JPH02119972A - Controller for optimum combustion in exhaust gas-recirculation furnace - Google Patents
Controller for optimum combustion in exhaust gas-recirculation furnaceInfo
- Publication number
- JPH02119972A JPH02119972A JP27258388A JP27258388A JPH02119972A JP H02119972 A JPH02119972 A JP H02119972A JP 27258388 A JP27258388 A JP 27258388A JP 27258388 A JP27258388 A JP 27258388A JP H02119972 A JPH02119972 A JP H02119972A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- furnace
- temperature
- value
- waste gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 50
- 239000002912 waste gas Substances 0.000 claims abstract description 55
- 239000007789 gas Substances 0.000 claims description 67
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/022—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Control Of Temperature (AREA)
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
- Coating Apparatus (AREA)
- Tunnel Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、連続式塗装ラインの焼付炉等に用いる排ガス
再循環炉の最適燃焼制御装置に係わり、特に炉内で生成
された排ガスのを効利用を図った排ガス再循環炉の最適
燃焼制御装置に関する。Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an optimal combustion control device for an exhaust gas recirculation furnace used in a baking furnace of a continuous painting line, and in particular, This invention relates to an optimal combustion control device for an exhaust gas recirculation furnace that makes effective use of the waste gas.
(従来の技術)
従来の連続式塗装ラインは、第4図に示すように金属薄
板(以下、コイルと指称する)1の表面にコータ2を用
いて塗料を塗布するとともにこの塗布後のコイル1を焼
付炉3に導き、ここでコイル表面塗料の焼付けを行う。(Prior Art) As shown in FIG. 4, a conventional continuous painting line applies paint to the surface of a thin metal plate (hereinafter referred to as a coil) 1 using a coater 2, and also coats the coil 1 after this application. is led to a baking furnace 3, where the coil surface paint is baked.
このとき、炉内では焼付は温度によりコイル表面の塗料
から揮発性溶剤が発生するので、この炉内の揮発性溶剤
を排ガスファン4を用いて燃焼装置5へ導き、ここで外
部からバーナ6にて燃料および燃焼用空気等の熱量を与
えることにより、未燃成分の完全燃焼化電図って非有害
ガス化および有機剤特有の臭いの脱臭化を図っている。At this time, in the furnace, volatile solvent is generated from the paint on the coil surface due to temperature, so the volatile solvent in the furnace is guided to the combustion device 5 using the exhaust gas fan 4, and from there to the burner 6 from the outside. By supplying heat from fuel and combustion air, the unburned components are completely combusted, turned into non-toxic gases, and the odor peculiar to organic agents is deodorized.
なお、燃焼装置5の燃焼制御は、燃焼装置5からの燃焼
装置生成ガスの温度を温度検出器7で検出して温度調節
計8に導き、この温度調節計8にて検出温度がrめ定め
た目標温度となる様に調節弁9を操作することにより行
っている。この燃焼制御によって燃焼装置5から排出さ
れた燃焼装置生成ガスは一般に高温であるので、その一
部は給気ガスとして焼付炉3の熱源に利用され、残りは
廃熱ボイラ10に導き、最終的に廃熱ボイラ]0から出
た廃ガスは廃ガスファン11により煙突12から大気に
放出される。In addition, the combustion control of the combustion device 5 is performed by detecting the temperature of the combustion device generated gas from the combustion device 5 with a temperature detector 7 and guiding it to a temperature controller 8. The detected temperature is determined by the temperature controller 8. This is done by operating the control valve 9 so that the target temperature is reached. The combustion device generated gas discharged from the combustion device 5 by this combustion control is generally at a high temperature, so a part of it is used as a supply gas as a heat source for the firing furnace 3, and the rest is led to the waste heat boiler 10 and is finally used as a heat source. The waste gas discharged from the waste heat boiler] 0 is discharged into the atmosphere from a chimney 12 by a waste gas fan 11.
一方、焼付炉3の各ゾーンの温度を制御するために、各
ゾーンからゾーンクーラ側管路aおよびバイパス側管路
すを4に設し、これら各管路a、 bに比率調節弁1
3を設け、焼付炉3から比較的高めの温度の雰囲気ガス
をゾーンクーラ14で冷却してバイパス側と合流させた
後、この合流された雰囲気ガスをファン15を用いて炉
内に返還するが、この雰囲気ガスの返還途中で雰囲気ガ
スのl!i度を温度検出器16で検出して温度2節計1
7に導入し、ここで検出温度と予め定めた目標温度との
偏差が零となるような操作出力を得、この操作出力に基
づいて比率21節弁13の開度を制御し、各ゾーン内の
温度が所定の温度となるように制御している。On the other hand, in order to control the temperature of each zone of the baking furnace 3, a zone cooler side conduit a and a bypass side conduit S 4 are provided from each zone, and a ratio control valve 1 is installed in each of these conduits a and b.
3 is provided, and after the atmospheric gas at a relatively high temperature from the baking furnace 3 is cooled by the zone cooler 14 and merged with the bypass side, the combined atmospheric gas is returned to the furnace using the fan 15. , during the return of this atmospheric gas, l! of the atmospheric gas! Detect i degrees with temperature detector 16 and measure temperature 2
7 to obtain an operating output that makes the deviation between the detected temperature and the predetermined target temperature zero, and based on this operating output, control the opening degree of the ratio 21 control valve 13, The temperature is controlled to be a predetermined temperature.
(発明が解決しようとする課題)
従って、以上のような排ガス再循環炉システムにおいて
は、廃熱ボイラ10により燃焼装置5から排出される燃
焼装置生成ガスをある程度熱回収しているが、もともと
温度調節計8,17の目標温度が予め一定の値に定めら
れているので、例えばコイル1の幅、厚さ、ラインスピ
ード等の変化に対応した温度制御が難しく、その結果、
燃焼装置生成ガスが煙突12から無駄に放出されたり、
あるいはゾーンクーラ14から大量の熱が無駄に棄てら
れる場合が多かった。(Problem to be Solved by the Invention) Therefore, in the exhaust gas recirculation furnace system as described above, a certain amount of heat is recovered from the combustion device generated gas discharged from the combustion device 5 by the waste heat boiler 10, but the temperature Since the target temperatures of the controllers 8 and 17 are preset to constant values, it is difficult to control the temperature in response to changes in the width, thickness, line speed, etc. of the coil 1, for example, and as a result,
Combustion device generated gas is wastefully released from the chimney 12,
Alternatively, a large amount of heat from the zone cooler 14 was often wasted.
本発明は以上のような問題点を除去するためになされた
もので、炉内を所定の温度に保ちながら炉内で生成され
るガスを外部に放出することなく炉内の熱源としてa効
に再利用して省エネ化を実現する排ガス再循環炉の最適
燃焼制御装置を提供することを目的とする。The present invention was made in order to eliminate the above-mentioned problems, and it is possible to maintain the inside of the furnace at a predetermined temperature and to effectively use the gas generated inside the furnace as a heat source without releasing it to the outside. The objective is to provide an optimal combustion control device for an exhaust gas recirculation furnace that achieves energy savings through reuse.
[発明の構成]
(課題を解決するための手段)
本発明による排ガス再循環炉の最適燃焼制御装置は上記
目的を達成するために、炉内で生成された排ガスを燃焼
装置に導いて燃焼し、jりられた燃焼装置生成ガスを給
気ガスと廃棄ガスに分けて出力するとともに、前記給気
ガスを用いて炉内を所定の温度に制御する排ガス再循環
炉の最適燃焼制御装置において、前記廃棄ガスの出力ラ
インに設けられた廃棄ガス流量制御手段と、前記炉の各
ゾーンごとに炉内の雰囲気ガスを取込んでそのガス熱を
外部に棄てるゾーンクーラまたはバーナとバイパスとを
介して前記炉内に雰囲気ガスを返還する途中でその雰囲
気ガスの温度を検出し、この検出温度に基づいて前記ゾ
ーンクーラ側の弁またはバーナ側の弁の開度を抑えてバ
イパス側弁の開度を調節しながら炉内温度を制御する炉
内温度制御手段と、この炉内温度制御手段で得られた各
ゾーンのバイパス側弁の開度に相当する操作出力の中か
ら最大出力値を得る最大値取得手段と、この最大値取得
手段で得られた最大出力値と予め定めた目標流量域値と
を比較し最大出力値が目標流量域値を越えたときに前記
最大出力値が目標流量域値内に入るように前記廃棄ガス
流量制−御手段の目標原註を変更する流量設定値演算手
段と、この廃棄ガス流は制御手段の目標流はと炉内の条
件によって定まる値とを比較しその大小関係に基づいて
前記燃焼装置の目標温度を増減変更する温度設定値演算
手段とを備えたものである。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the optimal combustion control device for an exhaust gas recirculation furnace according to the present invention guides the exhaust gas generated in the furnace to a combustion device and burns it. In an optimal combustion control device for an exhaust gas recirculation furnace, which separates and outputs the collected combustion device generated gas into feed gas and waste gas, and controls the inside of the furnace to a predetermined temperature using the feed gas, A waste gas flow rate control means provided in the output line of the waste gas, and a zone cooler or burner that takes in the atmospheric gas in the furnace and discards the gas heat to the outside for each zone of the furnace, and a bypass. The temperature of the atmospheric gas is detected during the return of the atmospheric gas into the furnace, and based on this detected temperature, the opening degree of the zone cooler side valve or the burner side valve is suppressed, and the opening degree of the bypass side valve is adjusted. Furnace temperature control means that controls the furnace temperature while adjusting it, and a maximum value to obtain the maximum output value from among the operating outputs corresponding to the opening degrees of the bypass side valves of each zone obtained by this furnace temperature control means. An acquisition means compares the maximum output value obtained by the maximum value acquisition means with a predetermined target flow rate range value, and when the maximum output value exceeds the target flow rate range value, the maximum output value is determined as the target flow rate range value. and a flow rate setting value calculation means for changing the target value of the waste gas flow rate control means so that the waste gas flow is within the furnace. and temperature setting value calculation means for increasing or decreasing the target temperature of the combustion device based on the magnitude relationship.
(作用)
従って、本発明は以上のような手段を講じたことにより
、各ゾーンごとの温度調節計でゾーンクーラ側弁の開度
を極力抑え、バイパス側弁の開度を調節しながら炉内温
度を制御すると共に、これら温度調節計によるバイパス
弁の開度に相当する操作出力から最大出力値を取得し、
この最大出力値と廃棄ガス目標流量域値とを比較し、最
大出力値が廃棄ガス流量域値を越えているとき、最大出
力値が省エネの見地からバランス域となる廃棄ガス流量
域値内に入るように廃棄ガス目標流量を変更制御するこ
とにより、燃焼装置生成ガスのうち廃棄ガス流量を極力
抑制し給気ガス流量を有効に利用する。(Function) Therefore, by taking the above-mentioned measures, the present invention suppresses the opening degree of the zone cooler side valve as much as possible using the temperature controller for each zone, and controls the opening degree of the bypass side valve while controlling the inside of the furnace. In addition to controlling the temperature, the maximum output value is obtained from the operation output corresponding to the opening degree of the bypass valve by these temperature controllers,
This maximum output value is compared with the waste gas target flow rate range value, and if the maximum output value exceeds the waste gas flow rate range value, the maximum output value is within the waste gas flow rate range value, which is the balance range from an energy saving perspective. By changing and controlling the waste gas target flow rate so that the waste gas flow rate increases, the waste gas flow rate of the combustion device generated gas is suppressed as much as possible, and the supply gas flow rate is effectively utilized.
また、廃棄ガス目標流量と炉内の条件例えば材質、製品
の品質および省エネの観点を考慮して定めた値を比較し
、その大小関係から燃焼装置の温度調節計への目標温度
を増減変更し効率よく燃料を燃焼させるものである。In addition, the target flow rate of waste gas is compared with the value determined by taking into account the conditions inside the furnace, such as material, product quality, and energy saving aspects, and the target temperature for the temperature controller of the combustion equipment is increased or decreased based on the magnitude relationship. It burns fuel efficiently.
(実施例) 以下、本発明の詳細な説明するに先立ち。(Example) Below, prior to detailed description of the present invention.
先ず、本発明を実現するためのの基本原理について説明
する。今、焼付炉3への供給熱量をQとすると、
Q−α ・ F、@T ・・・
(1)Fs−F、+F2
・・・ (2)なる関係式が成立する。但し、上式にお
いてαは比例定数、Tは燃焼装置生成ガス;H度、Fは
燃焼装置生成ガス流量、Flは廃棄ガス流量、F2は焼
付炉3への給気ガス流量である。First, the basic principle for realizing the present invention will be explained. Now, if the amount of heat supplied to the baking furnace 3 is Q, then Q-α ・F, @T...
(1) Fs-F, +F2
... The following relational expression (2) holds true. However, in the above equation, α is a proportionality constant, T is the combustion device generated gas; H degrees, F is the combustion device generated gas flow rate, Fl is the waste gas flow rate, and F2 is the supply gas flow rate to the baking furnace 3.
今、燃焼装置生成ガス流filtFを一定とすれば、廃
熱ボイラ10へ送る廃棄ガス流は F 1を増大させる
と、」二記(2)式から給気ガス流量F2が減少し、そ
れに伴って炉内供給熱EuQが減少する。Now, assuming that the combustion device generated gas flow filtF is constant, the waste gas flow sent to the waste heat boiler 10 is F1.If 1 is increased, the supply gas flow rate F2 decreases from equation (2), and accordingly, As a result, the heat EuQ supplied to the furnace decreases.
従って、炉内を所定の温度とし、かつ、エネルギーロス
を極力少なくするためには、次の2つの条件が必要にな
ってくる。Therefore, in order to maintain a predetermined temperature in the furnace and to minimize energy loss, the following two conditions are required.
■、その1つは、温度調節計17を用いて比率調節弁1
3のゾーンクーラ側管路aを閉とし、かつ、バイパス側
管路すを開とすれば、ゾーンクーラ14から外部に棄て
る熱量を少なくできる。(1) One of them is to use the temperature controller 17 to control the ratio control valve 1.
By closing the zone cooler side pipe line a of No. 3 and opening the bypass side pipe line a, the amount of heat disposed of from the zone cooler 14 to the outside can be reduced.
■、他の1つは、比率調節弁13のゾーンクーラ側管路
aを全開にし、炉内温度が低下した場合には廃棄ガス流
は F lを減少させて給気ガス流量F2を増加させれ
ば炉内温度を上昇させることができる。(2) The other method is to fully open the zone cooler side pipe a of the ratio control valve 13, and when the temperature inside the furnace decreases, the waste gas flow decreases Fl and increases the supply gas flow rate F2. If so, the temperature inside the furnace can be increased.
従って、以りの2つの条件から明らかなように、比率調
節弁13のゾーンクーラ側管路aが常に閉になる様に廃
棄ガス流W F 1を調節すれば、炉内温度を所定の値
に制御できることになる。因みに、廃棄ガス流W F
lが必要以上に大きいということは燃焼装置生成ガス温
度が必要量」二に高い、すなわちバーナ6で燃料を無駄
に消費していることを示す。この場合には温度調節計8
の目標温度を下げ、その代わりに廃棄ガス流f:kF1
を減少させて給気ガス流ff1F2を増加させればよい
。つまり、比率調節弁13のゾーンクーラ側管路aが全
開となる様に廃棄ガス流ff1F、を制御し、この廃棄
ガス流量F1をも最少となる様に燃焼装置生成ガス温度
を制御すれば、最適燃焼制御系を実現することができる
。Therefore, as is clear from the following two conditions, if the waste gas flow W F 1 is adjusted so that the zone cooler side pipe a of the ratio control valve 13 is always closed, the temperature inside the furnace can be maintained at a predetermined value. This means that it can be controlled. Incidentally, the waste gas flow W F
The fact that l is larger than necessary indicates that the combustion device produced gas temperature is higher than the required amount, that is, the burner 6 wastes fuel. In this case, the temperature controller 8
and instead reduce the target temperature of the waste gas flow f:kF1
What is necessary is to increase the supply gas flow ff1F2 by decreasing . In other words, if the waste gas flow ff1F is controlled so that the zone cooler side pipe a of the ratio control valve 13 is fully opened, and the combustion device generated gas temperature is controlled so that this waste gas flow rate F1 is also minimized, An optimal combustion control system can be realized.
従って、本発明装置は以上の基本原理を踏まえて実現し
たものであって、以下1本発明装置の一実施例について
第1図を参照して説明する。なお、同図において従来装
置(第4図)と同一部分には同一符号を付してその詳し
い説明は省略する。すなわち、この最適燃焼制御装置は
、焼付炉3の各ゾーンごとに炉内温度制御手段21.・
・・が設けられ、これら複数の炉内温度制御手段21.
・・・の−部を構成する温度調節計14.・・・の操作
出力側には最大値取得手段22が設けられている。この
最大値取得手段22は、各ゾーンごとの温度2fii
;;117、・・・の操作出力の中から最もバイパス側
管路すの開度の大きな操作出力値をもって最大出力値M
Va+axとして取得し、この最大出力値M V wa
xを廃棄ガスの目標流量を定める流量設定値演算手段2
3へ送出する。この流量設定値演算手段23は前記最大
出力値M V ll1axと予め定めた目標流量域値(
MVH−MVL)とを比較し、最大出力値MVIlax
が目標流量域値を越えたとき、スイッチ24を介して廃
棄ガス流量制御手段25の目標流量を変更し最大出力値
が目標流量域値内に入るように制御する機能を持ってい
る。この廃棄ガス流量制御手段25は、廃棄ガスライン
に流量計25aおよび流量調節弁25bが設置され、か
つ、流量計25aの検出流量と1」標流隘との偏差に基
づいて調節演算を行って操作出力を得る流量調節計25
cが設けられている。なお、スイッチ24は例えば手動
操作により切換えを行うもので、常時は流量設定値演算
手段23側に閉成している。Therefore, the apparatus of the present invention has been realized based on the above basic principle, and one embodiment of the apparatus of the present invention will be described below with reference to FIG. In this figure, the same parts as those in the conventional device (FIG. 4) are given the same reference numerals, and detailed explanation thereof will be omitted. In other words, this optimum combustion control device includes furnace temperature control means 21 for each zone of the baking furnace 3.・
... are provided, and these plurality of furnace temperature control means 21.
Temperature controller 14 constituting the negative part of... A maximum value acquisition means 22 is provided on the operation output side of . This maximum value acquisition means 22 calculates the temperature 2fii for each zone.
;; Out of the operating outputs of 117, . . . , the operating output value with the largest opening degree of the bypass side pipe is set as the maximum output value M.
This maximum output value M V wa is obtained as Va+ax.
Flow rate setting value calculation means 2 for determining the target flow rate of waste gas by x
Send to 3. This flow rate setting value calculation means 23 calculates the maximum output value M V ll1ax and a predetermined target flow rate range value (
MVH-MVL), the maximum output value MVIlax
It has a function of changing the target flow rate of the waste gas flow rate control means 25 via the switch 24 so that the maximum output value falls within the target flow rate limit value when the value exceeds the target flow rate limit value. This waste gas flow rate control means 25 has a flow meter 25a and a flow rate adjustment valve 25b installed in the waste gas line, and performs adjustment calculations based on the deviation between the flow rate detected by the flow meter 25a and the 1'' mark. Flow rate controller 25 for obtaining operational output
c is provided. Note that the switch 24 is switched by manual operation, for example, and is normally closed on the flow rate setting value calculation means 23 side.
26は前記流量設定値演算手段23から出力された流量
調節計25cの目標流量FSVと炉内の条件によって定
まる値(FSL+DD)とを比較しその大小関係に応じ
て燃焼温度2m計8′の目標温度を変更する温度設定値
演算手段である。なお、FSLは焼付炉3の焼付は状態
で定まる規定値であって、具体的には廃棄ガス流量が少
なくなると炉圧が上がり、焼付炉3への大気の侵入量の
減少によって露点が上昇する。露点が上昇するとコイル
表面の塗膜の品質が劣化する。そこで、FSLは廃棄ガ
ス流量の下限値としての役目をもっている。DDは炉内
の省エネの観点から定めた値である。27は圧力1週節
計であって、これは本願発明の要旨と直接関係を自°す
るものでないが、炉内の圧力を最優先して制御するとき
にスイッチ24を切換えて流量調節計25cとカスケー
ド接続し、炉圧検出器27.02濃度検出器28、給気
ガス圧検出器30の出力に基づいて廃棄ガス流量をカス
ケード制御するものである。Reference numeral 26 compares the target flow rate FSV of the flow rate controller 25c outputted from the flow rate setting value calculating means 23 with a value (FSL+DD) determined by the conditions in the furnace, and determines the target of the combustion temperature 2m meter 8' according to the magnitude relationship. This is temperature set value calculation means for changing the temperature. Note that FSL is a specified value determined by the baking condition of the baking furnace 3, and specifically, when the waste gas flow rate decreases, the furnace pressure increases, and as the amount of air entering the baking furnace 3 decreases, the dew point increases. . As the dew point increases, the quality of the coating on the coil surface deteriorates. Therefore, FSL has a role as a lower limit value of the waste gas flow rate. DD is a value determined from the viewpoint of energy saving in the furnace. Reference numeral 27 denotes a pressure one-week meter, which is not directly related to the gist of the present invention, but when controlling the pressure in the furnace with the highest priority, the switch 24 is switched to control the flow rate controller 25c. The waste gas flow rate is controlled in cascade based on the outputs of the furnace pressure detector 27, concentration detector 28, and supply gas pressure detector 30.
次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.
コイル1の表面にコ〜り2を用いて塗料を塗布して焼付
炉3に導入して焼付けを行うが、このときの焼付炉3の
雰囲気ガスを炉内温度制御手段21のゾーンクーラ側管
路aおよびバイパス側管路すを介して取込んで温度検出
器16でガス温度を検出する。ここで、温度調節計17
は温度検出器16からの検出ガス温度と目標温度との偏
差に基づいて操作出力を得て比率調節弁13を操作する
が、このときゾーンクーラ側管路aを極力閉状態に設定
し、バイパス側管路すの開度を調節して炉内の温度制御
を行う。Coating is applied to the surface of the coil 1 using a coater 2 and then introduced into the baking furnace 3 for baking. The temperature of the gas is detected by the temperature detector 16 taken in through the passage a and the bypass side pipe line S. Here, the temperature controller 17
obtains an operating output based on the deviation between the detected gas temperature from the temperature detector 16 and the target temperature and operates the ratio control valve 13. At this time, the zone cooler side pipe a is set to the closed state as much as possible, and the bypass The temperature inside the furnace is controlled by adjusting the opening of the side pipe.
以1−のような比率調節弁16.・・・の調節操作は焼
付炉3の各ゾーンごとに行うが、このときのバイパス側
管路す、・・・の各開度に相当する温度調節計17.・
・・の操作出力がそれぞれ最大値取得手段22に送出さ
れる。この最大値取得手段22は複数のゾーンの操作出
力の中から最も大きな操作出力を最大出力値M V l
1aXとして取得し、この最大出力値M V waxを
流量設定値演算手段23に送出する。ここで、流量設定
値演算手段23は最大出力値M V ff1aXと第2
図に示す予め定めた目標流量域値(MVH−MVL)と
を比較し、最大出力値MVa+axが第2図(A)の如
き目標流量域値MVHを越えているときには給気ガスF
2の流量が足りないと判断し、流量設定値演算手段23
にて流量調節計25cの目標流量を徐々に下げていく。Ratio control valve 16 as shown in 1- below. The adjustment operations for... are performed for each zone of the baking furnace 3, and at this time, the temperature controllers 17.・
... are respectively sent to the maximum value acquisition means 22. This maximum value acquisition means 22 selects the largest operational output from among the operational outputs of a plurality of zones as a maximum output value M V l
1aX, and sends this maximum output value M V wax to the flow rate setting value calculation means 23. Here, the flow rate setting value calculating means 23 calculates the maximum output value M V ff1aX and the second
When the maximum output value MVa+ax exceeds the target flow rate range value MVH as shown in Figure 2 (A), the supply air F
It is determined that the flow rate of step 2 is insufficient, and the flow rate set value calculation means 23
The target flow rate of the flow rate controller 25c is gradually lowered.
そうすると、給気ガス流量が増大し焼付炉3の雰囲気ガ
ス温度が高くなるので、そのガス温度を検出して温度調
節計17が比率調節弁13のバイパス側管路すの弁開度
を小さくする。前記流量設定値演算手段23は最大値演
算手段22から得られるバイパス側聞度の最大出力値が
11標流隘域値MVHを下回るまで流量1凋節計25c
の目標流量FSVを下げ続けていき、目標流量域値MV
H以下になったところでその目標流W F S Vをホ
ールドする。つまり、第2図(A)から第2図(B)に
なったところで目標流量の変更を停止する。Then, the supply gas flow rate increases and the atmospheric gas temperature in the baking furnace 3 increases, so the temperature controller 17 detects the gas temperature and reduces the valve opening of the bypass side pipe of the ratio control valve 13. . The flow rate setting value calculation means 23 operates the flow rate 1-point meter 25c until the maximum output value of the bypass side pressure obtained from the maximum value calculation means 22 becomes lower than the 11-mark flow barrier value MVH.
Continuing to lower the target flow rate FSV, the target flow rate range value MV
When the target flow W F S V falls below H, the target flow W F S V is held. In other words, the change in target flow rate is stopped when the state changes from FIG. 2(A) to FIG. 2(B).
反対に、最大出力値MVtrraxが第2図(C)の如
き予め定めた目標流量域値MVLを越えたときには前述
同様に最大値MVa+axがMVL以上となるまで目標
流ff1FsVを変更し、目標流量域値(バランス域)
に入ったところで、流量設定値演算手段23はその目標
流量をホールドする。従って、以上のような一連の制御
を行うことにより、廃棄ガスの大気放出量およびゾーン
クーラ側からのガス凱を減らしながら、燃焼装置5で得
られた生成ガスをq効に利用できる。On the other hand, when the maximum output value MVtrrax exceeds the predetermined target flow rate range value MVL as shown in FIG. Value (balance range)
When the target flow rate is reached, the flow rate setting value calculating means 23 holds the target flow rate. Therefore, by performing a series of controls as described above, it is possible to utilize the generated gas obtained in the combustion device 5 in a Q-effective manner while reducing the amount of waste gas released into the atmosphere and the gas evaporation from the zone cooler side.
−W、廃棄ガス原註が少なすぎると、炉圧が」−かって
大気の焼付炉3への侵入量が減少し炉内の露点が上昇す
る。露点が上昇するとコイル表面の塗膜の品質が劣化す
る。このことは、廃棄ガス流量は塗膜の品質面から流量
下限値FSL以下にすることができない。-W: If the amount of waste gas is too small, the furnace pressure will decrease and the amount of atmospheric air entering the baking furnace 3 will decrease, increasing the dew point inside the furnace. As the dew point increases, the quality of the coating on the coil surface deteriorates. This means that the waste gas flow rate cannot be lower than the flow rate lower limit value FSL from the viewpoint of coating film quality.
そこで、温度設定値演算手段26は、予め廃棄ガス流量
下限値FSLを有し、流量調節計25(の流量目標値F
SVと流量下限値FSL+バイアス値DD(デッドバン
ド)とを比較し第3図に示す如く
FSV>FSL+DD
の場合には廃棄ガス流Q F 1が大きすぎると判断し
、燃焼装置5の目標1M度が高゛いと判断して温度調節
計8′の目標温度を下げていく。その結果、燃焼装置生
成ガス温度が下がっていくので、」1記(1)式から給
気ガスF2の流量が増大し、上記(2)式および第2図
の関係により、流量調節計25(の目標流=psvが減
少していく。つまり、温度設定値演算手段26はF5V
がバランス域。Therefore, the temperature set value calculating means 26 has a waste gas flow rate lower limit value FSL in advance, and the flow rate target value F of the flow rate controller 25 (
SV is compared with the flow rate lower limit value FSL + bias value DD (dead band), and as shown in FIG. It is determined that the temperature is too high, and the target temperature of the temperature controller 8' is lowered. As a result, the temperature of the combustion device produced gas decreases, so the flow rate of the supply gas F2 increases according to equation (1), and according to the equation (2) above and the relationship shown in FIG. The target flow=psv decreases.In other words, the temperature set value calculation means 26
is the balance range.
つまり
FSV ≦ FSL −ト DD
になるまで温度調節計8′の目標温度を下げ続け、FS
V≦FSL+DDになった時点の最終値をホールドし、
この値を温度調節計8′の目標温度とする。In other words, the target temperature of the temperature controller 8' is continued to be lowered until FSV ≦ FSL - DD, and the FS
Hold the final value when V≦FSL+DD,
This value is set as the target temperature of the temperature controller 8'.
逆に、
FSV<FSL+ ID
(IDは製品材質から予め定めた値)の場合には燃焼装
置5の目標温度が低いと判断し、FSV≧FSL+ID
になるまで温度調節計8′の11標温度を上げていく。Conversely, if FSV<FSL+ID (ID is a predetermined value based on the product material), it is determined that the target temperature of the combustion device 5 is low, and FSV≧FSL+ID.
Increase the temperature at the 11th mark on the temperature controller 8' until the temperature reaches .
そして、最終的には第3図(B)に示すバランス域に入
るように制御し、温度調節計17.流量調節計25(お
よび温度調節計8′とも最適な状態で制御され省エネ化
を実現することが可能となる。Finally, the temperature controller 17. is controlled so as to enter the balance range shown in FIG. 3(B). Both the flow rate controller 25 (and the temperature controller 8') are controlled in an optimal state, making it possible to save energy.
従って、以上のような実施例の構成によれば、炉内温度
制御手段21により各ゾーンクーラ側管路a、・・・の
弁を極力閉成し、バイパス側管路す、・・・の弁開度を
操作しながらバイパス側管路す、・・・の弁開度の最大
値つまり各温度調節計17、・・・の操作出力から最大
出力値を得、この最大出力値と予め定めた廃棄ガス目標
流量域値とを比較しながら最大値が目標流量域値内に入
るように廃棄ガス目標流量を変更するようにしたので、
燃焼装置生成ガスのうち廃棄ガス量を少なくして焼付炉
3に給気ガスを有効に利用でき、煙突12から排出する
廃棄ガスの放出口およびゾーンクーラ側から棄てる炉内
雰囲気ガスの量をを大幅に低減できる。また、廃棄ガス
の流量調節計25cの目標流量と炉内の所要とする条件
値とを比較しながら温度調節計8′の目標温度を=I変
するようにしたので、廃棄ガス流量を考慮しながらバラ
ンスのよい燃焼を行うことができる。従って、以上のよ
うな一連の制御を行えば、特にコイル1の種類。Therefore, according to the configuration of the embodiment described above, the furnace temperature control means 21 closes the valves of the zone cooler side pipes a, . . . as much as possible, and closes the valves of the bypass side pipes a, . While manipulating the valve opening degree, obtain the maximum output value from the maximum value of the valve opening degree of the bypass side pipes 17, . . . , that is, the operation output of each temperature controller 17, . The waste gas target flow rate is changed so that the maximum value falls within the target flow rate range while comparing the target waste gas flow rate with the waste gas target flow rate range.
By reducing the amount of waste gas out of the combustion device generated gas, the gas supplied to the baking furnace 3 can be effectively used, and the amount of furnace atmosphere gas that is discarded from the waste gas outlet from the chimney 12 and the zone cooler side can be reduced. This can be significantly reduced. In addition, the target temperature of the temperature controller 8' is changed by =I while comparing the target flow rate of the waste gas flow rate controller 25c with the required condition value in the furnace, so the waste gas flow rate is taken into consideration. However, it is possible to achieve well-balanced combustion. Therefore, if the above series of controls is performed, especially the type of coil 1.
ライン速度、焼付炉3の大きさ、02濃度、ソルベント
量等を把握することなく、自動的に最適制御を実現でき
、併せて、省エネ化に大きく貢献できる。また、焼付炉
3の温度調節計17.廃棄ガス流量調節計25Cおよび
燃焼装置5の温度調節計8′の順序で制御周期を大きく
すれば、それぞれ干渉を起こすことなく最適制御を行う
ことができる。Optimum control can be automatically achieved without knowing the line speed, the size of the baking furnace 3, the 02 concentration, the amount of solvent, etc., and it can also greatly contribute to energy savings. Also, the temperature controller 17 of the baking furnace 3. By increasing the control period in the order of the waste gas flow rate controller 25C and the temperature controller 8' of the combustion device 5, optimal control can be performed without causing interference with each other.
なお、上記実施例においては、焼付炉3の温度制御方式
としてゾーンクーラ側管路aにゾーンクーラ14を設け
、炉内から比較的高い温度の雰囲気ガスを取込んでゾー
ンクーラ14で冷却しながら高い温度の雰囲気ガスに合
流させながら炉内の温度を制御するようにしたが、例え
ばゾーンクラ14の代わりにバーナ41を設け、炉内か
ら比較的温度の低い雰囲気ガスを取込んでバーナで温度
を上げて低い温度の雰囲気ガスに合流させて炉内の温度
を制御する構成であってもよい。また、燃焼装置5は触
媒燃焼装置あるいはヒユームインシナレータであっても
よく、それ以外の燃焼装置でもよい。また、本装置は燃
焼装置生成ガスを再循環させる炉であれば、どのような
炉であっても適用できる。その他、本発明はその要旨を
逸脱しない範囲で種々変形して実施できる。In the above embodiment, as a temperature control method for the baking furnace 3, a zone cooler 14 is provided in the zone cooler side pipe a, and atmospheric gas at a relatively high temperature is taken in from inside the furnace and cooled by the zone cooler 14. The temperature inside the furnace is controlled by merging the high-temperature atmospheric gas, but for example, a burner 41 is provided in place of the zone cracker 14, and relatively low-temperature atmospheric gas is taken in from inside the furnace and the temperature is controlled by the burner. Alternatively, the temperature inside the furnace may be controlled by raising the temperature to join the lower temperature atmospheric gas. Further, the combustion device 5 may be a catalytic combustion device or a fume insulator, or may be any other combustion device. Further, the present device can be applied to any type of furnace as long as it recirculates the gas produced by the combustion device. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.
[発明の効果コ
以上詳記したように本発明によれば、プラントの各種デ
ータを必要とすることなくフィードバック制御系だけで
装置を構築でき、しかも炉から生成されたガスを非常に
エネルギーロスの少ない状態で炉に再循環させて使用で
き、省エネ化に大きく貢献させうる。また、炉内温度調
節計、廃棄ガス流量調節計および燃焼装置の温度調節計
の順序で制御周期を大きくすれば容易に非干渉制御を実
現できる。[Effects of the Invention] As detailed above, according to the present invention, it is possible to construct a device using only a feedback control system without requiring various plant data, and moreover, it is possible to control the gas generated from the furnace with very little energy loss. It can be recirculated to the furnace in a small amount and can greatly contribute to energy savings. Furthermore, non-interference control can be easily achieved by increasing the control period in the order of the furnace temperature controller, waste gas flow rate controller, and combustion device temperature controller.
第1図ないし第3図は本発明に係わる排ガス再循環炉の
最適燃焼制御装置の一実施例を説明するために示したも
ので、第1図は本発明装置の構成図、第2図は廃棄ガス
流量制御手段の目標流量を定めるための説明図、第3図
は燃焼装置における目標温度を定めるための説明図、第
4図は従来装置の構成図である。
1・・・コイル、2・・・コータ、3・・・焼付炉、5
・・・燃焼装置、6・・・バーナ、8′・・・温度調節
計、13・・・比率調節弁、14・・・ゾーンクーラ、
16・・・温度検出器、17・・・温度調節計、2】・
・・炉内温度制御手段、22・・・最大値取得手段、2
3・・・流量設定値演算手段、25・・・廃棄ガス流量
制御手段、25a・・・流量計、25b・・・調節弁、
25C・・・流量調節計、26・・・温度設定値演算手
段。
出願人代理人 弁理士 鈴江武彦1 to 3 are shown to explain an embodiment of the optimal combustion control device for an exhaust gas recirculation furnace according to the present invention, and FIG. 1 is a block diagram of the device of the present invention, and FIG. FIG. 3 is an explanatory diagram for determining the target flow rate of the waste gas flow rate control means, FIG. 3 is an explanatory diagram for determining the target temperature in the combustion device, and FIG. 4 is a configuration diagram of a conventional device. 1... Coil, 2... Coater, 3... Baking furnace, 5
... Combustion device, 6... Burner, 8'... Temperature controller, 13... Ratio control valve, 14... Zone cooler,
16...Temperature detector, 17...Temperature controller, 2]・
...Furnace temperature control means, 22...Maximum value acquisition means, 2
3... Flow rate setting value calculation means, 25... Waste gas flow rate control means, 25a... Flow meter, 25b... Control valve,
25C...Flow rate controller, 26...Temperature set value calculation means. Applicant's agent Patent attorney Takehiko Suzue
Claims (1)
られた燃焼装置生成ガスを給気ガスと廃棄ガスに分けて
出力するとともに、前記給気ガスを熱量として炉内に再
循環する排ガス再循環炉の最適燃焼制御装置において、 前記廃棄ガスの出力ラインに設けられた廃棄ガス流量制
御手段と、前記炉の各ゾーンごとに炉内の雰囲気ガスを
取込んでそのガス熱を外部に棄てるゾーンクーラまたは
バーナとバイパスとを介して前記炉内に雰囲気ガスを返
還する途中でその雰囲気ガスの温度を検出し、この検出
温度に基づいて前記ゾーンクーラ側の弁またはバーナ側
の弁の開度を抑えてバイパス側弁の開度を調節しながら
炉内温度を制御する炉内温度制御手段と、この炉内温度
制御手段で得られた各ゾーンのバイパス側弁の開度に相
当する操作出力の中から最大出力値を得る最大値取得手
段と、この最大値取得手段で得られた最大出力値と予め
定めた目標流量域値とを比較し最大出力値が目標流量域
値を越えたときに前記最大出力値が目標流量域値内に入
るように前記廃棄ガス流量制御手段の目標流量を変更す
る流は設定値演算手段と、この廃棄ガス流量制御手段の
目標流量と炉内の条件によって定まる値とを比較しその
大小関係に基づいて前記燃焼装置の目標温度を増減変更
する温度設定値演算手段とを備えたことを特徴とする排
ガス再循環炉の最適燃焼制御装置。[Claims] Exhaust gas generated in the furnace is led to a combustion device and combusted, and the resulting combustion device generated gas is divided into supply gas and waste gas and output, and the supply gas is converted into calorific value. An optimal combustion control device for an exhaust gas recirculation furnace that recirculates the exhaust gas into the furnace includes a waste gas flow rate control means provided in the waste gas output line, and a waste gas flow rate control means installed in the output line of the waste gas, and a means for controlling the atmospheric gas in the furnace for each zone of the furnace. The temperature of the atmospheric gas is detected while it is being returned to the furnace via a zone cooler or burner that dissipates the gas heat to the outside and a bypass, and based on this detected temperature, the temperature of the atmospheric gas is detected by the valve or Furnace temperature control means for controlling the furnace temperature while suppressing the opening degree of the burner side valve and adjusting the opening degree of the bypass side valve; Maximum value acquisition means obtains the maximum output value from the operation output corresponding to the opening degree, and the maximum output value obtained by this maximum value acquisition means is compared with a predetermined target flow rate range value, and the maximum output value is determined as the target. The process of changing the target flow rate of the waste gas flow rate control means so that the maximum output value falls within the target flow rate limit value when the flow rate limit value is exceeded is controlled by a set value calculation means and a target of the waste gas flow rate control means. Optimal combustion for an exhaust gas recirculation furnace, characterized in that it is equipped with a temperature set value calculating means for comparing the flow rate with a value determined by the conditions in the furnace and increasing or decreasing the target temperature of the combustion device based on the magnitude relationship. Control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27258388A JPH0659443B2 (en) | 1988-10-28 | 1988-10-28 | Optimal combustion control system for exhaust gas recirculation furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27258388A JPH0659443B2 (en) | 1988-10-28 | 1988-10-28 | Optimal combustion control system for exhaust gas recirculation furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02119972A true JPH02119972A (en) | 1990-05-08 |
JPH0659443B2 JPH0659443B2 (en) | 1994-08-10 |
Family
ID=17515942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27258388A Expired - Fee Related JPH0659443B2 (en) | 1988-10-28 | 1988-10-28 | Optimal combustion control system for exhaust gas recirculation furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0659443B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004911A (en) * | 1995-12-27 | 1999-12-21 | Denso Corporation | Processing oil suitable for aluminum materials and removable via heating |
-
1988
- 1988-10-28 JP JP27258388A patent/JPH0659443B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004911A (en) * | 1995-12-27 | 1999-12-21 | Denso Corporation | Processing oil suitable for aluminum materials and removable via heating |
Also Published As
Publication number | Publication date |
---|---|
JPH0659443B2 (en) | 1994-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108488831B (en) | Boiler combustion control system and method | |
JPH02119972A (en) | Controller for optimum combustion in exhaust gas-recirculation furnace | |
JPH0579622A (en) | Method for controlling combustion by control of oxygen concentration in combustion furnace | |
JPS63286614A (en) | Combustion control of boller | |
JP3188389B2 (en) | Continuous drying and baking method of paint | |
JP4605656B2 (en) | Thermal power generation boiler and combustion air supply control method | |
JP7210125B2 (en) | Combustion equipment | |
JPH0323806B2 (en) | ||
CN110030842A (en) | A kind of recuperative heater interval delay reverse control method | |
JP3235643B2 (en) | Combustion control method and apparatus for sludge incinerator | |
JPH08121730A (en) | Sewage sludge fluidized bed type incinerator | |
KR100194446B1 (en) | Combustion control method and apparatus for waste incinerator | |
JP7210126B2 (en) | Combustion equipment | |
RU2534920C1 (en) | Method of automatic regulation of fuel-air ratio in boiler furnace | |
CN114489185B (en) | Control method and control system for torpedo ladle baking | |
JP5130779B2 (en) | Solvent exhaust treatment method and exhaust fan control device in continuous coating equipment | |
JPH03199892A (en) | Control of amount of supply gas for waste heat boiler | |
JPH10185177A (en) | Regenerative burner type heating furnace | |
JPS5817373B2 (en) | Combustion control method using oxygen concentration control in combustion furnace | |
SU785631A1 (en) | System for automatic control of heat condition of heating furnace | |
JP3627957B2 (en) | Control device for CO concentration in furnace exhaust gas | |
JPH10169955A (en) | Combustion controlling method for sludge incinerator and its apparatus as well as medium of fuzzy inference combustion control program | |
JP4281243B2 (en) | Gas cooling chamber outlet temperature control method and apparatus | |
SU1200109A1 (en) | Method of regulating furnace temperature | |
TW202421969A (en) | Method for controlling combustion in combustion equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |