめることを特徴とし
ている。
Therefore, in addition to making the electrode on the light irradiation side transparent, which has been done conventionally, the present invention also makes the electrode provided on the back side of the semiconductor transparent instead of using a metal surface electrode. It is characterized by being used as an electrode.

さらに本発明は光電変換装置を透過してきた赤
外線を利用してその裏面に設けられた冷却部に熱
エネルギを与え、結果として変換装置の昇温を防
ぐとともに、ヒートパイプ系による光電変換装置
としての水を暖めることをそれぞれ個別にするの
ではなく一体化して、光照射面積を増やすことな
く実施し、ないしは太陽光を一部電気に変換し、
一部を暖水に用いることにより総合利用効率を40
%以上にすることを特徴としている。
Furthermore, the present invention utilizes the infrared rays that have passed through the photoelectric conversion device to provide thermal energy to the cooling section provided on the back side of the photoelectric conversion device, thereby preventing the conversion device from rising in temperature, and making it possible to use the photoelectric conversion device using a heat pipe system. It is possible to heat water in an integrated manner rather than separately, without increasing the area irradiated with light, or by converting a portion of sunlight into electricity.
By using some of the water for heating, the overall usage efficiency is increased by 40%.
% or more.

従来光電変換装置は第1図にその縦断面図の一
例が示されているが、照射光10に対し半導体1
の上面に光照射側の表面電極として透光性電極
3、さらにその抵抗を保証するための櫛型電極お
よび外部引き出し電極4が設けられ、下面の裏面
電極2として金属例えばアルミニユームが裏面で
のシート抵抗を減少させるため全面に設けられて
いた。
An example of a vertical cross-sectional view of a conventional photoelectric conversion device is shown in FIG.
A translucent electrode 3 is provided on the upper surface as a surface electrode on the light irradiation side, and a comb-shaped electrode and an external extraction electrode 4 are provided to ensure the resistance thereof, and a sheet of metal such as aluminum is provided on the back surface as the back electrode 2 on the lower surface. They were placed on the entire surface to reduce resistance.

しかしこの裏面の金属電極はこの面にて光を再
び表面側に反射してその光路を二倍またはそれ以
上にする効果を有しているため、半導体の厚さを
100〜200μmと約1/2にすることができ、光吸収
係数の低い単結晶シリコンのような材料において
は意味を持つている。しかしアモルフアスまたは
セミアモルフアス10〜100Åの径を有すマイクロ
クリスタル構造の半結晶性半導体膜)の如き非単
結晶半導体においては、その半導体の厚さが0.5
〜2μmと薄くてもよく、さらにその光吸収係数
も単結晶半導体の10倍も大きいためまつたく無価
値である。
However, the metal electrode on the back side has the effect of reflecting the light back to the front side and doubling or more the optical path, so the thickness of the semiconductor can be reduced.
It can be reduced to about 1/2 of 100 to 200 μm, which is significant for materials such as single-crystal silicon, which has a low light absorption coefficient. However, in non-single crystal semiconductors such as amorphous or semi-amorphous (semi-crystalline semiconductor films with a microcrystal structure with a diameter of 10 to 100 Å), the thickness of the semiconductor is 0.5
It may be as thin as ~2 μm, and its light absorption coefficient is 10 times larger than that of a single crystal semiconductor, so it is completely worthless.

この非単結晶半導体(NSCSと以下いう)にお
いても単結晶半導体(以下SCSという)と同様に
裏面電極が設けられており、その効果は光照射側
の光(例えば赤外線)に対し遮蔽効果(半導体を
昇温させる効果)しか有さず、きわめて都合の悪
いものであつた。
This non-single-crystal semiconductor (hereinafter referred to as NSCS) is also provided with a back electrode in the same manner as in single-crystal semiconductors (hereinafter referred to as SCS), and its effect is to shield the light (for example, infrared rays) on the irradiation side (semiconductor This was extremely inconvenient.

本発明はかかる欠点を防止するため、この光電
変換装置の裏面に対しても光照射面と同様の透光
性電極としたことを特徴としている。
In order to prevent this drawback, the present invention is characterized in that the back surface of the photoelectric conversion device is also provided with a transparent electrode similar to the light irradiation surface.

かかる透光性電極とすることにより、結晶粒径
の小さい多結晶半導体(2.5μm以下特に10〜100
Åの粒径を有するもの)または結晶体と非結晶体
との混合体または非結晶体よりなるNSCSに対し
特に有効であることが判明した。
By using such a light-transmitting electrode, polycrystalline semiconductors with small crystal grain sizes (2.5 μm or less, especially 10 to 100 μm) can be used.
It has been found that this method is particularly effective for NSCS consisting of a mixture of crystalline and amorphous materials, or a mixture of crystalline and amorphous materials.

第2図は横軸に反射された光の波長を示し、縦
軸は表面および裏面に透光性電極を設けた構造に
おける透過率を示す。
In FIG. 2, the horizontal axis shows the wavelength of reflected light, and the vertical axis shows the transmittance in a structure in which transparent electrodes are provided on the front and back surfaces.

図面より明らかな如く、NSCSを用いた本発明
においては曲線5に示す如く、半導体の厚さが
0.3〜3μmときわめて薄くてもよいため、そのエ
ネルギバンド巾(Egという)に対応する700nm
(Eg≦1.6eV)よりも長波長側においては90%以
上のほとんどの光が半導体およびその表面および
裏面の透光性電極を経て反対側にまで透過してい
ることがわかる。しかしSCSを用いた構造におい
ては、半導体の厚さが200〜300μmもあるため、
透過率が赤外領域においてもあまり大きくなく、
透過できなかつた光は半導体内にて熱に蓄積さ
れ、半導体のキヤリア移動度を下げるための昇温
にしか作用しなくなつている。
As is clear from the drawing, in the present invention using NSCS, as shown by curve 5, the thickness of the semiconductor is
Since it can be as extremely thin as 0.3 to 3μm, the width of the energy band (Eg) is 700nm.
It can be seen that on the wavelength side longer than (Eg≦1.6eV), more than 90% of the light is transmitted to the opposite side via the semiconductor and the transparent electrodes on its front and back surfaces. However, in structures using SCS, the thickness of the semiconductor is 200 to 300 μm, so
The transmittance is not very large even in the infrared region,
The light that cannot be transmitted is accumulated as heat within the semiconductor, and the only effect is to raise the temperature to lower the carrier mobility of the semiconductor.

このことにより、NSCSにおいては本発明の表
面裏面ともに透光性であることがきわめて効果が
大きく、さらにそのNSCSのエネルギバンド巾も
単結晶珪素の1.1eVよりも大きな1.4〜2eVと赤外
線に対し透光性を有することが光電変換効率を高
めるのみではなく、半導体の昇温おも防ぐことが
できるためきわめて好ましいものであつた。
As a result, in NSCS, the translucency of both the front and back surfaces of the present invention is extremely effective, and the energy band width of NSCS is 1.4 to 2 eV, which is larger than 1.1 eV of single crystal silicon, making it transparent to infrared rays. Having optical properties not only increases the photoelectric conversion efficiency, but also prevents temperature rise of the semiconductor, which is extremely preferable.

第3図はSCSとNSCSの光吸収効率(α)と波
長との関係を示す。即ち、太陽光のスペクトル7
に対しその光を吸収できる程度を示す吸収係数
(α)は太陽光が最も強い500nm付近にてNSCS
においては曲線8とSCSの曲線9に比べて1桁以
上も大きい。このことよりSCSにおいてはEgよ
りも大きなエネルギの短波長側でもそのエネルギ
の大部分を熱に換えてしまう可能性があり、また
低い吸収係数のため厚さの厚い半導体基板を必要
としている。この厚さが厚いことは長波長側にお
いても同様に光を熱に変換してしまうため、SCS
においては裏面を透光性基板にすることはあまり
大きな効果を有していない。
Figure 3 shows the relationship between light absorption efficiency (α) and wavelength for SCS and NSCS. That is, the spectrum of sunlight 7
The absorption coefficient (α), which indicates the degree to which sunlight can be absorbed, is around 500 nm, where sunlight is strongest.
It is more than an order of magnitude larger than curve 8 and curve 9 of SCS. For this reason, in SCS, even if the energy is greater than Eg on the short wavelength side, there is a possibility that most of the energy will be converted into heat, and due to the low absorption coefficient, a thick semiconductor substrate is required. This thick thickness also converts light into heat on the long wavelength side, so SCS
In this case, using a light-transmitting substrate on the back side does not have much effect.

第4図はA,Cに本発明を実施するための基本
構造を示したものである。
4A and 4C show the basic structure for implementing the present invention.

即ちガラス等の透光性基板15を通して光10
が照射され、ガラス上にスズ(Sn)、インジユー
ム(In)、アンチモン(Sb)の酸化物により導電
性でありかつ透光性の被膜16,19が設けられ
ている。被膜16は表面電極であり、19は裏面
電極である。半導体1と2つの電極との間には絶
縁性または半絶縁性のトンネル電流を許容する被
膜17,18が窒化珪素またはInSiOxにより設
けられている。
That is, light 10 passes through a transparent substrate 15 such as glass.
is irradiated, and electrically conductive and transparent coatings 16 and 19 are provided on the glass using oxides of tin (Sn), indium (In), and antimony (Sb). The coating 16 is a front electrode, and 19 is a back electrode. Between the semiconductor 1 and the two electrodes are provided films 17 and 18 made of silicon nitride or InSiOx that allow insulating or semi-insulating tunnel current.

かかる構造のエネルギバンド巾をその番号を対
応させて第4図Bに示している。この図面より明
らかな如く、この光電変換装置はMIS型(電極−
絶縁膜−半導体)構造を表面および裏面に有する
ダブルMIS構造の例である。
The energy band widths of such a structure are shown in FIG. 4B with corresponding numbers. As is clear from this drawing, this photoelectric conversion device is of the MIS type (electrode
This is an example of a double MIS structure having an insulating film-semiconductor structure on the front and back surfaces.

そのため図面では透明電極16は負の電荷を
1012cm-2の密度に含有する酸化スズまたは酸化ア
ンチモンを主成分とした電極として用い、裏面の
透明電極は正の電荷を1〜3×1012cm-2の密度に
含有する酸化インジユームを主成分とした電極を
用いた。
Therefore, in the drawing, the transparent electrode 16 carries a negative charge.
The electrode is mainly composed of tin oxide or antimony oxide containing a density of 10 12 cm -2 , and the transparent electrode on the back side is made of indium oxide containing a positive charge at a density of 1 to 3 x 10 12 cm -2 . An electrode was used as the main component.

その結果、照射光は半導体のEgより大きなEg
を有する光を光電変換し、小さな光特に赤外光を
10として裏面電極より外部に放出せしめた。か
くすることにより半導体の反対の温度が上昇する
ことを防ぎ、結果として光電変換効率の低下を防
ぐことができた。
As a result, the irradiated light has an Eg larger than that of the semiconductor.
The light having the following properties was photoelectrically converted, and small light, particularly infrared light, was converted to 10 and emitted from the back electrode to the outside. By doing so, it was possible to prevent the opposite temperature of the semiconductor from rising, and as a result, it was possible to prevent a decrease in photoelectric conversion efficiency.

第4図Cは半導体装置にPIN型(P型半導体2
2−実質的に真性の半導体1−N型の半導体23
を設け、22,23に対しその表面裏面に密接し
て透明電極を第4図Aと同様に形成したものであ
る。
Figure 4C shows a semiconductor device of PIN type (P-type semiconductor 2).
2-Substantially intrinsic semiconductor 1-N-type semiconductor 23
, and transparent electrodes are formed in close contact with the front and back surfaces of 22 and 23 in the same manner as in FIG. 4A.

図面では基板は半導体側の裏面側に15として
透明ガラスにより設けられている。
In the drawing, the substrate is provided with transparent glass as 15 on the back side of the semiconductor side.

第4図DはCの光電変換装置1のエネルギバン
ドダイヤグラムをその番号を対応して示してい
る。
FIG. 4D shows an energy band diagram of the photoelectric conversion device 1 of C with corresponding numbers.

これらはダブルMIS型、PIN型であるが、その
変換装置としての構造は任意に組合わせられるべ
きであり、本発明はその表面、裏面の電極を透光
性として赤外線等による装置の昇温を防ぐことを
目的としている。
These are double MIS type and PIN type, but the structure as a conversion device should be combined arbitrarily, and the present invention makes the electrodes on the front and back sides transparent so that the temperature of the device cannot be increased by infrared rays etc. It is intended to prevent.

その結果、室温雰囲気において従来の変換効率
(ηという)が5〜8%しか出なかつたものが、
30〜40%向上させ7〜10%の変換効率を得ること
ができるようになつた。
As a result, the conventional conversion efficiency (referred to as η) was only 5 to 8% at room temperature.
It has become possible to obtain a conversion efficiency of 7 to 10%, an improvement of 30 to 40%.

第4図A,Bの装置において透光性電極とは櫛
型電極とし、櫛の間のみを透光性としてもまた
金、アルミニユームを20〜50Åの極薄膜にて形成
させた半透明であつても、本発明と同一技術思想
である、しかしかかる構造においては透過率が十
分でない、製造が微妙である等の欠点を有し、大
面積には必ずしも適していない。
In the devices shown in Figures 4A and B, the translucent electrode is a comb-shaped electrode, and only the space between the combs is translucent, or it is a translucent electrode made of gold or aluminum with an extremely thin film of 20 to 50 Å. However, such a structure has drawbacks such as insufficient transmittance and delicate manufacturing, and is not necessarily suitable for large areas.

本発明においては光照射時における雰囲気が10
〜30℃の室温においては透光性にするのみでその
効果が大きい。
In the present invention, the atmosphere during light irradiation is 10
At room temperature of ~30°C, simply making it translucent has a great effect.

しかしさらにその雰囲気が40〜100℃と高温に
おいてはその熱エネルギが変換効率の低下を促し
てしまう。このためこの半導体の裏面電極下に冷
却機構を有する光電変換装置をヒートパイプ等を
利用して設けることも本発明の他の特徴である。
However, when the atmosphere is at a high temperature of 40 to 100°C, the thermal energy promotes a reduction in conversion efficiency. Therefore, another feature of the present invention is that a photoelectric conversion device having a cooling mechanism is provided under the back electrode of this semiconductor using a heat pipe or the like.

ヒートパイプは一般に低温部より熱エネルギを
とり高温部にこの熱エネルギを与える系であり、
その一例はUSP3875926(太陽熱エネルギ集合シ
ステム)に示されている。
A heat pipe is generally a system that takes heat energy from a low-temperature part and gives this heat energy to a high-temperature part.
An example is shown in USP 3875926 (Solar Thermal Energy Collection System).

本発明はかくの如き光熱変換装置を本発明の裏
面の透明電極に隣接してその下側に設けたもので
ある。
The present invention provides such a photothermal conversion device adjacent to and below the transparent electrode on the back surface of the present invention.

かくすることにより太陽光に対して直列にEg
より大きな光エネルギを有する短波長光をまず光
電変換装置により電気エネルギを取り出し、さら
にEgより小さな光エネルギを有する長波長の光
例えば赤外線に対してはこの光電変換装置を透過
してその下側の光電変換装置により熱エネルギを
取り出すようにしたものである。
By doing this, Eg is applied in series with sunlight.
Short-wavelength light with greater optical energy is first extracted as electrical energy by a photoelectric conversion device, and then long-wavelength light, such as infrared light, with optical energy smaller than Eg is transmitted through this photoelectric conversion device and converted to the lower side. Thermal energy is extracted using a photoelectric conversion device.

第5図は本発明の光電変換装置1と光熱変換装
置30とを直列に一体化せしめたものである。
FIG. 5 shows a photoelectric conversion device 1 and a photothermal conversion device 30 of the present invention integrated in series.

即ち、二対の透光性電極16,19およびその
間に介在して設けられた光照射による電子、ホー
ル対発生の半導体1さらに電極34,35、外部
引き出しリード36よりなる。
That is, it consists of two pairs of transparent electrodes 16 and 19, a semiconductor 1 interposed between them which generates electron and hole pairs by irradiation with light, electrodes 34 and 35, and an external lead 36.

さらにその下側の光熱変換装置は集光板40、
反射板42、ヒートパイプ41よりなる系30で
ある。かくすることによりこの系全体をより低温
にするため光電変換装置の変換効率もヒートパイ
プのより低温側より熱エネルギを高温側に移動す
ることができ、この系1,34を昇温させること
なく温水をとることができるようになつた。その
結果これまでこれらふたつの変換装置はまつたく
独立(並列)に設けられていたが、本発明のよう
に光に対し直角にすることにより光エネルギの総
合変換効率をそれぞれ8〜13%、55〜70%であつ
たものが従来の形式に比べて直列式として面積を
約1/2にした上、70〜85%にまで高めることがで
き、きわめて優れた太陽光の変換装置を作ること
ができた。
Further, the photothermal conversion device below is a light condensing plate 40,
This is a system 30 consisting of a reflector 42 and a heat pipe 41. In this way, the entire system can be lowered to a lower temperature, and the conversion efficiency of the photoelectric conversion device can be increased by transferring thermal energy from the lower temperature side of the heat pipe to the higher temperature side, without increasing the temperature of the systems 1 and 34. Now I can get hot water. As a result, these two conversion devices were previously installed independently (parallel), but by making them perpendicular to the light as in the present invention, the overall conversion efficiency of light energy can be increased to 8-13% and 55%, respectively. Compared to the conventional type, the area was reduced to about 1/2 by the series type, and the area could be increased to 70-85%, making it possible to create an extremely superior solar conversion device. did it.

特に単なる伝導熱のみならず裏面をも透光性と
したため、太陽光のうちの赤外光をコレクターに
よりヒートパイプに集中させて与えることがで
き、さらに効果を高めることができた。
In particular, by making the back surface transparent as well as simply conductive heat, infrared light from sunlight could be concentrated and applied to the heat pipe using a collector, further increasing the effect.

第6図は本発明の複合体の太陽光電変換装置の
一例を示す斜視図である。
FIG. 6 is a perspective view showing an example of the composite solar power conversion device of the present invention.

符号は第5図に対応している。 The symbols correspond to those in FIG.

冷却水は32よりヒートパイプ30を経て33
に放出される。図面ではヒートパイプを三段並列
に設けてある。しかしこれを直列に接続してもよ
く、またこの温水33により再度他のヒートパイ
プを経て変換効率の向上を図つてもよい。この場
合、一般にはアルコール、フロリーナート等の液
を用い、次段にて熱容量の大きな水を用いる光熱
変換装置とするとその効率を高めることができ
た。
The cooling water passes through the heat pipe 30 from 32 to 33
is released. In the drawing, three stages of heat pipes are arranged in parallel. However, these may be connected in series, and the hot water 33 may be passed through another heat pipe again to improve the conversion efficiency. In this case, the efficiency of the photothermal conversion device can generally be increased by using a liquid such as alcohol or Fluorinert, and then using water with a large heat capacity in the next step.

第5図、第6図において集光板、反射板を必ず
しも設けることなく伝導熱のみを利用してもよ
い。
In FIGS. 5 and 6, only conductive heat may be used without necessarily providing a light condensing plate or a reflecting plate.

以上の説明より明らかな如く、本発明は光電変
換装置であつて、光照射表面側の電極のみならず
裏面に対しても透光性電極とし、特に1.4eV未満
のエネルギを有する光特に赤外光に対しこの光電
変換装置自体の昇温を防ぎ、この赤外光を含む熱
エネルギをこの裏面電極側に接して設けられた冷
却用の熱電変換装置を光に対して直列接続せしめ
たことにある。その結果同一照射面側にて光−
電、光−熱変換により総合変換効率を79〜80%に
まで高めることができた。
As is clear from the above description, the present invention is a photoelectric conversion device in which a light-transmitting electrode is used not only for the electrode on the front side of the light irradiation side but also for the back side. The temperature of the photoelectric conversion device itself is prevented from rising due to the light, and the thermal energy including the infrared light is transferred to the cooling thermoelectric conversion device provided in contact with the back electrode side, which is connected in series to the light. be. As a result, the light on the same irradiation surface side is -
By converting electricity and light to heat, we were able to increase the overall conversion efficiency to 79-80%.

本発明は珪素のアモルフアスまたはセミアモル
フアス半導体を利用した光電変換装置をヒートパ
イプを用いた光−熱変換装置とを一体化したこと
を特徴としている。その結果それぞれの効果を波
長の短い光により発電を、また長い波長により発
熱を起こすため、この装置部での昇温を防止し、
ひいては光電変換効率を高め、また光熱変換にお
いて無駄になつていた光を発熱に利用した相剰効
果を利用したものである。
The present invention is characterized in that a photoelectric conversion device using an amorphous or semi-amorphous silicon semiconductor is integrated with a light-to-heat conversion device using a heat pipe. As a result, the short wavelength light generates electricity, and the long wavelength light generates heat, which prevents the temperature from rising in this device.
In turn, it increases the photoelectric conversion efficiency and takes advantage of the reciprocal effect of using the wasted light in photothermal conversion to generate heat.

その結果、一般家庭の限られた面積の屋根を利
用した太陽光の一部を発電にまた他の一部を湯沸
かしに利用したきわめて効果の高い太陽エネルギ
の変換装置を作ることができた。
As a result, we were able to create an extremely effective solar energy conversion device that utilizes a portion of the sunlight from the roof of a typical home to generate electricity and the other portion to heat water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電変換装置の縦断面図を示
す。第2図は本発明の光電変換装置にて得られた
波長に対する透過光の特性を示す。第3図は本発
明の光電変換装置を用いた半導体の光吸収係数と
波長との関係および太陽光のスペクトルを示す。
第4図A,Cは本発明の光電変換装置を示し、
B,DはそれぞれA,Cに対応するエネルギバン
ド図を示している。第5図、第6図は本発明の光
電変換装置と光熱変換装置とを一体化した光電変
換装置の実施例を示す。 1……半導体、2……裏面電極、3……透光性
電極、4……外部引き出し電極。
FIG. 1 shows a longitudinal cross-sectional view of a conventional photoelectric conversion device. FIG. 2 shows the characteristics of transmitted light with respect to wavelength obtained by the photoelectric conversion device of the present invention. FIG. 3 shows the relationship between the light absorption coefficient and wavelength of a semiconductor using the photoelectric conversion device of the present invention and the spectrum of sunlight.
4A and 4C show the photoelectric conversion device of the present invention,
B and D show energy band diagrams corresponding to A and C, respectively. FIG. 5 and FIG. 6 show an embodiment of a photoelectric conversion device in which a photoelectric conversion device and a photothermal conversion device of the present invention are integrated. 1... Semiconductor, 2... Back electrode, 3... Transparent electrode, 4... External extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 光照射表面及び裏面に透光性電極を有するエ
ネルギバンド巾が1.4eV以上であるアモルフアス
半導体あるいはセミアモルフアス半導体よりなる
光電変換装置において上記光電変換装置によつて
電気エネルギーに変換されることなく上記光電変
換装置を透過した光を熱エネルギーに変換するた
めに上記光電変換装置の下部に一段または多段の
ヒートパイプからなる光熱変換装置を設けたこと
を特徴とする光電変換装置。
1. In a photoelectric conversion device made of an amorphous semiconductor or a semi-amorphous semiconductor with an energy band width of 1.4 eV or more and having transparent electrodes on the light irradiation surface and the back surface, the photoelectric conversion device does not convert into electrical energy by the photoelectric conversion device. A photoelectric conversion device, characterized in that a photothermal conversion device comprising one or more stages of heat pipes is provided below the photoelectric conversion device to convert light transmitted through the photoelectric conversion device into thermal energy.
JP55181463A 1980-12-22 1980-12-22 Photoelectric conversion device Granted JPS57104277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55181463A JPS57104277A (en) 1980-12-22 1980-12-22 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55181463A JPS57104277A (en) 1980-12-22 1980-12-22 Photoelectric conversion device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61217385A Division JPS6263480A (en) 1986-09-13 1986-09-13 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS57104277A JPS57104277A (en) 1982-06-29
JPH0212032B2 true JPH0212032B2 (en) 1990-03-16

Family

ID=16101191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55181463A Granted JPS57104277A (en) 1980-12-22 1980-12-22 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS57104277A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218001A (en) * 1994-01-31 1995-08-18 Masaya Nagasawa Generating warm water machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210099Y2 (en) * 1974-03-18 1977-03-04
JPS5651331Y2 (en) * 1975-04-23 1981-12-01

Also Published As

Publication number Publication date
JPS57104277A (en) 1982-06-29

Similar Documents

Publication Publication Date Title
US4234352A (en) Thermophotovoltaic converter and cell for use therein
Swanson et al. Point-contact silicon solar cells
US4315097A (en) Back contacted MIS photovoltaic cell
US7915517B2 (en) Bifacial photovoltaic devices
US9583655B2 (en) Method of making photovoltaic device having high quantum efficiency
US20090288702A1 (en) Solar Cell and Solar Cell Module Using the Same
KR20120063324A (en) Bifacial solar cell
US4151005A (en) Radiation hardened semiconductor photovoltaic generator
JPS6230714B2 (en)
JPS6161270B2 (en)
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
CN217933805U (en) Solar cell and photovoltaic module
JP3133494B2 (en) Photovoltaic element
JP3206350B2 (en) Solar cell
KR101062486B1 (en) Low degradation silicon thin film photovoltaics using heating element
JPH0212032B2 (en)
KR101643871B1 (en) Solar cell and manufacturing method thereof
RU2399118C1 (en) Photoelectric converter based on nonplanar semiconductor structure
JPH1019388A (en) Hybrid type panel and building equipped with this hybrid type panel
JP3369847B2 (en) Photovoltaic element
JPS6263480A (en) Photoelectric conversion device
JPS6122217B2 (en)
JPS595807B2 (en) Hybrid solar collector
JPH0523554U (en) Power generator using sunlight
JPH0469438B2 (en)