JPH02119503A - Control device of electric rolling stock - Google Patents

Control device of electric rolling stock

Info

Publication number
JPH02119503A
JPH02119503A JP26931288A JP26931288A JPH02119503A JP H02119503 A JPH02119503 A JP H02119503A JP 26931288 A JP26931288 A JP 26931288A JP 26931288 A JP26931288 A JP 26931288A JP H02119503 A JPH02119503 A JP H02119503A
Authority
JP
Japan
Prior art keywords
current
motor
control device
maximum value
motors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26931288A
Other languages
Japanese (ja)
Other versions
JP2835055B2 (en
Inventor
Haruo Naito
内藤 治夫
Atsuhiko Nishio
西尾 敦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63269312A priority Critical patent/JP2835055B2/en
Publication of JPH02119503A publication Critical patent/JPH02119503A/en
Application granted granted Critical
Publication of JP2835055B2 publication Critical patent/JP2835055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To make it difficult for the slip of a part of driving wheels to develop into a slip of all the driving wheels by letting the motor current given to a current control device be the value found by the maximum value of each motor current detector resulting from multiplication by the number of motors. CONSTITUTION:In order to detect the motor current of induction motors 71 to 74 separately, current detectors 81 to 84 are provided. The current signal detected by these current detectors is inputted into a coefficient multiplier 12 by selecting the maximum value from among the signals with a maximum value selection circuit 11. It is then multiplied by the number of motors (4 sets) and fed back to a constant current controller 21. Here, let the motor current of each induction motor in normal operation be Ii(i=1 to 4), among which let the maximum value be Imax Ii. The relationship by an expression I then holds. Then, even in case the driving wheel coupled with to the 1st (i=1) induction motor slips, as the feedback signal is 4.Imax, there will be almost no change to the feedback signal with idling and less danger to the spread of slip.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は電動機で駆動される電気車の駆動制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) (Field of Industrial Application) The present invention relates to a drive control device for an electric vehicle driven by an electric motor.

(従来の技術) レール上を私通する車輪に電動機で回転力(トルク)を
与えて動輪とし、この動輪とレールとの間の粘着力によ
り回転力を推進力として用いて車両を推進する電気車に
おいては、回転力が粘着力を上回ると動輪がレール上を
空回りして推進力の伝達が著しく低下する。この現象か
駆動時に発生した場合は「空転」、制動時に発生した場
合は「滑走」とよぶ。以下本文では空転に関して説明を
行うが、滑走についても全く同様のことが成り立つので
説明を省略する場合がある。
(Prior technology) An electric motor applies rotational force (torque) to the wheels that run on the rails to create driving wheels, and the adhesive force between the driving wheels and the rails is used to propel the vehicle by using the rotational force as propulsion force. In a car, when the rotational force exceeds the adhesive force, the driving wheels spin idle on the rails, significantly reducing the transmission of propulsion. If this phenomenon occurs while driving, it is called ``slip'', and if it occurs while braking, it is called ``sliding''. In the following text, we will explain about slipping, but since the exact same thing holds true for sliding, the explanation may be omitted.

空転は上記のとあり回転力が粘着力を上回ると発生する
のであるが、粘着力が回転力を下回る場合も同様である
As mentioned above, slipping occurs when the rotational force exceeds the adhesive force, but the same occurs when the adhesive force is lower than the rotational force.

空転が発生するとまず第一に駆動力の円滑な伝達が行わ
れなくなるが、この他動輪踏面の剥離、軸受けの焼損、
レールの疲労・摩滅などの副次的問題も生じる。そこで
なるべく空転しないように駆動制御する必要がある。
When slipping occurs, the first thing that happens is that the driving force is not transmitted smoothly, but this can lead to peeling of the treads of the other driven wheels, burnout of the bearings,
Secondary problems such as rail fatigue and wear also occur. Therefore, it is necessary to control the drive so that it does not spin as much as possible.

ここで従来の制御例を示し、その問題点を指摘する。第
2図はPWMインバータで誘導電動機を駆動する電気車
にあける駆動装置の一般的構成を示す制御ブロック図で
ある。図示のように電流制御ループを構成し、電流指令
を与えて電動機のトルクを制御して電気車の駆動力を制
御する。図中、1は電流パターン発生器、2は電流制御
装置、21は電流パターン発生器により与えられる実際
の電流指令と検出した実際の電動機電流を用い適当な制
御論理に塁づいて、実際の電動機電流が実際の電流指令
に等しくなるようすべり周波数指令を出力する定電流制
御器、3は電動機回転周波数にサベり周波数指令を加算
してインバータ周波数指令を作る加算器、4はすべり周
波数指令に基づきV/F一定制御をするV/F一定制御
器、5はV/F一定制御器の出力である電圧指令に基づ
きPWMパルスを発生するPWMパルス発生器、6はP
WM制御電圧形インバータ、71.72.73.74は
誘導雷vJ機、8は電流検出器で、検出した電流は電流
制御部2ヘフイードバツクされる。91.92.93.
94は速度検出器である。10はカ行・定速走行時は速
度の最小値、回生時は速度の最大値を選択する選択回路
で、選択した値はインバータ周波数指令を作る加節器3
へ送られる。
Here, we will show an example of conventional control and point out its problems. FIG. 2 is a control block diagram showing the general configuration of a drive device installed in an electric vehicle that drives an induction motor using a PWM inverter. A current control loop is configured as shown in the figure, and a current command is given to control the torque of the electric motor to control the driving force of the electric vehicle. In the figure, 1 is a current pattern generator, 2 is a current control device, and 21 is a current command given by the current pattern generator and the detected actual motor current to control the actual motor based on appropriate control logic. A constant current controller that outputs a slip frequency command so that the current is equal to the actual current command; 3 is an adder that adds the subtraction frequency command to the motor rotation frequency to create an inverter frequency command; 4 is an adder that creates an inverter frequency command based on the slip frequency command A V/F constant controller that performs V/F constant control; 5 a PWM pulse generator that generates PWM pulses based on the voltage command that is the output of the V/F constant controller; 6 a PWM pulse generator;
A WM control voltage type inverter, 71, 72, 73, and 74 are induction lightning VJ machines, and 8 is a current detector, and the detected current is fed back to the current control section 2. 91.92.93.
94 is a speed detector. 10 is a selection circuit that selects the minimum value of speed when traveling at a constant speed and the maximum value of speed during regeneration, and the selected value is used as an adjuster 3 to create an inverter frequency command.
sent to.

この電動機制御系で電気車の駆動制御する場合、前記電
流制御装@2の制御論理としては、定電流制御とする、
すなわち定電流制御器21を用いるのが従来の方法であ
る。このとき、第2図に示したように、電流検出器8は
複数台(本従来例では4台)の誘導電動機に回路が分岐
する手前に1ケ設置され、複数台の電動機電流の総和を
検出するように構成される。したがって、定電流制御器
21に帰還される電動機電流信号も、この電動機電流の
総和となる。
When controlling the drive of an electric vehicle using this motor control system, the control logic of the current control device @2 is constant current control.
That is, the conventional method is to use the constant current controller 21. At this time, as shown in Fig. 2, one current detector 8 is installed before the circuit branches to the plurality of induction motors (four in this conventional example), and detects the sum of the motor currents of the plurality of motors. configured to detect. Therefore, the motor current signal fed back to the constant current controller 21 is also the sum of the motor currents.

この様な構成の電流制御装置を用いても、空転・滑走を
起こさなければ何等問題はない。ここでは空転・滑走を
起こした場合について説明する。
Even if a current control device having such a configuration is used, there will be no problem as long as slipping or skidding does not occur. Here, we will explain the case where the vehicle spins or skids.

空転・滑走は、複数台の電動機に連結された車輪(動輪
と称する)のすべてに同時に発生する場合の他、一部の
動輪に発生する場合もある。いずれの場合も、空転・滑
走の状態を脱して動輪を再粘着させる必要があるが、前
者の場合に比べると後者の場合の方がはるかに容易であ
る。しかし、後者の場合でも、適切な処置を速やかに取
らないと、全動輪の空転・滑走に至ることがある。これ
を以下に説明する。
In addition to cases in which slipping and skidding occur in all wheels (referred to as driving wheels) connected to multiple electric motors at the same time, slipping and skidding may occur in some driving wheels. In either case, it is necessary to get the wheels out of the idling/sliding state and reattach the wheels, but this is much easier in the latter case than in the former case. However, even in the latter case, if appropriate measures are not taken promptly, all driving wheels may spin or skid. This will be explained below.

何等かの方法で空転・滑走を検出すると、電流を絞って
再粘着を計る。この空転・滑走の検出にはある程度の時
間が必要であるため、実際に空転・滑走が発生してから
それを検知するまでにはある程度の時間がかかり、その
間は通常の定電流制御が続行される。空転・滑走が発生
すると、当該電動機の電動機電流は急激に減少する。電
動機電流の総和で定電流制御をしていると、この減少分
は他の空転・滑走を起こしていない健全な走行状態の電
動機が負うことになる。したかつて、空転の場合は健全
な走行状態の電動機の発生トルクか増大し、滑走の場合
は健全な走行状態の電動機の制御トルクが増大するので
、何れの場合も全電動機の空転・滑走の方向へ向かうの
である。
If it detects slipping or slipping by some method, it reduces the current and measures whether it will re-stick. It takes a certain amount of time to detect this slipping/skidding, so it takes a certain amount of time from when slipping/skidding actually occurs until it is detected, during which time normal constant current control continues. Ru. When slipping or skidding occurs, the motor current of the motor in question rapidly decreases. If constant current control is performed using the sum of the motor currents, this reduction will be borne by other motors that are in a healthy running state and are not slipping or skidding. In the case of slipping, the generated torque of the electric motor in a healthy running condition increases, and in the case of skidding, the control torque of the electric motor in a healthy running condition increases. I'm heading to.

(発明が解決しようとする課題) 上記の従来例では、一部の動輪が空転すると、全動輪の
空転に発展するという問題点がある。
(Problems to be Solved by the Invention) In the above-mentioned conventional example, there is a problem in that when some of the driving wheels idle, all of the driving wheels start idling.

本発明は従来技術におCブる上述の如き問題点を除去し
、一部の動輪の空転が全動輪の空転に発展しにくい電気
車の制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems in the prior art and to provide a control device for an electric vehicle in which idling of some of the driving wheels is less likely to develop into idling of all the driving wheels.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記の目的を達成するため、以下の構成にて電
気車の電流制御を行う電気車の制御装置である。
(Means for Solving the Problems) In order to achieve the above object, the present invention is a control device for an electric vehicle that controls the current of the electric vehicle with the following configuration.

電流指令を与える手段と、各誘導電動機の電流を検出す
る手段とを有し、電流指令と検出された電!r!P1機
電流を与えて誘導電動機のすべり周波数を出力する電流
制御装置を有する。
It has means for giving a current command and means for detecting the current of each induction motor. r! It has a current control device that applies a P1 motor current and outputs the slip frequency of the induction motor.

この電流制御装置に与えられる電動機電流として、各電
動機電流の内の最大値に電動機台数を乗じた値を用いる
As the motor current given to this current control device, a value obtained by multiplying the maximum value of each motor current by the number of motors is used.

(作 用) このように構成された本発明による電気車の制御装置で
は、正常走行時には従来と同等の定電流制御を行い、空
転・滑走の判定を必要としない。
(Function) The control device for an electric vehicle according to the present invention configured as described above performs constant current control equivalent to the conventional one during normal running, and does not require determination of slipping or skidding.

空転・滑走発生時には空転・滑走した動輪に連結された
電動機の電動機電流減少分を空転・滑走していない動輪
に連結された電動機が負うことを防ぐことによって、(
発明が解決しようとする課題〉の項で指摘した従来技術
の難点を除去できる。
When slipping or skidding occurs, by preventing the reduced motor current of the motor connected to the driving wheel that is slipping or sliding from being borne by the motor connected to the driving wheel that is not slipping or skidding, (
The disadvantages of the prior art pointed out in the section ``Problems to be Solved by the Invention'' can be eliminated.

(実施例) 以下に本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係わる電気車の電流制御装置
20を含む電気車の駆動制御装置のブロック図でおる。
FIG. 1 is a block diagram of a drive control device for an electric vehicle including a current control device 20 for an electric vehicle according to an embodiment of the present invention.

同図において第2図と同一の構成要素には同一の記号を
付して説明を省略する。
In this figure, the same components as in FIG. 2 are given the same symbols and their explanations will be omitted.

本実施例では、各誘導電動機の電動機電流を個別に検出
するため、第1図に示したように、各誘導雷l!1機に
電流検出器81.82.83.84を設置する。
In this embodiment, in order to detect the motor current of each induction motor individually, as shown in FIG. 1, each induction motor l! Install current detector 81.82.83.84 on one machine.

これらの電流検出器が検出した電流信号は最大値選択回
路11へ入力され、これらの信号の内の最大値が選択さ
れる。この選択された最大値は係数器12へ入力され、
電動機台数(本実施例では4)を乗じたうえで、定電流
制御器21ヘフイードバツクされるのである。
The current signals detected by these current detectors are input to the maximum value selection circuit 11, and the maximum value of these signals is selected. This selected maximum value is input to the coefficient unit 12,
The result is multiplied by the number of electric motors (4 in this embodiment) and then fed back to the constant current controller 21.

ここで、正常走行時の各誘導電動機の電動機電流をそれ
ぞれtt  <r=1〜4)とする。この内の最大値を
Ima、xとすると、正常走行時は各電流のばらつきは
、同一仕様で製作された誘導電動機固体差に起因するも
ので、かなり小さい。したかって、以下の関係が成立す
る。
Here, the motor current of each induction motor during normal running is assumed to be tt<r=1 to 4). Assuming that the maximum value of these is Ima,x, during normal running, the variation in each current is caused by individual differences among induction motors manufactured with the same specifications, and is quite small. Therefore, the following relationship holds true.

Imax4ft (i=1〜4;但し電流が最大の電動機を除く)よって 4、。384更■ となり、本発明の電流制御装置においても従来の定電流
刺部装置においてもフィードバック信号はほぼ同量にな
り、正常走行時には本発明の電流制御装置によっても従
来の定電流制御の場合と殆ど同じ制御動作が得られる。
Imax4ft (i=1 to 4; except for the motor with the maximum current) Therefore, 4. 384, the feedback signal is almost the same in both the current control device of the present invention and the conventional constant current pricking device, and during normal running, the current control device of the present invention has almost the same amount of feedback signal as in the conventional constant current control. Almost the same control behavior is obtained.

次に、1番目(i=1>の誘導電動機に連結された動輪
が空転した場合を考える。この場合、該誘導電動機の回
転数は急上昇し、電動機電流は急減少する。その減少分
をΔ11とすると、従来の制御での前記フィードバック
信号はlIIシ1 Δ11となるが電流パターンに空転に応動した変化はな
くかつ定電流制御しているので、この減少分△11だけ
定電流制御器が電流を増やそうと動き、その増分を他の
3台の誘導電動機が負うことになり、これら3台の電動
機電流が上昇して、空転の波及を招く危険性が増大する
。他方、本発明によると電流制御では、この場合でも、
前記フィードバック信号は4・) maxで必るので、
空転に伴うフィードバック信号の変化は殆どなく、空転
波及の危険が少なくなるのでおる。
Next, consider the case where the driving wheels connected to the first (i=1> Then, the feedback signal in conventional control becomes lIIshi1 Δ11, but since there is no change in the current pattern in response to idling and constant current control is being performed, the constant current controller changes the current by this decrease Δ11. The current increases in the other three induction motors, increasing the risk of idling.On the other hand, according to the present invention, the current increases. In control, even in this case,
The feedback signal is required at 4.) max, so
There is almost no change in the feedback signal due to idling, which reduces the risk of idling spreading.

尚、本発明においては、電流パターン発生器1に加えら
れる信号としては、トルク指令として与えられる電流値
であってもよいし、電流指令の代わりにトルク指令を与
えてもよい。
In the present invention, the signal applied to the current pattern generator 1 may be a current value given as a torque command, or a torque command may be given instead of the current command.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明による電気車の制御装置
では、正常走行時には従来と同等の定電流制御を行い、
空転・滑走の判定を必要とせずに、空転・滑走発生時に
は空転・滑走した動輪に連結された電動機の電動機電流
減少分を空転・滑走していない動輪に連結された電動機
が負うことを防ぐことによって、一部の動輪の空転が全
動輪の空転に発展しにくい電気車の制御装置を提供する
ことができる。
As explained above, the electric vehicle control device according to the present invention performs constant current control equivalent to the conventional one during normal running,
To prevent a motor connected to a driving wheel that is not slipping or sliding from bearing the reduction in motor current of a motor connected to a driving wheel that is slipping or sliding in the event of slipping or sliding, without requiring determination of whether the vehicle is slipping or skidding. Accordingly, it is possible to provide a control device for an electric vehicle in which idling of a part of the driving wheels does not easily develop into idling of all the driving wheels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示すブロック図、第2
図は従来例の構成を示すブロック図で必る。 1・・・電流パターン発生器、 2・・・従来例の電流制御装置、 20・・・本発明の実施例に係わる電流制at+装置、
21・・・定電流制御器、 3・・・加算器、 4・・・V/F一定制御器、 5・・・PWMパルス発生器、 6・・・PWM制御電圧形インバータ、71.12.7
3.74・・・誘導電動機、8.81.82.83.8
4・・・電流検出器、91.92.93.94・・・速
度検出器、10・・・選択回路、 11・・・最大値選択回路、 12・・・係数器。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG.
The figure is a block diagram showing the configuration of a conventional example. DESCRIPTION OF SYMBOLS 1... Current pattern generator, 2... Conventional current control device, 20... Current control at+ device according to the embodiment of the present invention,
21... Constant current controller, 3... Adder, 4... V/F constant controller, 5... PWM pulse generator, 6... PWM control voltage type inverter, 71.12. 7
3.74...Induction motor, 8.81.82.83.8
4... Current detector, 91.92.93.94... Speed detector, 10... Selection circuit, 11... Maximum value selection circuit, 12... Coefficient unit.

Claims (1)

【特許請求の範囲】 電流指令を与える手段と、各誘導電動機の電流を検出す
る手段とを有し、電流指令と検出された電動機電流を与
えて誘導電動機のすベり周波数を出力する電流制御装置
により複数の誘導電動機を駆動する電気車の制御装置に
おいて、 前記電流制御装置に与えられる電動機電流として、各電
動機電流の内の最大値に電動機台数を乗じた値を用いる
こと を特徴とする電気車の制御装置。
[Claims of Claims] Current control that includes means for giving a current command and means for detecting the current of each induction motor, and outputs the slip frequency of the induction motor by giving the current command and the detected motor current. A control device for an electric vehicle in which a plurality of induction motors are driven by the device, wherein a value obtained by multiplying the maximum value of each motor current by the number of motors is used as the motor current given to the current control device. car control device.
JP63269312A 1988-10-27 1988-10-27 Electric car control device Expired - Lifetime JP2835055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269312A JP2835055B2 (en) 1988-10-27 1988-10-27 Electric car control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269312A JP2835055B2 (en) 1988-10-27 1988-10-27 Electric car control device

Publications (2)

Publication Number Publication Date
JPH02119503A true JPH02119503A (en) 1990-05-07
JP2835055B2 JP2835055B2 (en) 1998-12-14

Family

ID=17470590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269312A Expired - Lifetime JP2835055B2 (en) 1988-10-27 1988-10-27 Electric car control device

Country Status (1)

Country Link
JP (1) JP2835055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961599B2 (en) * 2006-05-25 2012-06-27 サーモーション, エルエルシー Thermomagnetic actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543711A (en) * 1977-06-10 1979-01-12 Hitachi Ltd Device for controlling electric motor vehicle
JPS57173305A (en) * 1981-02-24 1982-10-25 Toyo Electric Mfg Co Ltd Control system for electric motor vehicle
JPS5822801U (en) * 1981-07-31 1983-02-12 株式会社東芝 electric car control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543711A (en) * 1977-06-10 1979-01-12 Hitachi Ltd Device for controlling electric motor vehicle
JPS57173305A (en) * 1981-02-24 1982-10-25 Toyo Electric Mfg Co Ltd Control system for electric motor vehicle
JPS5822801U (en) * 1981-07-31 1983-02-12 株式会社東芝 electric car control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961599B2 (en) * 2006-05-25 2012-06-27 サーモーション, エルエルシー Thermomagnetic actuator

Also Published As

Publication number Publication date
JP2835055B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US6456909B1 (en) Control apparatus of electric vehicle
US4825131A (en) Control system for induction motor driven electric car
JP3023335B2 (en) Elevator emergency operation control device and control method
EP0085394B1 (en) Control system for electric cars driven by induction motors
JPS6117202B2 (en)
JPS63154001A (en) Application of scr in expansion blaking
JPH02119503A (en) Control device of electric rolling stock
JPS631306A (en) Chopper control system
JPS6289403A (en) Electric type differential driving apparatus
JPH07118841B2 (en) Braking method of electric car
JPH0161001B2 (en)
JPH02193502A (en) Controlling device of driving of electric rolling stock
JPH0454801A (en) Controller for electric vehicle
JP2000312401A (en) Apparatus for monitoring friction of an electric rail vehicle set
JPH0295106A (en) Drive controller for electric railcar
JPS59201608A (en) Controller of induction motor type electric railcar
JPH0446502A (en) Controller for electric vehicle
JPH09182216A (en) Constant-speed control method for electric car
JP2004135500A (en) Control device of electric power converter for vehicle
JP2731155B2 (en) Electric car control device
JPH0452560A (en) Presuming method of velocity of vehicle body in control apparatus of electric car
JPS6118429B2 (en)
EP0600364A1 (en) Inverter controlled induction motor driving system for electric rolling stock
JPH04236107A (en) Hill climbing controller for motor vehicle
JPH0530603A (en) Idling/slip detector for electric vehicle