JPH02118499A - Repairing method for neutron flux monitor housing - Google Patents

Repairing method for neutron flux monitor housing

Info

Publication number
JPH02118499A
JPH02118499A JP63270688A JP27068888A JPH02118499A JP H02118499 A JPH02118499 A JP H02118499A JP 63270688 A JP63270688 A JP 63270688A JP 27068888 A JP27068888 A JP 27068888A JP H02118499 A JPH02118499 A JP H02118499A
Authority
JP
Japan
Prior art keywords
housing
neutron flux
flux monitor
monitor housing
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63270688A
Other languages
Japanese (ja)
Other versions
JP2533622B2 (en
Inventor
Koichi Kurosawa
孝一 黒沢
Hideyo Saito
英世 斉藤
Osamu Oyamada
修 小山田
Koji Fujimoto
藤本 弘次
Kazuyuki Yamaki
山木 和幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63270688A priority Critical patent/JP2533622B2/en
Publication of JPH02118499A publication Critical patent/JPH02118499A/en
Application granted granted Critical
Publication of JP2533622B2 publication Critical patent/JP2533622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain high-reliability eternal countermeasure technique not except an existent housing by cutting an existent neutron flux monitor housing above a weld zone and detaching it, and inserting a new one from below and performing two-dimensional peripheral welding. CONSTITUTION:The existent neutron flux monitor housing 3 is inserted into the stab tube 2 on the internal surface of a nuclear pressure vessel lower end plate 1D while penetrating the wall of the lower barrel 1D and coupled with the tube 2 by the weld zone 4. The housing 3 after being cut above this weld zone 4 is detached from the tube 2 and weld zone 4 and the part of height where water leaks is removed. Then a new upper housing 3 is inserted into a through hole from below the lower end plate 1D and the existent housing 3 and existent tube 2 are fitted by simple two-dimensional peripheral welding. Further, the new lower housing 3 is inserted similarly and fitted to said new upper housing 3 by two-dimensional peripheral welding. Thus, the welding is all carried out by the two-dimensional peripheral welding which is easier than three-dimensional peripheral welding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電プラント供用期間中に原子炉圧力
容器(以下、RPVという)内の中性子束モニタハウジ
ング(以下、ICMハウジングという)を補修する方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used to repair a neutron flux monitor housing (hereinafter referred to as ICM housing) in a nuclear reactor pressure vessel (hereinafter referred to as RPV) during the service life of a nuclear power plant. Regarding how to.

〔従来の技術〕[Conventional technology]

沸騰水型原子炉のRPVのICMハウジングは第6図に
示すような構造とされている。即ちインコネル材等によ
り肉盛溶接が施されたRPVIに貫通孔IAが設けられ
ていると共に、この貫通孔IAと連通ずるようにスタブ
チューブ2が取付けられている。このスタブチューブ2
にRPVlの壁を貫通してICMハウジング3が溶接部
4を介して取付けられている。
The ICM housing of the RPV of the boiling water reactor has a structure as shown in FIG. That is, a through hole IA is provided in the RPVI which is overlay welded using Inconel material or the like, and the stub tube 2 is attached so as to communicate with the through hole IA. This stub tube 2
An ICM housing 3 is attached via welds 4 through the wall of the RPVl.

従来型の沸騰水型原子炉のICMハウジング3は5US
304系の鋼管を使用しており、ICMハウジング3の
溶接部4、又はその近傍に万一貫通亀裂が発生し、炉水
が漏洩する可能性がある場合を想定して、耐応力腐食割
れ性の高い低炭素量含有ステンレス鋼管に取替える方法
をあらかじめ確立しておく必要がある。
Conventional boiling water reactor ICM housing 3 is 5US
304 series steel pipes are used, and the stress corrosion cracking resistance has been tested in case a through crack occurs at or near the welded part 4 of the ICM housing 3 and there is a possibility that reactor water leaks. It is necessary to establish in advance a method to replace the pipes with stainless steel pipes that have a high carbon content and low carbon content.

ICMハウジングの補修については、特開昭56−82
696号公報に記載されており、その補修後のICMハ
ウジングの構造を第4図に示す。
Regarding the repair of ICM housing, please refer to JP-A-56-82.
It is described in Japanese Patent No. 696, and the structure of the ICM housing after repair is shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の特開昭56−82696号公報に記載のICMハ
ウジング補修方法は比較的容易な工法であるが。
The conventional ICM housing repair method described in Japanese Patent Application Laid-Open No. 56-82696 is a relatively easy method.

5US304系の既設置0Mハウジング3を原子炉圧力
バウンダリに残すため恒久対策工法とは考えられない。
It cannot be considered as a permanent countermeasure construction method because the existing 0M housing 3 of the 5US304 series is left at the reactor pressure boundary.

そこで、本発明の目的は、原子炉圧力バウンダリに5U
S304系の既設置0Mハウジング3を残さずしかも溶
接、切断等の補修作業は全て比較的簡単な2次元で行な
う信頼性の高い恒久対策工法を提供することにある。
Therefore, the purpose of the present invention is to add 5U to the reactor pressure boundary.
The object of the present invention is to provide a highly reliable permanent construction method that does not leave behind the already installed 0M housing 3 of the S304 series and performs all repair work such as welding and cutting in a relatively simple two-dimensional manner.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための第1手段は、原子炉圧力容器
の内面に取付けられた円筒状のスタブチューブに前記原
子炉圧力容器の壁を貫通して挿入され、前記スタブチュ
ーブと溶接部で結合された円筒状の既設中性子束モニタ
ハウジングにおいて、前記溶接部上方で前記中性子束モ
ニタハウジングの切断を行い、さらに前記既設中性子束
モニタハウジングを前記スタブチューブとの溶接部から
取外し、新規上部中性子束モニタハウジングを前記原子
炉圧力容器下方から原子炉圧力容器貫通孔より挿入して
既設中性子束モニタハウジングおよび既設スタブチュー
ブと2次元周溶接により取り付け、さらに新規下部中性
子束モニタハウジングを前記原子炉圧力容器下部から原
子炉圧力容器貫通孔を通し挿入して前記新規上部中性子
束モニタハウジングと2次元周溶接により取り付けるこ
とを特徴とする中性子束モニタハウジングの補修方法で
あり、同じく第2手段は、第1手段に加えて、前記既設
中性子束モニタハウジングを前記スタブチューブとの溶
接部から取外した後に前記スタブチューブと前記既設中
性子束モニタハウジングの溶接部を削り取ることを特徴
とする中性子束モニタハウジングの補修方法であり、同
じく第3手段は、原子炉圧力容器の内面に取付けられた
円筒状のスタブチューブに前記原子炉圧力容器の壁を貫
通して挿入され、前記スタブチューブと溶接部で結合さ
れた円筒状の既設中性子束モニタハウジングにおいて、
前記既設中性子束モニタハウジングを前記既設中性子束
モニタハウジングと前記既設スタブチューブとの溶接部
直下より切断・取外し、1M中性子束モニタハウジング
を1前記原子炉圧力容器下方より原子炉圧力容器貫通孔
を通し挿入して既設中性子束モニタハウジングに2次元
周溶接により取り付けることを特徴とする中性子束モニ
タハウジングの補修方法であり、同じく第4T:、段は
、第1から第3の各手段のいず九かにおいて、新規中性
子束モニタハウジングは耐応力腐食割れ性の高い低炭素
量含有ステンレス製であることを特徴とした中性子束モ
ニタハウジングの補修方法である。
A first means for achieving the above object is that the stub tube is inserted into a cylindrical stub tube attached to the inner surface of the reactor pressure vessel through the wall of the reactor pressure vessel, and is connected to the stub tube at a welded portion. In the existing cylindrical neutron flux monitor housing, the neutron flux monitor housing is cut above the welded part, and the existing neutron flux monitor housing is removed from the welded part with the stub tube, and a new upper neutron flux monitor is installed. The housing is inserted from the bottom of the reactor pressure vessel through the reactor pressure vessel through-hole and attached to the existing neutron flux monitor housing and the existing stub tube by two-dimensional circumferential welding, and then the new lower neutron flux monitor housing is inserted into the bottom of the reactor pressure vessel. A method for repairing a neutron flux monitor housing, characterized in that the housing is inserted through a through-hole in a reactor pressure vessel and attached to the new upper neutron flux monitor housing by two-dimensional circumferential welding, and the second means also includes the method for repairing a neutron flux monitor housing. In addition to this, the method for repairing a neutron flux monitor housing is characterized in that after removing the existing neutron flux monitor housing from the welded part with the stub tube, the welded part of the stub tube and the existing neutron flux monitor housing is scraped off. Similarly, the third means is a cylindrical stub tube that is inserted into a cylindrical stub tube attached to the inner surface of the reactor pressure vessel through the wall of the reactor pressure vessel, and is connected to the stub tube at a welded portion. In the existing neutron flux monitor housing,
Cut and remove the existing neutron flux monitor housing directly below the welded part between the existing neutron flux monitor housing and the existing stub tube, and insert the 1M neutron flux monitor housing from below the reactor pressure vessel through the reactor pressure vessel through hole. A method for repairing a neutron flux monitor housing, which is characterized by inserting and attaching it to an existing neutron flux monitor housing by two-dimensional circumferential welding; The present invention is a method for repairing a neutron flux monitor housing, characterized in that the new neutron flux monitor housing is made of stainless steel containing a low carbon content and is highly resistant to stress corrosion cracking.

〔作用〕[Effect]

第1手段では、原子炉圧力容器の内面に取付けられた円
筒状のスタブチューブに前記原子炉圧力容器の壁を貫通
して挿入され、前記スタブチューブと溶接部で結合され
た円筒状の既設中性子束モニタハウジングにおいて、前
記溶接部上方で前記中性子束モニタハウジングの切断を
行ってから前記既設中性子束モニタハウジングを前記ス
タブチューブとの溶接部から取外し漏水を起した高さの
ハウジング部分をとりのぞく。それから、新規上部中性
子束モニタハウジングを前記原子炉圧力容器下方から原
子炉圧力容器貫通孔より挿入してまだ残存している既設
中性子束モニタハウジングおよび既設スタブチューブと
3次元周溶接よりも簡単な2次元周溶接により取り付け
る。さらに新規下部中性子束モニタハウジングを前記原
子炉圧力容器下部から原子炉圧力容器貫通孔を通し挿入
して前記新規上部中性子束モニタハウジングと2次元周
溶接により取り付ける。このように全ての溶接が3次元
周溶接よりも簡単な2次元周溶接により成し得る。
In the first means, an existing cylindrical neutron is inserted into a cylindrical stub tube attached to the inner surface of the reactor pressure vessel through the wall of the reactor pressure vessel, and is connected to the stub tube at a welded portion. In the flux monitor housing, the neutron flux monitor housing is cut above the welded part, and then the existing neutron flux monitor housing is removed from the welded part with the stub tube, and the housing portion at the height where water leakage has occurred is removed. Then, a new upper neutron flux monitor housing was inserted from the bottom of the reactor pressure vessel through the reactor pressure vessel through hole, and the existing neutron flux monitor housing and the existing stub tube were welded together using a two-dimensional process that was easier than three-dimensional circumferential welding. Attach by circumferential welding. Further, a new lower neutron flux monitor housing is inserted from the lower part of the reactor pressure vessel through the reactor pressure vessel through hole and attached to the new upper neutron flux monitor housing by two-dimensional circumferential welding. In this way, all welding can be accomplished by two-dimensional circumferential welding, which is simpler than three-dimensional circumferential welding.

第2手段では、第1手段の方法において、前記既設中性
子束モニタハウジングを前記スタブチューブとの溶接部
から取外した後に前記スタブチューブと前記既設中性子
束モニタハウジングの溶接部を亀裂が残存しないように
削り取り、残存した亀裂が後で進展して行くことを防ぐ
In the second means, in the method of the first means, after the existing neutron flux monitor housing is removed from the welded part with the stub tube, the welded part of the stub tube and the existing neutron flux monitor housing is made so that no cracks remain. Scrape away and prevent remaining cracks from growing later.

第3手段では、原子炉圧力容器の内面に取付けられた円
筒状のスタブチューブに前記原子炉圧力容器の壁を貫通
して挿入され5前記スタブチユーブと溶接部で結合され
た円筒状の既設中性子束モニタハウジングにおいて、前
記既設中性子束モニタハウジングを前記既設中性子束モ
ニタハウジングと前記既設スタブチューブとの溶接部直
下より切断・取外して亀裂部を無くする。そして、新規
中性子束モニタハウジングを前記原子炉圧力容器下方よ
り原子炉圧力容器貫通孔を通し挿入して既設中性子束モ
ニタハウジングに3次元周溶接よりも簡単な2次元周溶
接により取り付け、亀裂の無い新規な取り付は済み中性
子束モニタハウジングを得る。
In the third means, the existing cylindrical neutron is inserted into a cylindrical stub tube attached to the inner surface of the reactor pressure vessel through the wall of the reactor pressure vessel and is connected to the stub tube at a welded portion. In the flux monitor housing, the existing neutron flux monitor housing is cut and removed from directly below the weld between the existing neutron flux monitor housing and the existing stub tube to eliminate cracks. Then, the new neutron flux monitor housing is inserted from below the reactor pressure vessel through the reactor pressure vessel through-hole and attached to the existing neutron flux monitor housing by two-dimensional circumferential welding, which is simpler than three-dimensional circumferential welding, and there is no cracking. Obtain a new installed neutron flux monitor housing.

第4手段によれば5第1手段から第3手段までのいずれ
かの手段において、既設の中性子束モニタハウジングが
耐応力腐食割れ性の高い低炭素量含有ステンレス製であ
る新規中性子束モニタハウジングに置き変わるので亀裂
の発生確立の少ない構成に補修できる。
According to the fourth means, 5 In any of the first means to the third means, the existing neutron flux monitor housing is replaced with a new neutron flux monitor housing made of low carbon content stainless steel with high stress corrosion cracking resistance. Since it is replaced, it can be repaired to a structure with less chance of cracking.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図および第5図〜第13図
を参照して説明する。
Embodiments of the present invention will be described below with reference to FIG. 1 and FIGS. 5 to 13.

第1図は、本発明の一実施例によるICMハウジング3
の補修後の形状を示す。第5図は、RPVlの下鏡ID
部近傍を示す。第6図は、従来のICMハウジング3の
RPVlへの取付は構造を示す。第6−1図は従来のI
CMハウジング3とスタブチューブ2の溶接部4近傍に
万一欠陥が入る場合の想定ケースを示す。第7図は本発
明の一実施例によるICMハウジング3の補修方法の概
要を示す。第8図は本発明を実施するために使用する2
次元切断加工機10の構成を示す。第9−1図、第9−
2図は本発明を実施するために使用する2次元自動溶接
機20の構成を示す。第10図〜第13図は、本発明の
一実施例によるICMハウジング3の補修手順を示す。
FIG. 1 shows an ICM housing 3 according to an embodiment of the present invention.
The figure shows the shape after repair. Figure 5 shows the lower mirror ID of RPVl.
Indicates the vicinity of the area. FIG. 6 shows a conventional structure for attaching the ICM housing 3 to the RPV1. Figure 6-1 shows the conventional I
A hypothetical case is shown in which a defect should occur near the welded portion 4 of the CM housing 3 and stub tube 2. FIG. 7 shows an outline of a method for repairing the ICM housing 3 according to an embodiment of the present invention. Figure 8 shows 2 used to carry out the present invention.
The configuration of the dimensional cutting machine 10 is shown. Figure 9-1, Figure 9-
FIG. 2 shows the configuration of a two-dimensional automatic welding machine 20 used to carry out the present invention. 10 to 13 show a repair procedure for the ICM housing 3 according to an embodiment of the present invention.

第5図は、沸騰水型原子炉のRPV下鏡部を示す。RP
VIはRPV胴体IC,RPV下鏡IDおよびRPV上
蓋(図示せず)から構成されている。RPVIはスカー
ト5によって原子炉格納容器のペデスタル(図示せず)
上に固設されている。
FIG. 5 shows the RPV lower mirror section of a boiling water reactor. R.P.
The VI is composed of an RPV fuselage IC, an RPV lower mirror ID, and an RPV upper cover (not shown). RPVI is attached to the reactor containment vessel pedestal (not shown) by skirt 5.
fixed on top.

ICMハウジング3は前記RPVT−鏡IDに固設され
ている。
The ICM housing 3 is fixed to the RPVT-mirror ID.

第6図は、沸騰水型原子炉圧力容器の下鏡IDに取り付
<ICMハウジング貫通孔IAの補修前の断面図を示す
。ICUハウジング3は製作時には、原子炉圧力容器下
鏡1Dの内面にスタブチューブ2と部分溶造溶接4によ
り原子炉圧力容器内部から溶接される。しかし、このよ
うな溶接は、無放射線下で炉内に人が接近可能な場合の
溶接方法であり、プラント運転後の当該部を溶接するに
は困難な要素が多い。
FIG. 6 shows a sectional view of the ICM housing through hole IA before repair, which is attached to the lower mirror ID of the boiling water reactor pressure vessel. During manufacture, the ICU housing 3 is welded to the inner surface of the reactor pressure vessel lower mirror 1D from the inside of the reactor pressure vessel by a stub tube 2 and partial welding 4. However, such welding is a welding method that is performed when the inside of the furnace is accessible to humans in the absence of radiation, and there are many difficult factors to weld the relevant parts after the plant is in operation.

第7図は、本発明の一実施例によるICMハウジング3
の補修方法の概要を示す。本補修作業は、RPVペデス
タル31内に遠隔操作式の2次元加工機10および2次
元自動溶接機20を設置し、RPVIの下方より補修対
象となるICMハウジング3に接近して行う。
FIG. 7 shows an ICM housing 3 according to an embodiment of the present invention.
An overview of the repair method is shown below. This repair work is performed by installing a remote-controlled two-dimensional processing machine 10 and a two-dimensional automatic welding machine 20 inside the RPV pedestal 31, and approaching the ICM housing 3 to be repaired from below the RPVI.

第8図は、本発明実施するための2次元切断加工機10
の構成を示す。前記2次元切断加工機10は、駆動用電
源11.制御装置12.加工ヘッド13.リフタ(昇降
装置)14.駆動機構15、バイト16.操作盤17に
より構成される。
FIG. 8 shows a two-dimensional cutting machine 10 for implementing the present invention.
The configuration is shown below. The two-dimensional cutting machine 10 includes a driving power source 11. Control device 12. Processing head 13. Lifter (lifting device) 14. Drive mechanism 15, bite 16. It is composed of an operation panel 17.

前記2次元加工機10の軸方向運動(上、下運動)はり
フタ14により行われ、また、円周方向の回転運動およ
び半径方向の送り運動は駆動機構15により行われる。
The axial movement (upward and downward movement) of the two-dimensional processing machine 10 is performed by the beam lid 14, and the rotational movement in the circumferential direction and the feeding movement in the radial direction are performed by the drive mechanism 15.

前記2次元切断加工機1oは操作盤17により遠隔操作
される。
The two-dimensional cutting machine 1o is remotely controlled by an operation panel 17.

第9−1図、第9−2図は本発明を実施するための2次
元自動溶接機20の構成を示す。前記2次元自動溶接機
20は、駆動電源21.制御装置22、溶接ヘッド23
.リフタ(昇降装置)24゜駆動機構25.操作盤26
から構成され、溶接ヘッド23には、クランプ装置27
.トーチ28゜ファイバースコープ/TVカメラ29.
ワイヤ送給装置30が組込まれている。前記2次元自動
溶接機20の軸方向運動(上、下運動)は、リフタ24
により行われ、円周方向の回転運動および半径方向の送
り運動は駆動機構25により行われ、溶接部の監視はフ
ァイバースコープ/TVカメラ29により行われる。前
記2次元自動溶接機は操作盤26により遠隔操作される
。第10図〜第13図により本発明の一実施例によるI
CMハウジング3の補修方法の手順を示す。第10図〜
第13図に示す補修手順は第6−]図の仮想亀裂32に
対する補修手順を示す。まず、第10図に示すように、
補修対象となるICMハウジング3にRPVI下方より
、ICMハウジング3の下端からその内部に遠隔操作式
の2次元切断加工機10を挿入し、既設置CMハウジン
グ3とスタブチューブ2の溶接部4の上方で既設置CM
ハウジング3の切断および開先加工を行う。次に第11
図に示すように、前記2次元切断加工機10により、既
設置CMハウジング3とスタブチューブ2の溶接部4を
取外すことにより、既設置CMハウジング3とスタブチ
ューブ2より取外し、RPV下方に引き抜く。次に第1
2図に示すように、新しく製作された低炭素ステンレス
鋼製の新規上部ICMハウジング6を前記RPV下方よ
り挿入し、前記2次元自動溶接機20により、既設置C
Mハウジング3上部と溶接部8により溶接される。新規
上部ICMハウジング6はあらかじめその下端がスタブ
チューブ2に位置するよう長さを調整して、さらに第1
3図に示すように、新しく製作された低炭素ステンレス
鋼製の新規下部ICMハウジング7を前記RPVI下方
より挿入し前記2次元自動溶接機20によりスタブチュ
ーブ2の内面に位置する箇所にて前記新規上部ECMハ
ウジング6と溶接部9により溶接される。さらに、図示
しないが溶接部8および溶接部9の内面仕上げ加工を前
記2次元切断加工機10により行う。このようにして、
ICMハウジング3とスタブチューブ2の溶接部4の近
傍に万−第6−1図に示すような仮想亀裂32が発生し
、RPVI内の冷却材がICMハウジング3とスタブチ
ューブ2およびRPV下鏡IDとの間の隙間を通って漏
洩する事態が生じた場合でも比較的簡単に新しいICM
ハウジングに交換できる。第1図は以上のような手順に
より補修を行った補修後のICMハウジングを示す。
9-1 and 9-2 show the configuration of a two-dimensional automatic welding machine 20 for carrying out the present invention. The two-dimensional automatic welding machine 20 includes a drive power source 21. Control device 22, welding head 23
.. Lifter (elevating device) 24° drive mechanism 25. Operation panel 26
The welding head 23 is equipped with a clamping device 27.
.. Torch 28° fiber scope/TV camera 29.
A wire feeding device 30 is incorporated. The axial movement (upward and downward movement) of the two-dimensional automatic welding machine 20 is carried out by the lifter 24.
The rotation movement in the circumferential direction and the feeding movement in the radial direction are performed by a drive mechanism 25, and the monitoring of the weld zone is performed by a fiberscope/TV camera 29. The two-dimensional automatic welding machine is remotely controlled by an operation panel 26. I according to an embodiment of the present invention as shown in FIGS. 10 to 13
A procedure for repairing the CM housing 3 will be shown. Figure 10~
The repair procedure shown in FIG. 13 shows the repair procedure for the virtual crack 32 shown in FIGS. First, as shown in Figure 10,
A remote-controlled two-dimensional cutting machine 10 is inserted into the ICM housing 3 to be repaired from below the RPVI from the lower end of the ICM housing 3, and above the welded part 4 of the already installed CM housing 3 and stub tube 2. CM already installed in
The housing 3 is cut and beveled. Then the 11th
As shown in the figure, the two-dimensional cutting machine 10 is used to remove the welded portion 4 between the installed CM housing 3 and the stub tube 2, thereby removing it from the installed CM housing 3 and the stub tube 2, and pulling it out below the RPV. Next, the first
As shown in Figure 2, a newly manufactured new upper ICM housing 6 made of low carbon stainless steel is inserted from below the RPV, and the existing C
The upper part of the M housing 3 is welded to the welding part 8. The length of the new upper ICM housing 6 is adjusted in advance so that its lower end is located on the stub tube 2, and then the first
As shown in FIG. 3, a new lower ICM housing 7 made of newly manufactured low carbon stainless steel is inserted from below the RPVI, and the new lower ICM housing 7 is welded at a location on the inner surface of the stub tube 2 by the two-dimensional automatic welding machine 20. It is welded to the upper ECM housing 6 by the welding part 9. Further, although not shown in the drawings, the two-dimensional cutting machine 10 performs internal finishing of the welded portions 8 and 9. In this way,
A virtual crack 32 as shown in FIG. 6-1 occurs near the weld 4 between the ICM housing 3 and the stub tube 2, and the coolant in the RPVI leaks into the ICM housing 3, the stub tube 2, and the RPV lower mirror ID. Even if leakage occurs through the gap between the new ICM and the
Can be replaced with housing. FIG. 1 shows a repaired ICM housing that has been repaired according to the procedure described above.

本補修工法によれば、既設ハウジングの除去。According to this repair method, the existing housing is removed.

新規ハウジングの挿入2機械加工、溶接等の全ての補修
作業は原子炉圧力容器下鏡下部の外側から行うことがで
きる。補修作業は炉水を抜いて実施されることを基本と
するが、この場合でも、圧力容器の上部側が高放射線環
境となるのに対して、圧力容器の下方では放射線レベル
がそれほど高くなく短時間であれば当該ハウジング直下
まで、人間が接近することができる。このことは、補修
機器の取扱いあるいは部品の交換時において作業性が著
しく容易になることを意味している。さらに、下部から
作業を行う場合には既設ハウジングを取り除くか、又は
、ハウジング孔の内側から、当該補修部に直線的に近接
することができる。逆に、上側から作業を行う場合には
炉内構造物が障害となって当該補修部に直線的に接近で
きず迂回して接近することが必要となる。
Insertion of new housing 2 All repair work such as machining, welding, etc. can be performed from outside the lower part of the reactor pressure vessel lower mirror. Repair work is basically carried out after draining the reactor water, but even in this case, the upper side of the pressure vessel is in a high radiation environment, while the lower part of the pressure vessel is not as high in radiation levels and can be used for a short period of time. If so, humans can approach directly below the housing. This means that workability becomes significantly easier when handling repair equipment or replacing parts. Furthermore, when working from below, the existing housing can be removed or the repaired part can be approached linearly from inside the housing hole. On the other hand, when working from above, the reactor internals become an obstacle and it is not possible to approach the repaired area in a straight line, making it necessary to take a detour.

このような当該補修部への直線的な接近の可否は、原子
炉圧力容器のような放射線下での作業では重要な意味を
もっており、部品の搬入、搬出あるいは遠隔自動機器の
搬出入、操作において作業性あるいは機器の設計製作性
は著しく容易にせしむるものである。
The possibility of direct access to the repair area is important when working under radiation conditions such as in nuclear reactor pressure vessels, and is important when carrying in and out parts or carrying in and out of remote automatic equipment, and when operating remote automatic equipment. Workability or device design and manufacturing efficiency is greatly improved.

したがって、本補修工法により、下部側から作業する場
合の問題点であった、貫通部の狭隘さを克服した補修工
法が開発されたため、上述の効果を得られ、具体的には
今後の全補修作業時間の削減7作業員の被爆線量の低減
、遠隔自動機器、治工具等の設計の合理化とコスト低減
9作案件の向上による安全裕度の増加等が図ることがで
きる。
Therefore, with this repair method, we have developed a repair method that overcomes the narrowness of the penetration, which was a problem when working from the bottom side, so that the above effects can be obtained, and specifically, all future repairs It is possible to increase the safety margin by reducing working hours, reducing radiation exposure for workers, rationalizing the design of remote automated equipment, jigs, etc., and improving costs.

本発明の他の実施例を第2図、第3図、第6−1図、お
よび第14図〜第20図により示す。第2図、第3図は
、本発明の他の実施例によるICMハウジング3の補修
後の形状を示す。第6−1図は、従来のTCMハウジン
グ3とスタブチューブ2の溶接部4近傍に万一欠陥が入
る場合の想定ケースを示す。第14図〜第20図は、本
発明の実施例による補修の手順を示す。
Other embodiments of the invention are shown in FIGS. 2, 3, 6-1, and 14-20. 2 and 3 show the shape of the ICM housing 3 after repair according to another embodiment of the present invention. FIG. 6-1 shows a hypothetical case in which a defect should occur near the welded portion 4 of the conventional TCM housing 3 and stub tube 2. 14 to 20 show a repair procedure according to an embodiment of the present invention.

第14図〜第18図は1本発明の第2の実施例によるI
CMハウジング3の補修方法の手順を示す。第14図〜
第18図に示す補修手順は、第6−1図の仮想亀裂の3
3に対する補修手順を示す。
14 to 18 are I according to the second embodiment of the present invention.
A procedure for repairing the CM housing 3 will be shown. Figure 14~
The repair procedure shown in Figure 18 is for the virtual crack 3 in Figure 6-1.
The repair procedure for 3 is shown below.

仮想亀裂32の場合、既設のICMハウジング3を新規
のICMハウジング6.7に取替えれば良いが、仮想亀
裂33に対しては、亀裂が溶接部4に発生しているため
、補修後の亀裂進展を考慮し。
In the case of the virtual crack 32, it is sufficient to replace the existing ICM housing 3 with a new ICM housing 6.7, but in the case of the virtual crack 33, since the crack has occurred in the welded part 4, the crack after repair is Considering the progress.

溶接部4を前記2次元切断加工機10により取り除くこ
とが好ましい。そこで第2の実施例では、第1の実施例
の補修内容に加え、溶接部4の削り取りの作業が追加さ
れている。第2図は第14図〜第18図の手順により補
修を行った補修後の1CMハウジングを示す。
Preferably, the welded portion 4 is removed by the two-dimensional cutting machine 10. Therefore, in the second embodiment, in addition to the repair contents of the first embodiment, the work of scraping off the welded portion 4 is added. FIG. 2 shows a repaired 1CM housing that has been repaired according to the procedures shown in FIGS. 14 to 18.

第19図、第20図は、本発明の第3の実施例によるI
CMハウジング3の補修方法の手順を示す。同図に示す
補修手順は、第6−1図の仮想亀裂34に対する補修手
j:@を示す。仮想亀裂34の場合ICMハウジング3
とスタブチューブ2との溶接部4の下側のICMハウジ
ングのみを取替えれば良く、第1の実施例のように溶接
部4の上側のI CMハウジングを取替える必要はなく
補修作業が簡略化できる。第3図は第19図、第20図
の手順により補修を行った補修後のICM/)ウジング
を示す。
FIGS. 19 and 20 show I according to the third embodiment of the present invention.
A procedure for repairing the CM housing 3 will be shown. The repair procedure shown in the figure shows the repair procedure j:@ for the virtual crack 34 in FIG. 6-1. ICM housing 3 for virtual crack 34
It is only necessary to replace the ICM housing on the lower side of the welded part 4 between the and the stub tube 2, and there is no need to replace the ICM housing on the upper side of the welded part 4 as in the first embodiment, simplifying the repair work. . FIG. 3 shows the repaired ICM/) housing which was repaired according to the procedures shown in FIGS. 19 and 20.

いずれの実施例でも、原子炉圧力バウンダリに5US3
04系の既設置CMハウジングを残さず、しかも溶接、
切断等の補修作業は全て2次元で行うことができるので
、補修後の信頼性が高い恒久対策工法を提供することが
できる。
In both examples, 5US3 is applied to the reactor pressure boundary.
The existing CM housing of the 04 series is not left behind, and welded.
Since all repair work such as cutting can be performed in two dimensions, it is possible to provide a highly reliable permanent countermeasure construction method after repair.

〔発明の効果〕〔Effect of the invention〕

請求項1と請求項3の発明によれば、原子炉圧力バウン
ダリに欠陥のある既設置CMハウジングを残さず、しか
も補修時の溶接、切断等の補修作業は全て2次元で行う
ことができるので、補修後の信頼性が高い恒久対策工法
を提供することができる。
According to the inventions of claims 1 and 3, no defective existing CM housing is left in the reactor pressure boundary, and all repair work such as welding and cutting during repair can be performed in two dimensions. , it is possible to provide a highly reliable permanent countermeasure construction method after repair.

請求項2の発明によれば、請求項1の発明の効果に加え
て、補修後の構造に欠陥が残存しない健全性の高い状態
が得られる。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, it is possible to obtain a highly sound state in which no defects remain in the structure after repair.

請求項4の発明によれば、請求項1から請求項3までの
各発明のいずれかの発明による効果に加えて、原子炉圧
力バウンダリに5US304系の既設置CMハウジング
を残さずに補修後の信頼性がより高い恒久対策工法を提
供することができる。
According to the invention of claim 4, in addition to the effects of any one of the inventions of claims 1 to 3, the CM housing of the 5US304 series after repair can be removed without leaving the existing CM housing of the 5US304 system at the reactor pressure boundary. It is possible to provide a more reliable permanent countermeasure construction method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の補修後のICMハウジングの
縦断面図、第4図は従来のICMハウジング補修構造を
示すICMハウジングの縦断面図、第5図はRPV下部
構造を示す縦断面図、第6図は従来のICMハウジング
の縦断面図、第6−1図は従来のICMハウジングに万
一亀裂が入る場合のICMハウジング近傍の縦断面図、
第7図は本発明の補修方法の概要縦断面図、第8図は本
発明で使用する2次元切断加工機の構造説明図、第9−
1図、第9−2図は本発明で使用する2次元自動溶接機
の構造説明図、第9−2図(、)は第9−2図のA−A
矢視図、第10図〜第20図は本発明の補修方法の手順
図である。 1・・・原子炉圧力容器、IA・・・下鏡貫通孔、IB
・・・肉盛座、i C・RP V JI4体、L D−
RP V下鏡、2・・・スタブチューブ、3・・・IC
Mハウジング、4・・・溶接部(ICMハウジングとス
タブチューブ)、5・・スカート、6・・・新規上部I
CMハウジング、7・・・新規下部ICMハウジング、
8・・・溶接部(既設置CMハウジングと新規上部IC
Mハウジング)、9・・・溶接部(既規上部ICMハウ
ジングと新規下部ICMハウジング)、10・・・二次
元切断加工機。 11・・・駆動用電源、12・・・制御装置、13・・
・加工ヘッド、14・・・リフタ(昇降装置)、15・
・・駆動機構、16・・・バイト、17・・・操作盤、
18・・・アダプター、20・・・二次元自動溶接機、
21・・・溶接機用電源、22・・・制御装置、23・
・・溶接ヘッド。 24・・・リフタ(昇降装置)、25・・駆動機構、2
7・・・クランプ装置、28・・・トーチ、29・・・
ファイバースコープ/TVカメラ、30・・・ワイヤ送
給装置、31・・・RPVペデスタル、32・・・亀裂
、箔1囚 第20 第3 困 め4図 噴す口 第ら−1目 翳 図 s″1 第117−1に 第 毛 (Z口 第 第14目 蔓 1区 第 区 第 第zO囚
1 to 3 are longitudinal sectional views of the ICM housing after repair according to the present invention, FIG. 4 is a longitudinal sectional view of the ICM housing showing a conventional ICM housing repair structure, and FIG. 5 is a longitudinal sectional view showing the RPV lower structure. 6 is a vertical cross-sectional view of a conventional ICM housing, and FIG. 6-1 is a vertical cross-sectional view of the vicinity of the ICM housing in the event that a crack occurs in the conventional ICM housing.
Fig. 7 is a schematic longitudinal sectional view of the repair method of the present invention, Fig. 8 is a structural explanatory diagram of the two-dimensional cutting machine used in the present invention, and Fig. 9-
Figures 1 and 9-2 are structural explanatory diagrams of the two-dimensional automatic welding machine used in the present invention, and Figures 9-2 (,) are A-A in Figure 9-2.
The arrow views and FIGS. 10 to 20 are procedural diagrams of the repair method of the present invention. 1...Reactor pressure vessel, IA...Lower mirror through hole, IB
... Overlay seat, i C・RP V JI 4 bodies, LD-
RP V lower mirror, 2... stub tube, 3... IC
M housing, 4... Welded part (ICM housing and stub tube), 5... Skirt, 6... New upper part I
CM housing, 7...New lower ICM housing,
8...Welding part (existing CM housing and new upper IC)
M housing), 9... Welding part (existing upper ICM housing and new lower ICM housing), 10... Two-dimensional cutting machine. 11... Drive power supply, 12... Control device, 13...
・Processing head, 14... Lifter (lifting device), 15.
...Drive mechanism, 16...Bite, 17...Operation panel,
18...Adapter, 20...Two-dimensional automatic welding machine,
21... Power supply for welding machine, 22... Control device, 23.
...Welding head. 24... Lifter (lifting device), 25... Drive mechanism, 2
7... Clamp device, 28... Torch, 29...
Fiberscope/TV camera, 30...Wire feeding device, 31...RPV pedestal, 32...Crack, foil 1 prisoner 20th 3rd trouble 4th figure spouting mouth 1st eye - 1st shadow figure s ``1 117-1 the 1st hair (Z mouth 14th vine 1st ward zO prisoner

Claims (1)

【特許請求の範囲】 1、原子炉圧力容器の内面に取付けられた円筒状のスタ
ブチューブに前記原子炉圧力容器の壁を貫通して挿入さ
れ、前記スタブチューブと溶接部で結合された円筒状の
既設中性子束モニタハウジングにおいて、前記溶接部上
方で前記中性子束モニタハウジングの切断を行い、さら
に前記既設中性子束モニタハウジングを前記スタブチュ
ーブとの溶接部から取外し、新規上部中性子束モニタハ
ウジングを前記原子炉圧力容器下方から原子炉圧力容器
貫通孔より挿入して既設中性子束モニタハウジングおよ
び既設スタブチューブと2次元周溶接により取り付け、
さらに新規下部中性子束モニタハウジングを前記原子炉
圧力容器下部から原子炉圧力容器貫通孔を通し挿入して
前記新規上部中性子束モニタハウジングと2次元周溶接
により取り付けることを特徴とする中性子束モニタハウ
ジングの補修方法。 2、請求項1において、前記既設中性子束モニタハウジ
ングを前記スタブチューブとの溶接部から取外した後に
前記スタブチューブと前記既設中性子束モニタハウジン
グの溶接部を削り取ることを特徴とする中性子束モニタ
ハウジングの補修方法。 3、原子炉圧力容器の内面に取付けられた円筒状のスタ
ブチューブに前記原子炉圧力容器の壁を貫通して挿入さ
れ、前記スタブチューブと溶接部で結合された円筒状の
既設中性子束モニタハウジングにおいて、前記既設中性
子束モニタハウジングを前記既設中性子束モニタハウジ
ングと前記既設スタブチューブとの溶接部直下より切断
・取外し、新規中性子束モニタハウジングを前記原子炉
圧力容器下方より原子炉圧力容器貫通孔を通し挿入して
既設中性子束モニタハウジングに2次元周溶接により取
り付けることを特徴とする中性子束モニタハウジングの
補修方法。 4、請求項1から請求項3までのいずれかの請求項にお
いて、新規中性子束モニタハウジングは耐応力腐食割れ
性の高い低炭素量含有ステンレス製であることを特徴と
した中性子束モニタハウジングの補修方法。
[Claims] 1. A cylindrical stub tube that is inserted into a cylindrical stub tube attached to the inner surface of the reactor pressure vessel through the wall of the reactor pressure vessel, and is connected to the stub tube at a welded portion. In the existing neutron flux monitor housing, the neutron flux monitor housing is cut above the welded part, the existing neutron flux monitor housing is removed from the welded part with the stub tube, and a new upper neutron flux monitor housing is attached to the atomic It is inserted from the bottom of the reactor pressure vessel through the reactor pressure vessel through hole and attached to the existing neutron flux monitor housing and existing stub tube by two-dimensional circumferential welding.
Further, a new lower neutron flux monitor housing is inserted from the lower part of the reactor pressure vessel through the reactor pressure vessel through hole and attached to the new upper neutron flux monitor housing by two-dimensional circumferential welding. Repair method. 2. The neutron flux monitor housing according to claim 1, wherein the welded portion between the stub tube and the existing neutron flux monitor housing is scraped off after the existing neutron flux monitor housing is removed from the welded portion with the stub tube. Repair method. 3. An existing cylindrical neutron flux monitor housing inserted into a cylindrical stub tube attached to the inner surface of the reactor pressure vessel through the wall of the reactor pressure vessel and connected to the stub tube at a welded portion. In this step, the existing neutron flux monitor housing is cut and removed from directly below the weld between the existing neutron flux monitor housing and the existing stub tube, and the new neutron flux monitor housing is installed from below the reactor pressure vessel through the reactor pressure vessel through-hole. A method for repairing a neutron flux monitor housing, the method comprising inserting it through the housing and attaching it to an existing neutron flux monitor housing by two-dimensional circumferential welding. 4. Repair of a neutron flux monitor housing according to any one of claims 1 to 3, characterized in that the new neutron flux monitor housing is made of low carbon content stainless steel with high stress corrosion cracking resistance. Method.
JP63270688A 1988-10-28 1988-10-28 Method of repairing neutron flux monitor housing Expired - Lifetime JP2533622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63270688A JP2533622B2 (en) 1988-10-28 1988-10-28 Method of repairing neutron flux monitor housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63270688A JP2533622B2 (en) 1988-10-28 1988-10-28 Method of repairing neutron flux monitor housing

Publications (2)

Publication Number Publication Date
JPH02118499A true JPH02118499A (en) 1990-05-02
JP2533622B2 JP2533622B2 (en) 1996-09-11

Family

ID=17489568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63270688A Expired - Lifetime JP2533622B2 (en) 1988-10-28 1988-10-28 Method of repairing neutron flux monitor housing

Country Status (1)

Country Link
JP (1) JP2533622B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813700A1 (en) * 2000-09-06 2002-03-08 Framatome Sa Nuclear reactor vessel cover adapter repair comprises cutting between adapter and sleeve at weld level and re-welding after chamfering sleeve end
JP2014190893A (en) * 2013-03-28 2014-10-06 Hitachi-Ge Nuclear Energy Ltd Method and apparatus for internally inspecting reactor pressure vessel
CN109676276A (en) * 2018-12-27 2019-04-26 哈电集团(秦皇岛)重型装备有限公司 A kind of welding method of non-centripetal canals and thin-wall stainless steel pressure vessel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102494A (en) * 1988-10-11 1990-04-16 Babcock Hitachi Kk Method for repairing reactor pressure vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102494A (en) * 1988-10-11 1990-04-16 Babcock Hitachi Kk Method for repairing reactor pressure vessel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813700A1 (en) * 2000-09-06 2002-03-08 Framatome Sa Nuclear reactor vessel cover adapter repair comprises cutting between adapter and sleeve at weld level and re-welding after chamfering sleeve end
JP2014190893A (en) * 2013-03-28 2014-10-06 Hitachi-Ge Nuclear Energy Ltd Method and apparatus for internally inspecting reactor pressure vessel
CN109676276A (en) * 2018-12-27 2019-04-26 哈电集团(秦皇岛)重型装备有限公司 A kind of welding method of non-centripetal canals and thin-wall stainless steel pressure vessel
CN109676276B (en) * 2018-12-27 2023-08-25 哈电集团(秦皇岛)重型装备有限公司 Welding method of non-centripetal pipe and thin-wall stainless steel pressure vessel

Also Published As

Publication number Publication date
JP2533622B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
EP2568474B1 (en) Nozzle mounting structure
WO2011040096A1 (en) Nozzle welding method, nozzle part repairing method, and nozzle welded structure
JP6332871B2 (en) Repair method for reactor-mounted instrumentation nozzle
JP2007155726A (en) System and method using multipurpose tooling for pressurized water reactor
JP6109510B2 (en) Abutment repair method and reactor vessel
CN109961858A (en) Underwater remote maintenance process for pressurized-water reactor nuclear power plant reactor core internals
JPH02118499A (en) Repairing method for neutron flux monitor housing
JPH02105097A (en) Repairing method for neutron flux monitor housing
US4675961A (en) Replacement of split-pin assemblies in guide tubes
JP3774600B2 (en) Replacement method of neutron measurement housing and apparatus used therefor
JP6029466B2 (en) Abutment repair method and reactor vessel
JPH08233972A (en) Method for replacing nuclear reactor internal constitution
JPS6345593A (en) Neutron flux monitor housing
JP4316130B2 (en) Core spray system piping replacement method
JP4045635B2 (en) Method for joining piping in reactor pressure vessel and groove aligning jig used in the method
JP6245666B2 (en) Apparatus and method for inspecting, modifying or repairing a reactor core shroud
JPH05333188A (en) Reactor inspection/repairing method and device
JP4393011B2 (en) Replacement method of core spray system equipment
JPH02102492A (en) Method for repairing long-sized housing
JP4488591B2 (en) Maintenance method of core spare purger
JP2013113751A (en) Nozzle stub repair method
JPH02128195A (en) Method of repairing neutron flux monitor housing of reactor
KR101557359B1 (en) Method for repairing damaged nozzle inserted into the atomic reactor head
JP2004163213A (en) Method and device for repairing weld
JP2000304886A (en) Control rod drive mechanism housing support device for nuclear reactor pressure vessel