JPH0161001B2 - - Google Patents

Info

Publication number
JPH0161001B2
JPH0161001B2 JP57209348A JP20934882A JPH0161001B2 JP H0161001 B2 JPH0161001 B2 JP H0161001B2 JP 57209348 A JP57209348 A JP 57209348A JP 20934882 A JP20934882 A JP 20934882A JP H0161001 B2 JPH0161001 B2 JP H0161001B2
Authority
JP
Japan
Prior art keywords
frequency
electric vehicle
converter
induction motor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57209348A
Other languages
Japanese (ja)
Other versions
JPS59103502A (en
Inventor
Shigetoshi Okamatsu
Takashi Tsuboi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57209348A priority Critical patent/JPS59103502A/en
Publication of JPS59103502A publication Critical patent/JPS59103502A/en
Publication of JPH0161001B2 publication Critical patent/JPH0161001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘導電動機式電気車の制御装置に係
り、特に、登り勾配上での電気車の発進を容易に
する誘導電動機式電気車の制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control device for an induction motor type electric vehicle, and particularly to a control device for an induction motor type electric vehicle that facilitates starting of the electric vehicle on an uphill slope. Regarding equipment.

〔従来の技術〕[Conventional technology]

第1図は誘導電動機によつて駆動される電気車
制御装置の代表的な構成例を示すもので、1はパ
ンタグラフ、2は可変電圧可変周波数の電力変換
器(例えばインバータ)、3は誘導電動機、41
は電流検出器である。42は電動機電流IMとその
指令値IPとを比較して、IM=IPとなるようにイン
バータ2の出力電圧を制御する電流制御装置、5
1は誘導電動機の回転速度を検出するためのパル
ス発生器、52はパルス発生器のパルス周波数に
応じた電圧を発生するパルス数/電圧変換器、5
3はすべり周波数指令SPと電動機の回転周波数
Rとを加算して、インバータ2の出力周波数指令
Eを出力する加算器である。
Figure 1 shows a typical configuration example of an electric vehicle control device driven by an induction motor, where 1 is a pantograph, 2 is a variable voltage variable frequency power converter (e.g. inverter), and 3 is an induction motor. , 41
is a current detector. 42 is a current control device that compares the motor current I M and its command value I P and controls the output voltage of the inverter 2 so that I M = I P ;
1 is a pulse generator for detecting the rotation speed of the induction motor; 52 is a pulse number/voltage converter that generates a voltage according to the pulse frequency of the pulse generator; 5
3 is the slip frequency command SP and the motor rotation frequency
R and the output frequency command of inverter 2.
This is an adder that outputs E.

制御装置を第1図に示すように構成し、すべり
周波数指令SP及び電流指令IPを一定値とすれば誘
導電動機3は定すべり、定電流制御され、定トル
ク加速される。
If the control device is configured as shown in FIG. 1 and the slip frequency command SP and current command I P are set to constant values, the induction motor 3 is controlled with constant slip, constant current, and accelerated with constant torque.

このときの誘導電動機3の回転数Nと、回転周
波数R、及びインバータ出力周波数Eの関係は第
2図の第1象限に示すような関係となつている。
即ち、すべり周波数SERは指令値SPに一定
制御されている。なお、定電流制御系を省き、周
波数Eに比例する出力電圧Vを指令するV/一
定制御系を付加しても、制御結果はほゞ同一とな
る。一般に、起動時以外は、このV/一定制御
系に切換えられている。
At this time, the relationship among the rotation speed N of the induction motor 3, the rotation frequency R , and the inverter output frequency E is as shown in the first quadrant of FIG. 2.
That is, the slip frequency S = E - R is controlled to be constant at the command value SP . Note that even if the constant current control system is omitted and a V/constant control system that commands the output voltage V proportional to the frequency E is added, the control results will be substantially the same. Generally, the control system is switched to this V/constant control system except during startup.

ところで、電気車の発進時の運転扱いは、停止
状態で作動させているブレーキ(通常空気ブレー
キが用いられる)を緩めてから、主幹制御器の力
行ノツチが投入される。今、電気車が上り勾配区
間に停車して再発進する場合を想定すると、ブレ
ーキを緩めてから力行ノツチが投入されて前進方
向の引張力が確立するまでの間に、重力により電
気車が後退することが考えられる。
By the way, when starting an electric vehicle, the brakes (usually air brakes are used) that are activated when the vehicle is stopped are loosened, and then the power running notch of the master controller is turned on. Now, assuming that an electric car stops on an uphill section and starts again, the electric car will move backwards due to gravity between the time the brake is released and the time when the power running notch is engaged and forward tension is established. It is possible to do so.

このように電気車が後退すると、引張力が減少
し、場合によつては前進できずに後退を続ける恐
れがある。次にその理由を説明する。
When the electric vehicle moves backward in this way, the traction force decreases, and in some cases, there is a risk that the electric vehicle will continue to move backward without being able to move forward. Next, the reason will be explained.

電気車が後退すると、誘導電動機3の回転方向
が逆になるが、パルス発生器52の出力Rとイン
バータ出力周波数Eは、第2図の第2象限に示さ
れるように、共に増加する。第2象限では、イン
バータによる励磁の相回転と誘導電動機3の回転
子の回転方向とが逆になり、電気車の後退速度と
ともに大きくなる。このように、パルス発生器5
2が、回転方向検知能力をもたないため、電気車
が後退しているにも拘らず、その後退速度にすべ
り周波数Sを加えたインバータ周波数となつて、
電動機の実際のすべり周波数は、停動トルクを越
えた高すべり周波数領域に達し、トルクは減少の
一途となる。
When the electric car moves backward, the rotation direction of the induction motor 3 is reversed, but the output R of the pulse generator 52 and the inverter output frequency E both increase as shown in the second quadrant of FIG. In the second quadrant, the phase rotation of the excitation by the inverter and the rotation direction of the rotor of the induction motor 3 are opposite, and increase with the backward speed of the electric vehicle. In this way, the pulse generator 5
2 does not have the ability to detect the direction of rotation, so even though the electric car is moving backwards, the inverter frequency is the sum of the backward speed and the slip frequency S.
The actual slip frequency of the motor reaches a high slip frequency region exceeding the stall torque, and the torque continues to decrease.

このため、第1に、例えば特開昭56−74001号
公報に開示されたように、回転方向検知機能を付
加することによつて、正から零を通つて負に至る
連続した理想的な周波数制御を行うことが公知で
ある。
For this reason, firstly, as disclosed in JP-A-56-74001, for example, by adding a rotation direction detection function, it is possible to obtain a continuous ideal frequency from positive through zero to negative. It is known to provide control.

第2に、例えば、三菱電機技報Vol.56・No.
8.1982第37頁に開示されたように、逆転(後退)
検知機能により、インバータ周波数を最低値に固
定することが提案されている。
Second, for example, Mitsubishi Electric Technical Report Vol.56/No.
Reversal (backward) as disclosed in 8.1982 page 37
It is proposed to fix the inverter frequency to a minimum value by means of a sensing function.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記第1の方式は、理想形であることは当然で
あるが、インバータには周波数“零”(直流)を
含めた連続制御が要求され、通常の指令周波数に
同期した変調モードと異る非同期モードの変調器
を必要とし、電気車が一方向(前進または後進)
状態3相の相順切換えが必要となる等、ハード、
ソフトの両面で複雑化はいなめない。
The first method mentioned above is obviously an ideal type, but the inverter requires continuous control including frequency "zero" (DC), and it is an asynchronous mode that is different from the modulation mode synchronized with the normal command frequency. Requires mode modulator, electric car is unidirectional (forward or reverse)
Hardware, such as phase sequential switching of three phases, is required.
Complications cannot be ignored in terms of software.

そこで、上記第2の方式が簡便であるが、勾配
次第では、まだ確実性に欠けるうらみがあつた。
Therefore, although the second method is simple, it still lacks reliability depending on the gradient.

本発明の目的は、前述のごとき従来の欠点を改
善し、上り勾配における電気車の起動を確実に行
わせることにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned conventional drawbacks and to ensure reliable starting of an electric vehicle on an uphill slope.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電気車の後退時に、電力変換器の出
力周波数の増大を抑制するとともに、電力変換器
の出力電圧の低下を抑制することを主特徴とす
る。
The main feature of the present invention is to suppress an increase in the output frequency of the power converter and suppress a decrease in the output voltage of the power converter when the electric vehicle backs up.

〔作用〕[Effect]

起動時の第1図に示した制御系に、前述の公知
技術と同様に、電力変換器の出力周波数の増大を
抑制する制御系を加えると、インバータ出力周波
数が、第3図のf1→f2→f3と増えることはなくな
る。従つて、この周波数増大による後退(fr
0)時のトルク減少はなくなる。しかし、後退に
より、実質すべり周波数が増大すると、電流が増
大して発生トルクを維持しようとするが、第1図
の定電流制御装置42によつて、電流は一定値に
抑え込まれてしまう。このため、トルク特性は、
l1→l2→l3と変化し、発生トルクも、P1→P2→P3
の如く減少しようとする。
When a control system for suppressing an increase in the output frequency of the power converter is added to the control system shown in FIG. 1 at startup, similar to the known technology described above, the inverter output frequency changes to f 1 → in FIG. 3. It will no longer increase as f 2 → f 3 . Therefore, the regression due to this frequency increase (f r <
The torque decrease at 0) is eliminated. However, when the actual slip frequency increases due to retraction, the current increases to try to maintain the generated torque, but the current is suppressed to a constant value by the constant current control device 42 of FIG. Therefore, the torque characteristics are
The torque changes as l 1 → l 2 → l 3 , and the generated torque also changes as P 1 → P 2 → P 3
It tries to decrease as follows.

本発明は、この点に着目して、出力周波数の増
大を抑制するだけでなく、電流制御系による出力
電圧の低下をも抑制する。この結果、トルク特性
は、電気車が後退しても、特性l1を保つことがで
き、後退速度に応じて出力電圧を増大させてやれ
ば、更に発生トルクを大きくして、より確実な起
動が可能となる。
Focusing on this point, the present invention not only suppresses an increase in the output frequency but also suppresses a decrease in the output voltage due to the current control system. As a result, the torque characteristics can maintain the characteristic l 1 even when the electric vehicle is moving backwards, and by increasing the output voltage according to the backward speed, the generated torque can be further increased, resulting in more reliable starting. becomes possible.

〔実施例〕〔Example〕

第4図に本発明の実施例を示す。第1図と同一
部分は同一記号で表してある。第1図と異なる部
分は、電気車の後退検知器61を設けて、その出
力を最小値選択器62と、最大値選択器63に入
れ、電気車の後退時にはインバータ(電力変換
器)出力周波数を最低値EOに固定し、且つイン
バータ出力電圧を所定値VEOに保つようにした点
である。
FIG. 4 shows an embodiment of the present invention. The same parts as in FIG. 1 are represented by the same symbols. The difference from FIG. 1 is that a reversing detector 61 for the electric car is provided, and its output is input into a minimum value selector 62 and a maximum value selector 63, and when the electric car is reversing, the inverter (power converter) output frequency is is fixed at the lowest value EO , and the inverter output voltage is maintained at a predetermined value VEO .

第5図は周波数指令Eの特性を示すもので、回
転速度が正の領域ではすべり周波数一定の通常制
御、回転速度が負の領域では、周波数が最低値
EOに固定される。この図でR<0の領域は誘導
電動機3が逆回転していることを意味している。
Figure 5 shows the characteristics of the frequency command E. In the region of positive rotation speed, normal control with a constant slip frequency, and in the region of negative rotation speed, the frequency is the lowest value.
Fixed to EO . In this figure, the region where R <0 means that the induction motor 3 is rotating in the opposite direction.

第6図は上記実施例の動作説明図である。第6
図のトルク特性はインバータ出力周波数を最低値
EOに固定し、インバータ出力電圧を所定値に保
つたときのもので、電気車が後退すると、後退し
ない場合の動作点P1からP2→P3とずれてトルク
が大きくなる。
FIG. 6 is an explanatory diagram of the operation of the above embodiment. 6th
The torque characteristics in the figure indicate the minimum value of the inverter output frequency.
This is when the electric vehicle is fixed at EO and the inverter output voltage is maintained at a predetermined value. When the electric vehicle moves backward, the torque increases as the operating point P 1 shifts from P 1 to P 2 →P 3 when the electric vehicle does not move backward.

本実施例によれば、電気車が後退しているとき
でも、起動トルクが不足することがないので、上
り勾配でも円滑に発進することができる。
According to this embodiment, even when the electric vehicle is moving backward, there is no shortage of starting torque, so it can start smoothly even on an uphill slope.

実施例においては、パルス/電圧変換器52お
よびその出力Rとすべり周波数パターンSPとを
加算してインバータ出力周波数パターンを発生す
る加算器の部分はアナログ演算方式のものを示し
たがこの部分はマイクロプロセツサなどのデイジ
タル演算手段を用いることもできる。
In the embodiment, the part of the pulse/voltage converter 52 and the adder that adds the output R and the slip frequency pattern SP to generate the inverter output frequency pattern is shown to be of an analog calculation type, but this part is a microprocessor. Digital calculation means such as a processor may also be used.

第7図は後退検知器の構成例を示すものであつ
て、511は誘導電動機3の軸端に取付けられた
周辺に凹凸のある円板、611,612は円板周
状の凹凸を検知はる感応素子、613は感応素子
611,612の出力電圧AおよびBの位相を弁
別する位相弁別器である。
FIG. 7 shows an example of the configuration of a reversing detector, in which 511 is a disk with unevenness around the periphery attached to the shaft end of the induction motor 3, and 611 and 612 are used to detect unevenness on the circumference of the disk. The sensing element 613 is a phase discriminator that discriminates the phases of the output voltages A and B of the sensing elements 611 and 612.

感応素子611,612は円板511の凹凸に
対してあらかじめ位相を90度ずらせて設置してあ
る。このようにすると、感応素子611,612
の出力電圧P1,P2の波形は、例えば円板が右回
転しているときに第8図Aの如き位相関係になる
ものとすれば左回転している時には第8図Bのよ
うになる。すなわち、回転方向によつてP1とP2
の位相関係が逆となる。位相弁別器613によつ
て、P1とP2の位相の進み遅れ関係を弁別するこ
とによつて、誘導電動機3の回転方向を制御する
ことができる。
The sensing elements 611 and 612 are placed in advance with their phases shifted by 90 degrees with respect to the irregularities of the disc 511. In this way, the sensing elements 611, 612
For example, the waveforms of the output voltages P 1 and P 2 of the disk will have a phase relationship as shown in Figure 8A when the disk is rotating clockwise, and as shown in Figure 8B when it is rotating counterclockwise. Become. That is, P 1 and P 2 depending on the direction of rotation.
The phase relationship is reversed. The rotation direction of the induction motor 3 can be controlled by using the phase discriminator 613 to discriminate the phase lead/lag relationship between P 1 and P 2 .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、電気車
が上り勾配で発展するとき、たとえいつたん後退
しても、誘導電動機のトルクが減少するようなこ
とはなく、円滑な発進が可能となる。
As explained above, according to the present invention, when an electric vehicle develops on an uphill slope, the torque of the induction motor does not decrease even if it retreats once, making it possible to start smoothly. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一実施例、第2図は従来例の動
作説明図、第3図は本発明の原理説明図、第4図
は本発明の一実施例、第5図、第6図はその動作
説明図、第7図は本発明の一実施例の部分詳細
図、第8図はその動作説明図である。 2……電力変換器(インバータ)、3……誘導
電動機、42……電流制御装置、52……パル
ス/電圧変換器、53……加減算器、61……後
退検知器、62……最小値選択器、63……最大
値選択器。
Fig. 1 is an example of the conventional example, Fig. 2 is an explanatory diagram of the operation of the conventional example, Fig. 3 is an explanatory diagram of the principle of the present invention, Fig. 4 is an embodiment of the present invention, Figs. 5 and 6. 7 is a partial detailed view of an embodiment of the present invention, and FIG. 8 is an explanatory view of the operation. 2... Power converter (inverter), 3... Induction motor, 42... Current control device, 52... Pulse/voltage converter, 53... Adder/subtractor, 61... Backward detector, 62... Minimum value Selector, 63...Maximum value selector.

Claims (1)

【特許請求の範囲】 1 電気車駆動用の誘導電動機と、この電動機に
給電する可変電圧可変周波数の電力変換器と、電
気車の速度に関連して上記変換器へ出力周波数指
令を与える手段と、上記周波数あるいは電動機電
流に関連して上記変換器へ出力電圧指令を与える
手段とを備えるものにおいて、電気車の後退時に
上記変換器の出力周波数の増大を抑制する手段
と、上記変換器の出力電圧の低下を抑制する手段
とを設けてなる誘導電動機式電気車の制御装置。 2 特許請求の範囲第1項において、上記周波数
増大抑制手段は、上記変換器に予め設定された最
低出力周波数に固定する手段である誘導電動機式
電気車の制御装置。
[Scope of Claims] 1. An induction motor for driving an electric vehicle, a variable voltage variable frequency power converter for feeding power to this motor, and means for giving an output frequency command to the converter in relation to the speed of the electric vehicle. , means for giving an output voltage command to the converter in relation to the frequency or motor current, the means for suppressing an increase in the output frequency of the converter when the electric vehicle backs up, and the output of the converter. A control device for an induction motor type electric vehicle, comprising means for suppressing voltage drop. 2. The control device for an induction motor type electric vehicle according to claim 1, wherein the frequency increase suppressing means is means for fixing the frequency increase to a minimum output frequency preset in the converter.
JP57209348A 1982-12-01 1982-12-01 Control system for induction motor type electric motor car Granted JPS59103502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57209348A JPS59103502A (en) 1982-12-01 1982-12-01 Control system for induction motor type electric motor car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209348A JPS59103502A (en) 1982-12-01 1982-12-01 Control system for induction motor type electric motor car

Publications (2)

Publication Number Publication Date
JPS59103502A JPS59103502A (en) 1984-06-15
JPH0161001B2 true JPH0161001B2 (en) 1989-12-26

Family

ID=16571459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209348A Granted JPS59103502A (en) 1982-12-01 1982-12-01 Control system for induction motor type electric motor car

Country Status (1)

Country Link
JP (1) JPS59103502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275402A (en) * 1990-03-16 1991-12-06 Kujiraoka:Kk Charging and sealing apparatus of bag especially side-folding type paper bag

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122793A (en) * 1984-07-11 1986-01-31 Mitsubishi Electric Corp Driving method of induction motor by inverter
JP2611195B2 (en) * 1985-12-05 1997-05-21 日産自動車株式会社 Control device for AC motor for vehicle
JP4770538B2 (en) 2006-03-24 2011-09-14 株式会社日立製作所 Electric drive vehicle and control method of electric drive vehicle
JP5195889B2 (en) * 2010-12-20 2013-05-15 株式会社日立製作所 Electric drive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275402A (en) * 1990-03-16 1991-12-06 Kujiraoka:Kk Charging and sealing apparatus of bag especially side-folding type paper bag

Also Published As

Publication number Publication date
JPS59103502A (en) 1984-06-15

Similar Documents

Publication Publication Date Title
US4322671A (en) Induction motor drive apparatus
EP0010981B1 (en) Induction motor drive apparatus
EP0022267A1 (en) Control system for induction motor-driven car
JP3250329B2 (en) Two-phase PWM controller for inverter
JPH0612954B2 (en) Synchronous motor control method
JPH0161001B2 (en)
JPH07131904A (en) Motor controller for motor operated vehicle
JPH02215996A (en) Turbo-molecular pump driving power unit
JPH0417037B2 (en)
JP3554798B2 (en) Electric car control device
JPH0113315B2 (en)
JPS5833904A (en) Induction motor type electric rolling stock control system
JPS6322156B2 (en)
JPS5826502A (en) Controlling device for induction motor type electric vehicle
JP2877577B2 (en) AC electric vehicle control device
KR0164905B1 (en) An electrical braking method for a washing machine
JPH0767311B2 (en) Current and torque limiting circuit for AC motor drive inverter device
JPH027241B2 (en)
JP3640758B2 (en) Electric vehicle control device
JP2573179B2 (en) Control device for AC motor
JPH07194167A (en) Motor drive device for sewing machine
JPS5858801A (en) Retreat detecting system for induction motor type electric motor vehicle
JPH0444516B2 (en)
JPH0799885B2 (en) Variable speed controller for synchronous motor
JPH0125320B2 (en)