JPH0446502A - Controller for electric vehicle - Google Patents

Controller for electric vehicle

Info

Publication number
JPH0446502A
JPH0446502A JP14987490A JP14987490A JPH0446502A JP H0446502 A JPH0446502 A JP H0446502A JP 14987490 A JP14987490 A JP 14987490A JP 14987490 A JP14987490 A JP 14987490A JP H0446502 A JPH0446502 A JP H0446502A
Authority
JP
Japan
Prior art keywords
speed
electrical angular
inverters
motor
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14987490A
Other languages
Japanese (ja)
Inventor
Atsuhiko Nishio
西尾 敦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14987490A priority Critical patent/JPH0446502A/en
Publication of JPH0446502A publication Critical patent/JPH0446502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To prevent idling or slip of wheel by determining electrical angular speeds, at the time of powering and braking, based on the minimum and maximum speeds of the induction motor in an electric vehicle to be driven through a plurality of inverters and then adding thus determined electrical angular speeds to a slip frequency command. CONSTITUTION:A plurality(four in the drawing) of inverters 6i generate VVVF AC power for driving an induction motor 7i. Speed of each motor 7i is then detected 9i and converted 10 into an electrical angular speed which is then fed to a selecting means 11. A current control means 2i determines a slip frequency based on a command provided from a current pattern generating means 1i and an output from a current detecting means 8i. Electrical angular speed selected by the selecting means 11 is added 3i to the slip frequency determined by the current control means 2i, and a PWM pulse is generated 5i through a V/F constant control means 4i in order to control the inverters 6i. Angular speed of a minimum speed motor 7i is selected 11 at the time of powering whereas an angular speed of a maximum speed motor 7i is selected at the time of braking. Consequently, idling or slip of wheel is prevented thus protecting the wheel or the rail against damage.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電動機で駆動される電気車の駆動制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a drive control device for an electric vehicle driven by an electric motor.

(従来の技術) 電気車は、車輪に電動機で回転力(トルク)を与えて、
この車軸とレールとの間の粘1カ(摩擦力)により回転
力を推進力として用いて車軸を推進する。1個の車軸の
粘着力FADは、粘着係数をμ、その車軸にかかる重量
(重量)をWとすると FAD””μW になる。回転力FTHが粘着力を上回ると、余剰の回転
カムFTH(=△F THF AD)により車輪が車体
速度以上に加速されレール上を空回りして、推進力の伝
達が著しく低下する。この現象は駆動時に発生し、「空
転」とよぶ。制動時には、制動力FBRが粘着力を上回
ると、余剰の制動カムFOR(=FnRFAD)により
車軸が車体速度以下に減速され、車軸がレール上をすベ
リ、やはり制動力の伝達が著しく低下する。これを「滑
走」とよぶ。
(Conventional technology) Electric cars use electric motors to apply rotational force (torque) to the wheels.
The axle is propelled by using rotational force as a propulsion force due to the viscous force (frictional force) between the axle and the rail. The adhesive force FAD of one axle is FAD""μW, where μ is the adhesive coefficient and W is the weight (weight) applied to the axle. When the rotational force FTH exceeds the adhesive force, the wheels are accelerated by the excess rotational cam FTH (=ΔF THF AD) to a speed higher than the vehicle body speed and idle on the rails, resulting in a significant reduction in propulsion force transmission. This phenomenon occurs during driving and is called "idling." During braking, if the braking force FBR exceeds the adhesion force, the axle is decelerated below the vehicle body speed by the extra braking cam FOR (=FnRFAD), and the axle slides over the rail, resulting in a significant reduction in braking force transmission. This is called "gliding."

以下本発明では空転に関しては説明を行うが、滑走につ
いてもまったく同様のことが成り立つので説明を省略す
ることがある。なお、上記の、電動機に連結された車軸
を動輪とよび、連結されていないものを従軸とよぶ。
Hereinafter, in the present invention, an explanation will be given regarding slipping, but since the exact same thing holds true for sliding, the explanation may be omitted. Note that the axle that is connected to the electric motor is called a driving wheel, and the axle that is not connected is called a slave axle.

空転は上記のとおり回転力が粘着力を上回ると発生する
ものであるが、粘着力が回転力を下回る場合も同様であ
る。
As described above, slipping occurs when the rotational force exceeds the adhesive force, but the same thing occurs when the adhesive force is lower than the rotational force.

空転が発生するとまず第一に駆動力の円滑な伝達が行わ
れなくなるが、この他動輪踏面の剥離、軸受けの焼損、
レールの疲労・摩滅などの副次的問題も生じる。
When slipping occurs, the first thing that happens is that the driving force is not transmitted smoothly, but this can lead to peeling of the treads of the other driven wheels, burnout of the bearings,
Secondary problems such as rail fatigue and wear also occur.

ここで従来の制御例を示し、その問題点を指摘する。第
2図は複数台のPWMインバータで誘導電動機を駆動す
る電気車における電動機駆動装置の一般的構成を示す制
御ブロック図である。図示のように、各々電流制御ルー
プを構成し、電流指令を与えて、各電動機のトルクを制
御して電気車の駆動力を制御する。図中、la、 lb
、 lc、 ldは電流指令に基づき電流パターン(実
際の電流指令)を発生する電流指令パターン発生手段、
2a、 2b。
Here, we will show an example of conventional control and point out its problems. FIG. 2 is a control block diagram showing a general configuration of a motor drive device in an electric vehicle that drives an induction motor using a plurality of PWM inverters. As shown in the figure, each constitutes a current control loop, gives a current command, controls the torque of each electric motor, and controls the driving force of the electric vehicle. In the figure, la, lb
, lc, and ld are current command pattern generation means that generate a current pattern (actual current command) based on the current command;
2a, 2b.

2c、 2dは電流パターンと検出した実際の電動機電
流を用い適当な制御論理に基づいてすべり周波数指令を
出力する電流制御手段、3a、 3b、 3c、 3d
は電動機回転周波数にすべり周波数指令を加算してイン
バータ周波数指令を作る加算手段、4a、 4b。
2c and 2d are current control means that output a slip frequency command based on appropriate control logic using the current pattern and the detected actual motor current; 3a, 3b, 3c, and 3d;
4a and 4b are adding means for adding the slip frequency command to the motor rotation frequency to generate the inverter frequency command;

4c、 4dはインバータ周波数指令に基づきV/F−
定制御をするV/F一定制御手段、5a、 5b、 5
c。
4c and 4d are V/F- based on the inverter frequency command.
V/F constant control means for constant control, 5a, 5b, 5
c.

5dはV/F一定制御出力である電圧指令に基づきPW
Mパルスを発生するPWMパルス発生手段、6a、 6
b、 6c、 6dはPWM制御電圧形インバータ、7
a、 7b、 7c、 7dは誘導電動機、8a、 8
b、 8c、 8dは電流検出手段で、検出した電流は
各々電流制御手段2a、 2b、 2c、 2dヘフイ
ードバツクされる。9a。
5d is the PW based on the voltage command which is the V/F constant control output.
PWM pulse generating means for generating M pulses, 6a, 6
b, 6c, 6d are PWM control voltage type inverters, 7
a, 7b, 7c, 7d are induction motors, 8a, 8
Reference numerals b, 8c, and 8d are current detection means, and the detected currents are fed back to current control means 2a, 2b, 2c, and 2d, respectively. 9a.

9b、 9c、 9dは速度検出手段で、検出した速度
は各々変換手段10a、 lob、 10c、 10d
で電気角速度に変換され、インバータ周波数指令を作る
加算手段3a。
9b, 9c, and 9d are speed detection means, and the detected speeds are converted to conversion means 10a, lob, 10c, and 10d, respectively.
Adding means 3a converts into electrical angular velocity and creates an inverter frequency command.

3b、 3c、 3dへ送られる構成となっている。誘
導電動機に連結された動輪は図示していない。
The configuration is such that it is sent to 3b, 3c, and 3d. The driving wheels connected to the induction motor are not shown.

(発明が解決しようとする課jv) この電動機制御系で電気車を駆動制御する場合、何れの
動輪も空転・滑走を起こさなければ何等問題はない。こ
こでは誘導電動機7aに連結された動輪が空転を起こし
た場合を例として説明するが、#!I導電動機7b乃至
7c乃至第7dに連結された動輪が空転した場合につい
ても全く同様のことが成り立つので説明を省略する。尚
、厳密に表現すると、空転を起こすのは誘導電動機に連
結された動輪であるが、表現を簡潔にするために、誘導
電動機が空転を起こすといった類の記述をする事がある
(Issues to be Solved by the Invention jv) When controlling the drive of an electric vehicle using this motor control system, there is no problem as long as none of the driving wheels slips or slides. Here, we will explain the case where the driving wheels connected to the induction motor 7a are idling, but #! Exactly the same thing holds true even when the driving wheels connected to the I-conduction motors 7b to 7c to 7d are idling, so the explanation will be omitted. Strictly speaking, it is the driving wheels connected to the induction motor that cause the wheel to spin, but in order to simplify the expression, it is sometimes stated that the induction motor causes the wheel to spin.

空転が生じた場合、それは誘導電動機速度の急上昇とし
て現れる。従来例では、各インバータの周波数指令とし
て、すベリ周波数指令に各誘導電動機速度を電気角速度
に換算したフィードバック信号を加算したものを与えて
いるため、誘導電動機7aの速度の急上昇はそのままイ
ンバータ6aの出力周波数の急上昇につながる。インバ
ータ周波数が増大すれば、そのインバータによって駆動
される誘導電動機の速度は更に増加する。これは典型的
な正帰還現象で駆動電源制御装置11aは不安定となり
、インバータ6aの出力周波数は発散し、誘導電動機7
aが大暴走を起こす。このような大空転が発生すると、
この状態を健全な粘着状態に戻す、いわゆる再粘着制御
が極めて難しくなり、ノツチオフ等により電源断にせざ
るを得ないことが多い。
If slipping occurs, it will manifest as a sudden increase in induction motor speed. In the conventional example, the frequency command for each inverter is given by adding a feedback signal obtained by converting each induction motor speed into an electrical angular velocity to the full frequency command, so a sudden increase in the speed of the induction motor 7a is directly applied to the inverter 6a. This leads to a sudden increase in the output frequency. As the inverter frequency increases, the speed of the induction motor driven by the inverter further increases. This is a typical positive feedback phenomenon, and the drive power control device 11a becomes unstable, the output frequency of the inverter 6a diverges, and the induction motor 7
A goes wild. When such a large slump occurs,
It becomes extremely difficult to perform so-called readhesion control to return this state to a healthy adhesive state, and it is often necessary to turn off the power due to notch-off or the like.

本発明は従来技術における上述の如き問題点を除去し、
空転・滑走した動輪の接続された誘導電動機に供給され
るインバータ周波数の急変動を起こしにくい電気車の駆
動制御装置を提供することを目的とする。
The present invention eliminates the above-mentioned problems in the prior art,
It is an object of the present invention to provide a drive control device for an electric vehicle that is less likely to cause sudden fluctuations in the inverter frequency supplied to an induction motor connected to driving wheels that are idling or sliding.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は」−記の目的を達成するため、以下の構成にて
電気車の駆動電源の制御を行う電気車の駆動制御方式で
ある。
(Means for Solving the Problems) In order to achieve the objects stated in the following, the present invention is a drive control system for an electric vehicle that controls the drive power source of the electric vehicle with the following configuration.

誘導電動機を駆動する可変電圧・可変周波数インバータ
を少なくとも2台以上制御する電気車の制御装置におい
て、 各誘導電動機の速度を検出する手段と、該速度検出手段
で検出した各速度信号のうち力行時は最小値、制動時は
最大値を選択する手段と、該選択手段の出力を電気角速
度に変換する手段と、該変換手段の出力である電気角速
度とすべり周波数指令を加算してインバータ周波数を算
出する手段を具備し、該インバータ算出手段の出力を前
記各インバータの周波数指令として与えることを特徴と
するものである。
In a control device for an electric vehicle that controls at least two or more variable voltage/variable frequency inverters that drive induction motors, there is a means for detecting the speed of each induction motor, and a means for detecting the speed of each of the speed signals detected by the speed detecting means during power running. means for selecting a minimum value and a maximum value during braking, means for converting the output of the selection means into an electrical angular velocity, and calculating the inverter frequency by adding the electrical angular velocity output from the conversion means and the slip frequency command. The invention is characterized in that it includes means for calculating the inverter, and provides the output of the inverter calculation means as a frequency command for each of the inverters.

(作用) このように構成された電気車の制御装置では、空転・滑
走が発生した場合でも動輪に連結された電動機に電源を
供給しているインバータの周波数指令の急変動を防ぐこ
とができるので、(発明が解決しようとする課題)の項
で指摘した従来技術の難点を除去できる。
(Function) With the electric vehicle control device configured in this way, even if slipping or skidding occurs, it is possible to prevent sudden fluctuations in the frequency command of the inverter that supplies power to the electric motor connected to the driving wheels. , it is possible to eliminate the drawbacks of the prior art pointed out in the section (Problems to be Solved by the Invention).

(実施例) 以下第1図に従って本発明の詳細な説明する。同図にお
いて第2図と同一の構成要素には同一の記号を付して説
明を省略する。
(Example) The present invention will be described in detail below with reference to FIG. In this figure, the same components as in FIG. 2 are given the same symbols and their explanations will be omitted.

第1図においては、11は選択手段で、カ行時は4台の
誘導電動機の電気角速度の内最小の値、制動時は4台の
誘導電動機の電気角速度の内最大の値を選択したものを
フィードバック信号として加算手段3a、 3b、 3
c、 3dへ入力するようにしている。
In Fig. 1, 11 is a selection means which selects the minimum value among the electrical angular velocities of the four induction motors during power travel and the maximum value among the electrical angular velocities of the four induction motors during braking. Adding means 3a, 3b, 3 as a feedback signal
I am trying to input it to c and 3d.

ここで、正常走行時つまり何れの動輪も空転・滑走をせ
ずに走行している場合を考える。誘導電動機7a、 7
b、 7c、 7dに接続された車軸の回転速度をそれ
ぞれVat Vb、 Vc、 Vdとすると、この場合
、各回転速度のばらつきは、同一仕様で製作された車軸
径の個体差及び摩耗に起因するものでかなり小さい。し
たがって、以下の関係が成立する。
Here, let us consider the case where the vehicle is running normally, that is, when the vehicle is running without any of the driving wheels idling or skidding. Induction motor 7a, 7
Let the rotational speeds of the axles connected to b, 7c, and 7d be Vat Vb, Vc, and Vd, respectively. In this case, the variation in each rotational speed is due to individual differences in axle diameter and wear when manufactured with the same specifications. It's quite small. Therefore, the following relationship holds true.

Va 4 Vb ”5 Vc 4 Vdよって、本発明
の選択手段11の出力をV′とすると V’ 4Va岬Vb押Vc押Vd となり、加算手段3a、 3b、 3c、 3dに入力
される前記フィードバック信号は本発明においても従来
例においてもほぼ同量となる。したがって、正常走行時
には本発明の制御によっても従来の制御とほぼ同等の制
御が得られる。
Va 4 Vb "5 Vc 4 Vd Therefore, if the output of the selection means 11 of the present invention is V', it becomes V' 4 Va Misaki Vb press Vc press Vd, and the feedback signal input to the adding means 3a, 3b, 3c, 3d is approximately the same amount in both the present invention and the conventional example. Therefore, during normal running, the control of the present invention provides almost the same control as the conventional control.

次に、誘導電動機7aに連結された動輪が空転した場合
を考える。この場合、該誘導電動機の回転速度Vaは急
上昇する。第2図の従来例では、誘導電動機7aの速度
を電気角速度に変換したものをそのまま加算手段3aに
フィードバックしているので、インバーダ6aの周波数
指令は急上昇し空転は増大する。他方、本発明の制御に
よると、この場合前記フィードバック信号は4台の誘導
電動機の電気角速度の内最小の値を選択するので V’ ”5 Vb ”5 Vc ”5 Vdとなり、空
転にともなうフィードバック信号の変化は殆どなく、イ
ンバータ周波数の急上昇を防ぐことができる。
Next, consider a case where the driving wheels connected to the induction motor 7a idle. In this case, the rotational speed Va of the induction motor increases rapidly. In the conventional example shown in FIG. 2, the speed of the induction motor 7a converted into an electrical angular velocity is directly fed back to the adding means 3a, so the frequency command of the inverter 6a increases rapidly and the number of idles increases. On the other hand, according to the control of the present invention, in this case, the feedback signal selects the minimum value among the electrical angular velocities of the four induction motors, so it becomes V' ``5 Vb ``5 Vc ''5 Vd, and the feedback signal due to idling is There is almost no change in the inverter frequency, and a sudden increase in the inverter frequency can be prevented.

また、誘導電動機7aに連結された動輪が滑走した場合
を考える。この場合、該誘導電動機の回転速度Vaは急
減少する。第2図の従来例では、前述の理由によりイン
バータ6aの周波数指令は急減少し滑走は増大する。本
発明の制御によると、この場合前記フィードバック信号
は4台の誘導電動機の電気角速度の内最大の値を選択す
るのでV”= Vb ’= Vc L:Vd となり、やはり空転にともなうフィードバック信号の変
化は殆どなく、インバータ周波数の急減少を防ぐことが
できる。このように、空転・滑走時のインバータ周波数
の急変動を回避できると、本発明には含まれない、何ら
かの制御理論に基づく再粘着制御が効果を発揮するまで
に十分な時間的余裕が得られ、再粘着特性の向上が期待
できる。
Also, consider a case where the driving wheels connected to the induction motor 7a slip. In this case, the rotational speed Va of the induction motor suddenly decreases. In the conventional example shown in FIG. 2, the frequency command of the inverter 6a suddenly decreases and the slippage increases due to the above-mentioned reasons. According to the control of the present invention, in this case, the feedback signal selects the maximum value among the electrical angular velocities of the four induction motors, so V''= Vb'= Vc L:Vd, and the change in the feedback signal due to idling also occurs. There is almost no change in the inverter frequency, and a sudden decrease in the inverter frequency can be prevented.In this way, if a sudden change in the inverter frequency during slipping or skidding can be avoided, readhesion control based on some control theory, which is not included in the present invention, can be performed. This provides sufficient time for the adhesive to take effect, and an improvement in re-adhesion properties can be expected.

また、軌条条件の変化等により自然に再粘着する事も期
待できる。
It is also expected that natural readhesion will occur due to changes in track conditions.

〔発明の効果〕〔Effect of the invention〕

以上に説明したとおり、本発明によれば空転・滑走に際
して、インバータ周波数が急変動することのない電気車
の制御装置を提供することができる。
As described above, according to the present invention, it is possible to provide a control device for an electric vehicle in which the inverter frequency does not suddenly change when the vehicle is idling or skidding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構成図、第2図は
従来例を示す全体構成図である。 la、lb、lc、ld・・・電流パターン発生手段、
2a、2b、2c、2d”’電流制御手段、3a、3b
、3c、3d−加算手段、 4a、4b、4c、4d−V / F一定制御手段、5
a、5b、5c、5d=−P W Mパルス発生手段、
6a、6b、6e、6d・・・P WM制御電圧形イン
バータ7a、7b、7c、7d−誘導電動機、8a、8
b、8c、8d−電流検出手段、9a、9b、9c、9
d−速度検出手段、10a、10b、10c、10d−
変換手段。 11・・・選択手段。 代理人 弁理士 則 近 憲 佑
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention, and FIG. 2 is an overall configuration diagram showing a conventional example. la, lb, lc, ld... current pattern generating means,
2a, 2b, 2c, 2d"' current control means, 3a, 3b
, 3c, 3d - addition means, 4a, 4b, 4c, 4d - V/F constant control means, 5
a, 5b, 5c, 5d=-PWM pulse generating means,
6a, 6b, 6e, 6d...P WM control voltage type inverter 7a, 7b, 7c, 7d-induction motor, 8a, 8
b, 8c, 8d - current detection means, 9a, 9b, 9c, 9
d-speed detection means, 10a, 10b, 10c, 10d-
means of conversion. 11...Selection means. Agent Patent Attorney Noriyuki Chika

Claims (1)

【特許請求の範囲】 誘導電動機を駆動する可変電圧・可変周波数インバータ
を少なくとも2台以上制御する電気車の制御装置におい
て、 各誘導電動機の速度を検出する手段と、該速度検出手段
で検出した各速度信号のうち力行時は最小値、制動時は
最大値を選択する手段と、該選択手段の出力を電気角速
度に変換する手段と、該変換手段の出力である電気角速
度とすべり周波数指令を加算してインバータ周波数を算
出する手段を具備し、該インバータ算出手段の出力を前
記各インバータの周波数指令として与えること を特徴とする電気車の制御装置。
[Scope of Claims] A control device for an electric vehicle that controls at least two or more variable voltage/variable frequency inverters that drive induction motors, comprising means for detecting the speed of each induction motor, and each speed detected by the speed detection means. Means for selecting the minimum value of the speed signal during power running and the maximum value during braking, means for converting the output of the selection means into an electrical angular velocity, and adding the electrical angular velocity output from the converting means and the slip frequency command. 1. A control device for an electric vehicle, comprising means for calculating an inverter frequency by calculating an inverter frequency, and providing an output of the inverter calculating means as a frequency command for each of the inverters.
JP14987490A 1990-06-11 1990-06-11 Controller for electric vehicle Pending JPH0446502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14987490A JPH0446502A (en) 1990-06-11 1990-06-11 Controller for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14987490A JPH0446502A (en) 1990-06-11 1990-06-11 Controller for electric vehicle

Publications (1)

Publication Number Publication Date
JPH0446502A true JPH0446502A (en) 1992-02-17

Family

ID=15484532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14987490A Pending JPH0446502A (en) 1990-06-11 1990-06-11 Controller for electric vehicle

Country Status (1)

Country Link
JP (1) JPH0446502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236305A (en) * 1995-02-28 1996-09-13 Sony Chem Corp Protective circuit and protective element
US6278256B1 (en) * 1994-12-21 2001-08-21 Kabushiki Kaisha Toshiba Electric vehicle control system for controlling a permanent magnet motor which drives the electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278256B1 (en) * 1994-12-21 2001-08-21 Kabushiki Kaisha Toshiba Electric vehicle control system for controlling a permanent magnet motor which drives the electric vehicle
JPH08236305A (en) * 1995-02-28 1996-09-13 Sony Chem Corp Protective circuit and protective element

Similar Documents

Publication Publication Date Title
US4701682A (en) Control system for maintaining traction of rolling stock
US8645011B2 (en) Traction control system and method
EP0085394A1 (en) Control system for electric cars driven by induction motors
EP0267583B1 (en) Turbine helper drive apparatus
JPH0446502A (en) Controller for electric vehicle
JPH06217410A (en) Controller for induction motor type electric vehicle
JPH04248301A (en) Controller for electric vehicle
US6133700A (en) Torque controller system having a torque processor with improved tractive effort distribution
EP1473485B1 (en) Reducing counter-phase vibrations
JP4313493B2 (en) Device for monitoring the frictional force of electric railway vehicle sets
JPH02193501A (en) Controlling device of driving power source of electric rolling stock
JP2824696B2 (en) Electric car control device
JP2835055B2 (en) Electric car control device
EP0600364B1 (en) Inverter controlled induction motor driving system for electric rolling stock
JP2768543B2 (en) Electric car control device
JPH01243803A (en) Drive controller for electric rolling stock
JP2000224708A (en) Electric rolling stock controller
JPS635962B2 (en)
JP2592536B2 (en) Power converter control device
JPH08154306A (en) Electric railcar main circuit system
SU727487A1 (en) Method and apparatus for preventive excessive slip of independent locomotive axles
JPS5924636B2 (en) Control method of induction motor
JPS59201608A (en) Controller of induction motor type electric railcar
JPS5911794A (en) Control device for ac elevator
JPS6118429B2 (en)