JPH02119858A - Three dimensional surveying optical probe for teeth in buccal cavitiy and optical three dimensional surveying method using said probe - Google Patents

Three dimensional surveying optical probe for teeth in buccal cavitiy and optical three dimensional surveying method using said probe

Info

Publication number
JPH02119858A
JPH02119858A JP1227298A JP22729889A JPH02119858A JP H02119858 A JPH02119858 A JP H02119858A JP 1227298 A JP1227298 A JP 1227298A JP 22729889 A JP22729889 A JP 22729889A JP H02119858 A JPH02119858 A JP H02119858A
Authority
JP
Japan
Prior art keywords
optical
dimensional
dimensional surveying
teeth
surveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1227298A
Other languages
Japanese (ja)
Other versions
JPH0616799B2 (en
Inventor
Robert Massen
ローベルト・マッセン
Joachim Gaessler
ヨアヒム・ゲスラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaltenbach and Voigt GmbH
Original Assignee
Kaltenbach and Voigt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaltenbach and Voigt GmbH filed Critical Kaltenbach and Voigt GmbH
Publication of JPH02119858A publication Critical patent/JPH02119858A/en
Publication of JPH0616799B2 publication Critical patent/JPH0616799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • A61C9/006Optical means or methods, e.g. scanning the teeth by a laser or light beam projecting one or more stripes or patterns on the teeth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence

Abstract

PURPOSE: To make three-dimensional optical measuring possible by using a matrix light source with high resolution and other devices which are programmable two-dimensionally dot by dot and can project a light beam onto a surface to be probed with the help of an optical element for focusing. CONSTITUTION: When the image of a marked surface of a tooth is transmitted to a two-dimensional video camera 3 by a second light guide 2, the data is transmitted to an image evaluation computer 4. The pattern projected onto the surface of a tooth is digitized by the computer 4 or another computer, stored by a projected image storage device 5, and converted by a digital-to- analog converter into video signals which control an LCD video matrix 7. The LCD screen in irradiated with a fixed amount of light from an illuminating device 8 and adjusted dot by dot at high resolution and many levels of gray. The adjusted light beam is projected on the surface of the tooth through an image optical element 6. Thus, positioning of the probe, setting of the clarity and others can be easily controlled without encountering troublesome lines on the monitor of an image processing device 10.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は患者の口腔内の歯の三次元測定又は測量用光プ
ローブ及び同プローブを用いた光学的三次元測量法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical probe for three-dimensional measurement or surveying of teeth in a patient's oral cavity, and an optical three-dimensional surveying method using the same probe.

[従来の技術] 患者の口腔内の歯を光学的に直接に三次元測定又は測量
することにより、歯のデジタル構成データが容易に得ら
れるので、型を取らずにコンピュータ制御の下で義歯を
製造することができるようになる。半自動又は全自動数
値研磨技術では、このような装置として現在のところ以
下に述べる3種類の装置が知られている。
[Prior Art] By directly optically measuring or surveying the teeth in the patient's oral cavity, digital composition data of the teeth can be easily obtained. be able to manufacture. In the semi-automatic or fully automatic numerical polishing technique, the following three types of devices are currently known as such devices.

(a)医師Duret博士が開発し、フランスのHen
n5on Int、社が採用しているもので、患者の口
腔内に光プローブを挿入し、光プローブと歯の表面との
間の距離を点毎に測量するレーザー三角測量法を用いた
装置。この種の距離測量プローブは工業的測量技術にも
広く応用されている。レーザーを用いて点毎に測量又は
測定するか、線に沿って走査し、走査線に沿った走査対
象の相対的高さの座標を決定する。光学的撮像装置(ピ
ックアップ又はレシーバ−)として通常はCCD走査線
センサーが用いられているので、256ないし4.09
6個の画点の撮像点ラスターがある。
(a) Developed by doctor Dr. Duret, French Hen
This device, adopted by n5on Int, Inc., uses a laser triangulation method that inserts an optical probe into the patient's oral cavity and measures the distance between the optical probe and the tooth surface point by point. This type of distance measuring probe is also widely applied in industrial surveying technology. The laser is used to survey or measure point by point or scan along a line and determine the coordinates of the relative height of the scanned object along the scan line. Since a CCD scanning line sensor is usually used as an optical imager (pickup or receiver), 256 to 4.09
There is an image point raster of 6 image points.

(b)工業的測量技術として広く知られている光切断法
に基づいて作動するもので、スイスのBRAINS、 
Brandistini Instruments社が
採用している作図CERPCという装置。複数本の光線
で構成された平行格子又は−本の光線を表面に投影し、
視差を有する二次元カメラでこれを観察し、光切断線の
曲率から相対的高さを計算する。
(b) It operates based on the light cutting method, which is widely known as an industrial surveying technique, and is based on the Swiss company BRAINS.
A device called CERPC is used by Brandistini Instruments. Projecting a parallel grid composed of multiple rays or -1 rays onto a surface,
This is observed with a two-dimensional camera with parallax, and the relative height is calculated from the curvature of the light cutting line.

この方法を改善した方法がいわゆる移相法として知られ
ている。この方法は、バイナリ光切断法とは対照的にシ
ヌソイド的に明るさを調整した干渉計的に生成された光
格子を用いている。この格子の位相が位置する複数箇所
で対象の撮像又は記録が行われるので、高さ値が高密度
になる。また、反射の局部的揺らぎにより背景の明るさ
が不安定になったり、コントラストが線状に揺らいだり
するという悪影響を数学的に除去することができるよう
になる。
An improved method of this method is known as the so-called phase shift method. This method uses interferometrically generated light gratings with sinusoidally brightness adjustment, in contrast to binary light sectioning methods. The object is imaged or recorded at multiple locations where the phases of this grating are located, resulting in a high density of height values. Furthermore, it becomes possible to mathematically eliminate the negative effects of unstable background brightness and linear fluctuations in contrast due to local fluctuations in reflection.

(e)物理学者Dianne Reeow博士によりミ
ネソタ大学で開発されたもので、喉頭鏡プローブを利用
して歯の表面を写真撮影し、現像後にドキュメントスキ
ャナを用いて写真の走査及びデジタル化を行い、写真測
量法として知られている方法を立体評価に応用してコン
ピューターで評価する方法。
(e) Developed at the University of Minnesota by physicist Dr. Dianne Reeow, this method uses a laryngoscope probe to photograph the tooth surface, and after development, scans and digitizes the photograph using a document scanner. A computer-based evaluation method that applies a method known as surveying to three-dimensional evaluation.

現在用いられている口腔用光プローブは、その構造から
以上の方法(レーザー三角測量法、光切断法、移相法、
立体距離測量法)の中のいずれかを用いなければならな
い。しがしながら、これらの方法にはそれぞれに長所及
び短所がある。
Due to their structure, the optical probes for the oral cavity currently in use can be
3D distance measurement method) must be used. However, each of these methods has advantages and disadvantages.

(a)レーザー三角測量法やレーザー移相法では干渉性
の光により斑点が生じてしまうので、高さの像がぼやけ
てしまい、分解能が非常に悪化する。
(a) In the laser triangulation method and the laser phase shift method, speckles are generated due to coherent light, so the height image becomes blurred and the resolution becomes extremely poor.

(b)固定格子を有する光切断法又は移相法には大きな
飛びにより高さが不明瞭になるという問題がある。大き
な飛びが生じると、光の線が大きく偏倚してしまい、シ
ヌソイダル格子の位相の位置が格子−個分以上偏倚して
しまう。このため、高さの飛びを再構成することができ
ない。
(b) The optical cutting method or the phase shifting method with a fixed grating has the problem that the height is obscured by large jumps. When a large jump occurs, the beam of light is largely shifted, and the phase position of the sinusoidal grating is shifted by more than one grating. For this reason, it is not possible to reconstruct the jump in height.

以上の通り、現在知られている先玉次元口腔プローブで
は、使用可能な三次元法は構造によりひとりでに決まっ
てしまい、走査周波数、位相の移動、焦点合せ、拡大な
どの幾っがの調整やパラメーター以外は変更することが
できない。従って、同一のプローブを用いて、三角測量
法、光切断法、移相法、立体写真測量法、工業的測量技
術により公知の一連の更に別の測量法、例えば、グレイ
コード符号化光格子などの複数個の相補的測量法を同一
対象に用いてこれらの方法の長所を組み合わせてそれぞ
れの欠点を除去することはできない。
As mentioned above, in the currently known tip-shaped dimensional oral probes, the usable 3D methods are automatically determined by the structure, and a number of adjustments and parameters such as scanning frequency, phase shift, focusing, and magnification are required. You cannot change anything other than that. Therefore, using the same probe, a series of further surveying methods known from the industrial surveying art, such as triangulation, optical sectioning, phase shifting, stereophotogrammetry, etc. It is not possible to use multiple complementary surveying methods on the same object to combine the strengths of these methods and eliminate the drawbacks of each.

[発明が解決しようとする課題] 本発明は上記事情に鑑みてなされたものであり、その課
題は複数個の相補的測量法を同一対象に用いてそれぞれ
の方法の長所を組み合わせることにより、それぞれの方
法の欠点を除去することを可能とした三次元測量用光プ
ローブを提供することである。
[Problem to be Solved by the Invention] The present invention has been made in view of the above circumstances, and its problem is to solve the problem by using a plurality of complementary surveying methods on the same object and combining the advantages of each method. An object of the present invention is to provide an optical probe for three-dimensional surveying that makes it possible to eliminate the drawbacks of the above method.

[課題を解決するための手段、作用、 及び発明の効果コ 上記課題は、点毎に二次元的に自由にプログラム可能で
、プログラムされた数学的又は図的方法に従ってコンピ
ューターからデジタル化された投影パターンを発生し、
このパターンを投影像記憶装置に蓄積し、デジタルアナ
ログ交差位置を通じてマトリックス光源に表示し、焦点
合せ用光学素子の助けにより測量すべき表面に投影する
高分解能マトリックス光源を備え、歯の三次元測量に用
いられる口腔プローブにより達成される。マトリックス
光源として、繊細な走査線投影管又は空間的光調整器で
あることが好ましいビデオモニタースクリーンが用いら
れる。空間的光調整器としては、小型テレビ受像器用の
安価なLCDビデオモニタースクリーンが入手可能であ
り、電子的に制御可能な「透明陽画」としての口腔プロ
ーブに簡単に一体化することができる。
[Means for Solving the Problems, Actions, and Effects of the Invention] The above-mentioned problems can be freely programmed two-dimensionally point by point, and projections digitized from a computer according to a programmed mathematical or graphical method. generate a pattern,
This pattern is stored in a projection image storage device and displayed on a matrix light source through digital-analog intersection positions, with a high-resolution matrix light source projecting onto the surface to be surveyed with the aid of focusing optics, for three-dimensional tooth surveying. This is achieved by the oral cavity probe used. As matrix light source a video monitor screen is used, preferably a fine scanning line projection tube or a spatial light conditioner. Spatial light modulators are available as inexpensive LCD video monitor screens for small television receivers and can be easily integrated into oral probes as electronically controllable "transparencies."

以下ではプログラム可能な光源としてLCD光調整器を
備えた口腔プローブを例に挙げて図面を参照しながら本
発明を説明するが、本発明はこれに限定されるものでは
ないことを予め断っておく。
The present invention will be described below with reference to the drawings, taking as an example an oral cavity probe equipped with an LCD light regulator as a programmable light source, but it should be noted in advance that the present invention is not limited thereto. .

ここに示した例では、投影パターンのプログラム化可能
性に従って複数個の異なるパターンを矢継ぎ早に投影し
て、これらの像を異なる評価法に従って処理して、斑点
、曖昧さ、その他の前記欠点を除去している。
In the example presented here, several different patterns are projected in rapid succession according to the programmability of the projection patterns, and these images are processed according to different evaluation methods to eliminate speckles, ambiguities, and other aforementioned defects. are doing.

[実施例] 第1図に示した一実施例を参照して、本発明の口腔プロ
ーブの基本概念を説明する。内視鏡のような光学装置1
を利用して、測定又は測量すべき歯の表面にパターンを
投影する。このようにしてマークの付けられた歯の表面
が第2光線ガイド2により2次元ビデオカメラ3に伝送
される。2次元ビデオカメラ3はデータを画像評価コン
ピュータ4に伝送する。歯の表面に投影されるパターン
は、コンピュータ4か別のコンピュータによりデジタル
的に生成されて、投影像記憶装置5に蓄えられ、デジタ
ルアナログ変換器によりLCDビデオマトリックス7を
制御するビデオ信号に変換される。LCDスクリーンは
照明装置8により一定の光が照射される。この一定の光
は高分解能及び多数のグレー段により点毎に調整される
。調整された光は、像光学素子6を透過して内視鏡のよ
うな光学装置に入射され、歯の表面に投影される。
[Example] The basic concept of the oral cavity probe of the present invention will be explained with reference to an example shown in FIG. Optical device like an endoscope 1
A pattern is projected onto the surface of the tooth to be measured or surveyed. The thus marked tooth surface is transmitted by the second light guide 2 to the two-dimensional video camera 3. Two-dimensional video camera 3 transmits data to image evaluation computer 4 . The pattern projected onto the tooth surface is generated digitally by the computer 4 or another computer, stored in a projection image storage 5 and converted by a digital-to-analog converter into a video signal that controls an LCD video matrix 7. Ru. The LCD screen is illuminated with constant light by an illumination device 8. This constant light is adjusted point by point with high resolution and multiple gray steps. The adjusted light passes through the imaging optical element 6, enters an optical device such as an endoscope, and is projected onto the tooth surface.

第2図は、通常のプローブを用いた場合にはプローブを
交換しなければ得ることのできない一連の投影パターン
の例である。先ず初めに、投影パターンとして「オール
ホワイト」1が投影されて、プローブの定位、鮮明さの
設定、その他が、画像処理装置10(第1図参照)のモ
ニター上で煩わしい線に出くわすこともなく容易に制御
される。
FIG. 2 is an example of a series of projection patterns that cannot be obtained using a normal probe without changing the probe. First, an "all white" 1 is projected as the projection pattern, and the probe localization, sharpness settings, etc. can be adjusted without encountering any annoying lines on the monitor of the image processing device 10 (see Figure 1). Easily controlled.

ここで、純粋に明るさを評価することにより後に行われ
る3次元測量のできない影の領域が自動的に認識される
。第2投影パターン2が、例えば、マークから構成され
る。マークの歪みから較正データ(画像状態、基準面ま
での距離、その他)が計算される。円形のマークが歪ん
で楕円になることにより、画像関係、背景の空間の位置
など、光学装置全体の較正に必要なデータが得られる。
Here, by purely evaluating the brightness, shadow areas that cannot be measured later in three-dimensional measurement are automatically recognized. The second projection pattern 2 is composed of marks, for example. Calibration data (image condition, distance to reference plane, etc.) is calculated from the mark distortion. By distorting the circular mark into an ellipse, data necessary for calibrating the entire optical device is obtained, such as image relationships and the spatial position of the background.

例えば、パターン3は分解能の弱い移相法を実施するた
めの粗い正弦格子である。このパターンは3種類の異な
る位相位置3aSbScで撮像又は受信され、歯の高さ
に関する大まかな画像が形成される。格子定数が大きい
ので曖昧さは生じない。
For example, pattern 3 is a coarse sinusoidal grating for implementing a weak resolution phase shift method. This pattern is imaged or received at three different phase positions 3aSbSc to form a rough image of the tooth height. Since the lattice constant is large, no ambiguity occurs.

パターン4aSbScはより細かい正弦格子を有してい
るので、分解能の高い状態で高さを測量す1す ることができるようになるが、曖昧になる。この曖昧さ
は、粗い測量3により除去することができる。最後に、
デジタル的に記憶した一連の歯形を画像又は写真ライブ
ラリーから取り出して、これを歯に投影してビデオモニ
ター(第1図の10)を観察することにより歯の質を目
で確認することができる。場合によっては、既に入手可
能な歯のモデルを選択する。移相法は従来技術に相当す
るものであり、移相法については様々な刊行物が出版さ
れているので、移相法の詳細をここに繰り返す必要はな
い。同様に、三角法、写真測量法、符号化された投影パ
ターンなどの3次元測量法は、いずれも従来技術として
既に刊行されているので、ここでは述べない。
Since pattern 4aSbSc has a finer sine grid, it becomes possible to measure the height with high resolution, but it becomes ambiguous. This ambiguity can be removed by coarse survey 3. lastly,
The tooth quality can be visually confirmed by extracting a digitally stored tooth profile from an image or photo library, projecting it onto the tooth, and observing it on a video monitor (10 in Figure 1). . In some cases, choose a tooth model that is already available. Since the phase shifting method corresponds to the prior art and various publications have been published on the phase shifting method, there is no need to repeat the details of the phase shifting method here. Similarly, three-dimensional surveying methods such as trigonometry, photogrammetry, and encoded projection patterns are all already published as prior art and will not be discussed here.

更に別の発明的着想は、例えば、対向して配置された歯
の交合面の記憶画像などの基準画像を投影して、交合問
題を確認することにある。商業的に入手可能なカラーL
CDビデオスクリーンを用いることにより、治療すべき
歯の三次元測量の他に交合問題に関する情報を視覚的に
歯医者に伝えることかできるようになる。
A further inventive idea is to check the mating problem by projecting a reference image, for example a memorized image of the mating surfaces of oppositely arranged teeth. Commercially available color L
By using a CD video screen, it is possible to visually convey information about the interposition problem to the dentist in addition to the three-dimensional survey of the tooth to be treated.

新しい可能性を提供する上述の実施例は、性能が固定さ
れ制限されている従来の光プローブとは異なり自由にプ
ログラムすることのできる投影パターンを有する三次元
光プローブにより達成されたものである。
The above-described embodiments, which offer new possibilities, have been achieved with a three-dimensional optical probe having a freely programmable projection pattern, unlike conventional optical probes whose performance is fixed and limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の口腔プローブのブロック回路図であり
、第2図は移相法に用いられた曖昧なところのない一連
の投影パターンの使用説明図である。 1・・・光学装置、2・・・第2光線ガイド、3・・・
2次元ビデオカメラ、5・・・投影像記憶装置、6・・
・像光学素子、7・・・LCDビデオマトリックス、8
・・・照明装置、10・・・画像処理装置。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a block circuit diagram of the oral cavity probe of the present invention, and FIG. 2 is a diagram illustrating the use of an unambiguous series of projection patterns used in the phase shifting method. 1... Optical device, 2... Second light guide, 3...
Two-dimensional video camera, 5... Projection image storage device, 6...
- Image optical element, 7...LCD video matrix, 8
...Illumination device, 10... Image processing device. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】 1、患者の口腔内の歯の三次元形状を測量する三次元測
量用光プローブであり、点毎に二次元的に自由にプログ
ラム可能な高分解能マトリックス光源と、投影像記憶装
置に蓄積されてビデオ交差位置を通じてマトリックス光
源を制御し、像光学素子を介して測量すべき歯の表面に
投影されるデジタル化された投影パターンとを有するこ
とを特徴とする口腔内の歯の三次元測量用光プローブ。 2、マトリックス光源はビデオモニターを有しているこ
とを特徴とする請求項1に記載の口腔内の歯の三次元測
量用光プローブ。 3、ビデオモニターはビデオ映写陰極線管を有している
ことを特徴とする請求項2に記載の口腔内の歯の三次元
測量用光プローブ。 4、マトリックス光源は空間的光変調器により構成され
ていることを特徴とする請求項1に記載の口腔内の歯の
三次元測量用光プローブ。 5、空間的光変調器は液晶テレビモニターを有している
ことを特徴とする請求項4に記載の口腔内の歯の三次元
測量用光プローブ。 6、液晶テレビモニターは白黒モニターを有しているこ
とを特徴とする請求項5に記載の口腔内の歯の三次元測
量用光プローブ。 7、液晶テレビモニターはカラーモニターを有している
ことを特徴とする請求項5に記載の口腔内の歯の三次元
測量用光プローブ。 8、マトリックス光源は光学的光変調器付 XYスキャナを有していることを特徴とする請求項1に
記載の口腔内の歯の三次元測量用光プローブ。 9、プログラム可能なマトリックス光源を有する請求項
1の光プローブを用いて較正マーク及び測量パターンを
次々に投影することにより患者の口腔内の歯を光学的に
三次元測量する光学的三次元測量法。 10、非パターン化固定光を目視用及び影領域の自動認
識用に照射することを特徴とする請求項9に記載の光学
的三次元測量法。 11、大きさの異なる格子パターンを次々に投影して、
荒い測量及び細かい測量を実施することを特徴とする請
求項9に記載の光学的三次元測量法。 12、符号化された光パターンを次々に投影して評価を
行うことを特徴とする請求項9に記載の光学的三次元測
量法。 13、記憶された投影像及びパターンを測量すべき歯の
表面に投影することを特徴とする請求項9に記載の光学
的三次元測量法。 14、対向して位置する交合面の像を測量すべき歯の表
面に投影することを特徴とする請求項9に記載の光学的
三次元測量法。 15、点毎に投影することにより三角測量法に従って局
地的高さを測量するための個々の像点を得ることを特徴
とする請求項9に記載の光学的三次元測量法。 16、色付けされたマトリックス光源により色を投影し
て歯の表面と歯肉との間のコントラストを最適化するこ
とを特徴とする請求項9に記載の光学的三次元測量法。
[Claims] 1. An optical probe for three-dimensional surveying that measures the three-dimensional shape of teeth in a patient's oral cavity, which includes a high-resolution matrix light source that can be freely programmed two-dimensionally for each point, and a projected image a digitized projection pattern stored in a storage device for controlling a matrix light source through a video intersection position and projected onto the surface of the tooth to be surveyed through an imaging optical element. Optical probe for three-dimensional surveying. 2. The optical probe for three-dimensional surveying of teeth in the oral cavity according to claim 1, wherein the matrix light source has a video monitor. 3. The optical probe for three-dimensional surveying of teeth in the oral cavity according to claim 2, wherein the video monitor has a video projection cathode ray tube. 4. The optical probe for three-dimensional surveying of teeth in the oral cavity according to claim 1, wherein the matrix light source is constituted by a spatial light modulator. 5. The optical probe for three-dimensional surveying of teeth in the oral cavity according to claim 4, wherein the spatial light modulator has a liquid crystal television monitor. 6. The optical probe for three-dimensional surveying of teeth in the oral cavity according to claim 5, wherein the liquid crystal television monitor has a black and white monitor. 7. The optical probe for three-dimensional surveying of teeth in the oral cavity according to claim 5, wherein the liquid crystal television monitor has a color monitor. 8. The optical probe for three-dimensional surveying of teeth in the oral cavity according to claim 1, wherein the matrix light source has an XY scanner with an optical light modulator. 9. An optical three-dimensional surveying method for optically three-dimensionally surveying the teeth in the oral cavity of a patient by sequentially projecting calibration marks and surveying patterns using the optical probe of claim 1 having a programmable matrix light source. . 10. The optical three-dimensional surveying method according to claim 9, characterized in that non-patterned fixed light is irradiated for visual observation and automatic recognition of shadow areas. 11. Projecting grid patterns of different sizes one after another,
Optical three-dimensional surveying method according to claim 9, characterized in that coarse surveying and fine surveying are carried out. 12. The optical three-dimensional surveying method according to claim 9, wherein the evaluation is performed by sequentially projecting the encoded light patterns. 13. The optical three-dimensional surveying method according to claim 9, characterized in that the stored projection image and pattern are projected onto the tooth surface to be surveyed. 14. The optical three-dimensional surveying method according to claim 9, characterized in that images of opposing surfaces of the teeth are projected onto the surface of the tooth to be surveyed. 15. Optical three-dimensional surveying method according to claim 9, characterized in that individual image points for measuring local heights according to triangulation are obtained by point-by-point projection. 16. Optical three-dimensional surveying method according to claim 9, characterized in that a colored matrix light source projects colors to optimize the contrast between the tooth surface and the gingiva.
JP1227298A 1988-09-02 1989-09-01 Optical probe for three-dimensional survey of teeth in the oral cavity Expired - Lifetime JPH0616799B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3829925A DE3829925C2 (en) 1988-09-02 1988-09-02 Device for the optical measurement of teeth in the oral cavity
DE3829925.9 1988-09-02

Publications (2)

Publication Number Publication Date
JPH02119858A true JPH02119858A (en) 1990-05-07
JPH0616799B2 JPH0616799B2 (en) 1994-03-09

Family

ID=6362194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227298A Expired - Lifetime JPH0616799B2 (en) 1988-09-02 1989-09-01 Optical probe for three-dimensional survey of teeth in the oral cavity

Country Status (5)

Country Link
JP (1) JPH0616799B2 (en)
CH (1) CH680187A5 (en)
DE (1) DE3829925C2 (en)
FR (1) FR2635965A1 (en)
SE (1) SE468971B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253248A (en) * 1992-03-10 1993-10-05 Komabayashi Corp:Yugen Computer-aided fabrication of denture through numerical data processing
JPH08509155A (en) * 1994-02-18 1996-10-01 ノベルファルマ アーベー Method and apparatus using articulator and computer apparatus
JP2006525066A (en) * 2003-03-24 2006-11-09 ディースリーディー,エル.ピー. Dental laser digitizer system
JP2010246899A (en) * 2009-04-16 2010-11-04 Carestream Health Inc Dental surface imaging using polarized fringe projection
JP2010279695A (en) * 2009-06-03 2010-12-16 Carestream Health Inc Apparatus for imaging dental surface shape and shade
JP2014518378A (en) * 2011-06-15 2014-07-28 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for three-dimensional optical measurement of dental objects
JP2016522004A (en) * 2013-03-31 2016-07-28 ジャイラス・エーシーエムアイ・インコーポレーテッド Panoramic organ imaging
JP2018515769A (en) * 2015-05-22 2018-06-14 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Camera and method for 3D measurement of dental objects

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932151A1 (en) * 1989-09-22 1991-04-04 Peter Rohleder DEVICE FOR SCANNING DETECTION OF AN INTERIOR
DE4027328B4 (en) * 1990-08-29 2004-07-22 Sirona Dental Systems Gmbh 3D camera for the detection of surface structures, in particular for dental purposes
DE4034007C2 (en) * 1990-10-25 2001-05-10 Sirona Dental Systems Gmbh Method and device for the optical detection of surface structures on teeth
DE4134117C2 (en) * 1991-10-15 1996-02-01 Kaltenbach & Voigt Process for the optical measurement of objects
DE4206836C2 (en) * 1992-03-04 1994-07-14 Kaltenbach & Voigt Probe for the optical measurement of teeth
DE4218219C2 (en) * 1992-06-03 1998-05-07 Geyer Medizin Und Fertigungste Device for the contactless measurement of a difficult to access, three-dimensional medical or dental object
FR2693003A1 (en) * 1992-06-30 1993-12-31 Peugeot Opto-electronic display for three-dimensional objects - uses spatial modulation of light or liquid crystal valve with first and second objectives to generate sequential white beams
DE9300356U1 (en) * 1993-01-13 1993-03-04 Krupp Medizintechnik Gmbh, 4300 Essen, De
SE501820C2 (en) * 1993-05-21 1995-05-22 Tritech Mekatronik Ab Method and apparatus for creating a model of a dental restoration
NL9301308A (en) 1993-07-26 1995-02-16 Willem Frederick Van Nifterick Method of securing a dental prosthesis to implants in a patient's jawbone and using means thereof.
DE4335121A1 (en) * 1993-10-17 1995-05-04 Robert Prof Dr Ing Massen Automatic area feedback in optical 3D digitisers
SE512621C2 (en) * 1993-12-06 2000-04-10 Nobel Biocare Ab Method and camera for stereo photography of teeth
DE4342830C1 (en) * 1993-12-15 1995-04-20 Haeusler Gerd Device for producing strip-like light patterns
DE4415659C1 (en) * 1994-05-04 1995-11-30 Reimond Bernstein Computer-aided mfr. of articles using optically measured object data
DE19515949C2 (en) * 1995-05-02 1999-02-04 Continental Ag Method and device for areal measurement and detection of the tread wear of a vehicle tire
DE19536297C2 (en) * 1995-09-29 2003-10-02 Daimler Chrysler Ag Method for the geometric calibration of 3D optical sensors for the three-dimensional measurement of objects and apparatus for this purpose
DE19608632B4 (en) * 1996-03-06 2005-12-29 Scaps Gmbh Apparatus for determining the topography of a surface and method for determining the topography of a surface
DE19619951C2 (en) * 1996-05-17 2003-02-06 Regine Tuckermann Optical measuring system of the dental apparatus with a miniaturized special endoscope camera, a micro laser probe and a mechanical probe needle for displaying and correcting the tooth topography, especially the occlusal surfaces, with a view to optimizing the bite design, as well as digitizing the measured values and transferring them to the CNC for the production of fillings and dentures
DE19630873A1 (en) * 1996-07-31 1998-02-05 Rsm Regel Steuer U Mestechnik Method of making dentures
SE510203C2 (en) * 1997-04-18 1999-04-26 Optronic Consult Ab Method and apparatus for measuring a three-dimensional shape
DE19742264C2 (en) * 1997-09-25 2001-09-20 Vosseler Erste Patentverwertun endoscope
DE19753246C2 (en) * 1997-12-01 2002-11-28 Roland Seifert Device for determining three-dimensional data from objects
US6648640B2 (en) 1999-11-30 2003-11-18 Ora Metrix, Inc. Interactive orthodontic care system based on intra-oral scanning of teeth
US7471821B2 (en) 2000-04-28 2008-12-30 Orametrix, Inc. Method and apparatus for registering a known digital object to scanned 3-D model
US7027642B2 (en) 2000-04-28 2006-04-11 Orametrix, Inc. Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects
DE10104483A1 (en) * 2001-01-31 2002-10-10 Forschungszentrum Fuer Medizin Device for 3D measurement of surfaces in especially organic hollow volumes has optical imaging channel(s), projection channel(s) in endoscope shaft, fed out of shaft laterally at distal end
DE102005052294A1 (en) * 2005-10-26 2007-05-03 Jaruszewski, Lutz, Dr. Measuring device for determining the activity status of initially carious enamel lesions has an optical distance-measuring system in a hand-piece for measuring pores in tooth enamel
JP5485889B2 (en) 2007-08-17 2014-05-07 レニショウ パブリック リミテッド カンパニー Apparatus and method for performing phase analysis measurement
DE102008040947B4 (en) 2008-08-01 2014-02-06 Sirona Dental Systems Gmbh 3D dental camera for detecting surface structures of a test object by means of triangulation
DE102008040949B4 (en) * 2008-08-01 2012-03-08 Sirona Dental Systems Gmbh Optical projection grating, measuring camera with optical projection grating and method for producing an optical projection grating
GB0915904D0 (en) 2009-09-11 2009-10-14 Renishaw Plc Non-contact object inspection
DE102009043523A1 (en) * 2009-09-30 2011-04-07 Siemens Aktiengesellschaft endoscope
DE102009043538A1 (en) * 2009-09-30 2011-03-31 Siemens Aktiengesellschaft measuring endoscope
EP2950745B1 (en) * 2013-02-04 2018-11-28 D4D Technologies, LLC Intra-oral scanning device with illumination frames interspersed with image frames
CN108392282B (en) * 2018-02-08 2020-08-25 上海雷帕罗义齿有限公司 Artificial tooth intelligent processing system
DE102020208368A1 (en) 2020-07-03 2022-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Method and device for determining a three-dimensional shape

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323656A (en) * 1986-06-24 1988-01-30 マルコ ブランデステイ−ニ Method and apparatus for determination of three-dimensional form and display of cavity

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575805A (en) * 1980-12-24 1986-03-11 Moermann Werner H Method and apparatus for the fabrication of custom-shaped implants
FR2525103B1 (en) * 1982-04-14 1985-09-27 Duret Francois IMPRESSION TAKING DEVICE BY OPTICAL MEANS, PARTICULARLY FOR THE AUTOMATIC PRODUCTION OF PROSTHESES
US4663720A (en) * 1984-02-21 1987-05-05 Francois Duret Method of and apparatus for making a prosthesis, especially a dental prosthesis
FR2562236A1 (en) * 1984-03-27 1985-10-04 Duret Francois Method for three-dimensional recognition of object shapes, such as organs in medicine or dental surgery
DE3541891A1 (en) * 1985-11-27 1987-06-04 Kambiz Kachanian Method for detecting, storing and reproducing geometrical data of objects, in particular of jaw models, and a device for carrying out the method
FR2594321A1 (en) * 1986-02-17 1987-08-21 Inglese Jean Marc Device for aiding treatment management for dental practice
FR2610821B1 (en) * 1987-02-13 1989-06-09 Hennson Int METHOD FOR TAKING MEDICAL IMPRESSION AND DEVICE FOR IMPLEMENTING SAME
DE3723555C2 (en) * 1987-07-16 1994-08-11 Steinbichler Hans Process for the production of dentures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323656A (en) * 1986-06-24 1988-01-30 マルコ ブランデステイ−ニ Method and apparatus for determination of three-dimensional form and display of cavity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253248A (en) * 1992-03-10 1993-10-05 Komabayashi Corp:Yugen Computer-aided fabrication of denture through numerical data processing
JPH08509155A (en) * 1994-02-18 1996-10-01 ノベルファルマ アーベー Method and apparatus using articulator and computer apparatus
JP2006525066A (en) * 2003-03-24 2006-11-09 ディースリーディー,エル.ピー. Dental laser digitizer system
JP2010246899A (en) * 2009-04-16 2010-11-04 Carestream Health Inc Dental surface imaging using polarized fringe projection
US9314150B2 (en) 2009-04-16 2016-04-19 Carestream Health, Inc. System and method for detecting tooth cracks via surface contour imaging
JP2010279695A (en) * 2009-06-03 2010-12-16 Carestream Health Inc Apparatus for imaging dental surface shape and shade
JP2014518378A (en) * 2011-06-15 2014-07-28 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for three-dimensional optical measurement of dental objects
JP2016522004A (en) * 2013-03-31 2016-07-28 ジャイラス・エーシーエムアイ・インコーポレーテッド Panoramic organ imaging
JP2018515769A (en) * 2015-05-22 2018-06-14 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Camera and method for 3D measurement of dental objects

Also Published As

Publication number Publication date
SE468971B (en) 1993-04-26
SE8902748L (en) 1990-03-03
DE3829925A1 (en) 1990-03-15
FR2635965A1 (en) 1990-03-09
JPH0616799B2 (en) 1994-03-09
CH680187A5 (en) 1992-07-15
DE3829925C2 (en) 1994-03-03
SE8902748D0 (en) 1989-08-16

Similar Documents

Publication Publication Date Title
JPH02119858A (en) Three dimensional surveying optical probe for teeth in buccal cavitiy and optical three dimensional surveying method using said probe
US5372502A (en) Optical probe and method for the three-dimensional surveying of teeth
US11723758B2 (en) Intraoral scanning system with visual indicators that facilitate scanning
US9615901B2 (en) Method and apparatus for imaging three-dimensional structure
JP4913597B2 (en) High-speed multiple line 3D digitization method
US8243286B2 (en) Device and method for the contactless detection of a three-dimensional contour
JP5189287B2 (en) Dental laser digitizer system
JPS6323656A (en) Method and apparatus for determination of three-dimensional form and display of cavity
CN102402799A (en) Object classification for measured three-dimensional object scenes
JP4077754B2 (en) 3D shape measuring device
JP4309523B2 (en) 3D measurement confocal microscope
JPH04504219A (en) In particular, methods and devices for three-dimensional measurement of teeth in a patient's oral cavity.