JPH02102492A - Method for repairing long-sized housing - Google Patents

Method for repairing long-sized housing

Info

Publication number
JPH02102492A
JPH02102492A JP63255430A JP25543088A JPH02102492A JP H02102492 A JPH02102492 A JP H02102492A JP 63255430 A JP63255430 A JP 63255430A JP 25543088 A JP25543088 A JP 25543088A JP H02102492 A JPH02102492 A JP H02102492A
Authority
JP
Japan
Prior art keywords
housing
long
reactor
neutron flux
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63255430A
Other languages
Japanese (ja)
Other versions
JP2530010B2 (en
Inventor
Toshihiro Yasuda
年廣 安田
Tomonobu Sakuranaga
桜永 友信
Yoshitsugu Koyama
児山 吉継
Masahiro Kobayashi
雅弘 小林
Masaru Takahashi
勝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63255430A priority Critical patent/JP2530010B2/en
Publication of JPH02102492A publication Critical patent/JPH02102492A/en
Application granted granted Critical
Publication of JP2530010B2 publication Critical patent/JP2530010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To effectively and surely preventing the generation of reactor water leakage by providing a neutron flux monitor housing, through-hole and nozzle stub. CONSTITUTION:A defect A generated in the long-sized housing such as neutron flux monitor housing 18 itself to the welded part of the housing and a reactor vessel 10 or the part having the potential possibility of the generation of defect is removed together with the base metal part of the reactor vessel 10 and in succession the base metal removed part to serve as a strength member is restored to the original state by build-up welding of the above-mentioned part arises during the operation of the reactor. The nozzle stub 25 is provided by welding to the lower side of the through-hole 23 of the vessel 10 and the inside of the through-hole is applied with a rust inhibitive measure. The long-sized under housing 18a is then inserted into the through-hole 23 and is fixed by welding to the nozzle stub 25. The inserting front end of the housing 18a is fixed to the long-sized upper housing 18b. The supporting structure having the strength equiv. to the strength of the initial fixing and supporting structure of the long-sized housing is obtd. in this way and the generation of the reactor water leakage is prevented.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分界) 本発明は原子炉圧力容器に固定支持される中性子束モニ
タハウジング等の長尺ハウジングの補修方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objectives of the Invention) (Industrial Field of Application) The present invention relates to a method of repairing an elongated housing such as a neutron flux monitor housing fixedly supported in a nuclear reactor pressure vessel.

(従来の技術) 沸騰水型原子炉等の原子炉の出力は、中性子束に比例す
るので、原子炉の出力表示や燃焼度評価のために、原子
炉の中性子束を中性子束検出器(中性子束モニタ)にて
計測し、監視している。
(Prior art) The output of a nuclear reactor such as a boiling water reactor is proportional to the neutron flux, so in order to display the reactor output and evaluate the burnup, the neutron flux of the reactor is measured using a neutron flux detector (neutron flux detector). It is measured and monitored using a bundle monitor.

中性子束検出器1は沸騰水型原子炉へ第5図に概略的に
示すように設けられ、原子炉圧力容器2内に炉心3が破
線で示すように収容される。この炉心3に中性子束検出
器1を収容した中性子束モニタ本体4が据付けられる。
A neutron flux detector 1 is installed in a boiling water reactor as schematically shown in FIG. 5, and a reactor core 3 is accommodated in a reactor pressure vessel 2 as shown by a broken line. A neutron flux monitor main body 4 housing a neutron flux detector 1 is installed in the reactor core 3 .

図示例では簡略化のために1本の中性子束モニタ本体4
を据付けた例を示す。
In the illustrated example, one neutron flux monitor main body 4 is used for simplicity.
An example is shown below.

中性子束モニタ本体4は細長い長尺状に形成され、その
上端は上部格子板5の下面支持孔5aに弾力的に支持さ
れ、その下部は中性子束モニタ案内管6および中性子束
モニタハウジング(インコアモニタハウジング)7を介
して下方に突出し、その下端は中性子束モニタ用フラン
ジ(インコアフランジ)8に当接支持され、据付用の締
付ナツト9により固定される。
The neutron flux monitor main body 4 is formed into an elongated shape, and its upper end is elastically supported by the lower surface support hole 5a of the upper grid plate 5, and its lower part is connected to the neutron flux monitor guide tube 6 and the neutron flux monitor housing (in-core monitor It protrudes downward through a housing) 7, and its lower end abuts and supports a neutron flux monitor flange (in-core flange) 8, and is fixed by a tightening nut 9 for installation.

中性子束モニタハウジング7は上部が原子炉圧力容器2
の下鏡に溶、接にて固定され、垂下状態に設けられる。
The upper part of the neutron flux monitor housing 7 is the reactor pressure vessel 2
It is fixed to the lower mirror by welding and welding and is placed in a hanging state.

中性子束モニタハウジング7は5US304等のオース
テナイト系ステンレス鋼管を使用しているので、応力、
腐食環境、材料(クロム欠乏層の生成)の3つの条件が
成立すると、原子炉圧力容器2との溶接部付近で応力腐
食刈れ(以下、SCCという。)が発生するおそれがあ
る。SCCは3条件のうち1つでも欠落すれば発生しな
いので、この応力腐食割れ防止のために、種々の対策が
講じられている。
Since the neutron flux monitor housing 7 is made of austenitic stainless steel tube such as 5US304, stress,
If the three conditions of corrosive environment and material (creation of a chromium-deficient layer) are met, stress corrosion cracking (hereinafter referred to as SCC) may occur near the weld to the reactor pressure vessel 2. Since SCC will not occur if even one of the three conditions is missing, various measures have been taken to prevent stress corrosion cracking.

(発明が解決しようとする課題) 中性子束モニタハウジング7を固定支持する原子炉圧力
容器2の溶接部付近に粒界応力腐食割れ(IGscc)
や溶接時の融合不良に伴う溶接欠陥が生じたり、または
中性子束モニタハウジング自身の欠陥により、溶接部付
近や中性子束モニタハウジングにクラックが生じ、この
クラックが次第成長してリークパスが形成されると炉水
り一りに発展するおそれがある。
(Problem to be solved by the invention) Intergranular stress corrosion cracking (IGscc) occurs near the welded part of the reactor pressure vessel 2 that fixedly supports the neutron flux monitor housing 7.
If a crack occurs near the weld or in the neutron flux monitor housing due to a welding defect due to poor fusion during welding, or a defect in the neutron flux monitor housing itself, this crack will gradually grow and form a leak path. There is a risk that the reactor water will develop into a situation of its own.

一方、炉心部の中性子束を計測し、監視する中性子束検
出器は、原子炉の出力制御や炉運転停止を行なう制御棒
駆動機構と異なり、原子炉の安全系に属さないため、中
性子束モニタハウジングのシール支持構造は原子炉安全
系を前提としたものではなく、また、中性子束モニタハ
ウジング自身の欠陥や原子炉圧力容器との溶接部付近に
欠陥が万−生じた場合、この欠陥部を取り除く恒久的な
修理工法は充分には確立されていない。
On the other hand, neutron flux detectors that measure and monitor neutron flux in the reactor core do not belong to the reactor safety system, unlike the control rod drive mechanism that controls reactor output and shuts down reactor operation. The seal support structure of the housing is not intended for reactor safety systems, and in the unlikely event that a defect occurs in the neutron flux monitor housing itself or in the vicinity of the weld to the reactor pressure vessel, this defective part should be removed. Permanent repair methods for removal are not well established.

本発明は上述した事情を考慮してなされたもので、中性
子束モニタハウジング等の長尺ハウジングや溶接部付近
の欠陥部を特定してこの欠陥部や潜在的な欠陥発生可能
部位を完全に除去し、該当部分を初期支持構造と同等の
強度を有する構造に復旧させて炉水リークを確実に防止
できる長尺ハウジングの補修方法を提供することを目的
とする。
The present invention has been made in consideration of the above-mentioned circumstances, and identifies defective parts near long housings such as neutron flux monitor housings and welded parts, and completely eliminates these defective parts and potential defect-prone areas. However, it is an object of the present invention to provide a method for repairing a long housing that can reliably prevent leakage of reactor water by restoring the corresponding part to a structure having the same strength as the initial support structure.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る長尺ハウジングの補修方法は、原子炉容器
の下鏡溶接部に固定支持された中性子束モニタハウジン
グ等の長尺ハウジングを、溶接部の上下方でそれぞれ切
断して長尺アッパハウジングおよび長尺アンダハウジン
グを取り除いた後、原子炉容器の母材部を含む欠陥部位
あるいは潜在的な欠陥発生可能部位を除去し、続いて強
度部材となる母材除去部を肉盛溶接して元に復旧させ、
その後、原子炉容器の下an通孔部下側に管台を溶接に
より形成するとともに上記下鏡貫通孔内に防錆対策を施
し、次に長尺アンダハウジングを下IA貫通孔内に下方
から挿入して前記管台に溶接にて固定するとともに上記
長尺アンダハウジングの挿入先端を長尺アッパハウジン
グに溶接にて固定する方法である。
(Means for Solving the Problems) A method for repairing a long housing according to the present invention is to repair a long housing such as a neutron flux monitor housing that is fixedly supported on a lower mirror welding part of a nuclear reactor vessel at a position above and below the welding part. After removing the long upper housing and long under housing by cutting them respectively, defective areas or areas where defects could potentially occur, including the base material of the reactor vessel, were removed, and then the base material that will become the strength member Weld the removed part overlay and restore it to its original state.
After that, a nozzle holder was formed on the lower side of the lower an through hole of the reactor vessel by welding, and anti-corrosion measures were taken in the lower mirror through hole, and then a long under housing was inserted into the lower IA through hole from below. In this method, the long under housing is fixed to the nozzle stub by welding, and the insertion tip of the long under housing is fixed to the long upper housing by welding.

(作用) この長尺ハウジングの補修方法は、原子炉の運転中に中
性子束モニタハウジング等の長尺ハウジング自身や原子
炉容器との溶接部分に欠陥が生じたり、潜在的に欠陥発
生可能性が大きな場合に、該当部分を原子炉容器の母材
部とともに除去し、続いて強度部材となる母材除去部を
肉盛溶接して元に復旧させる一方、原子炉容器の下鏡貫
通孔部下側に管台を溶接にて形成するとともに上記貫通
孔内に防錆対策を施し、次に長尺アンダハウジングを上
記貫通孔に挿入して管台に溶接により固定させ、長尺ア
ンダハウジングの挿入先端を長尺アッパハウジングに固
定させることにより、長尺ハウジングの初期の固定支持
構造と同等の強度を有する支持構造として、炉水リーク
の発生を有効的かつ確実に防止したものである。
(Function) This long housing repair method is designed to prevent defects from occurring in the long housing itself, such as the neutron flux monitor housing, or at the welded part with the reactor vessel during reactor operation, or potentially causing defects. If the area is large, the corresponding part is removed together with the base metal of the reactor vessel, and then the base metal removed part, which becomes a strength member, is overlay welded to restore the original state. At the same time, a nozzle head is formed by welding and anti-corrosion measures are taken in the through hole, and then a long under housing is inserted into the through hole and fixed to the nozzle head by welding, and the insertion tip of the long under housing is fixed to the nozzle head by welding. By fixing it to the elongated upper housing, the support structure has the same strength as the initial fixed support structure of the elongated housing, effectively and reliably preventing the occurrence of reactor water leaks.

(実施例) 以下、本発明の一実施例について添付図面を参照して説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

沸騰水型原子炉は、第2図に示すように原子炉容器とし
ての原子炉圧力容器10を備え、この原子炉圧力容器1
0はその支持ペデスタル11上に支持スカート12を介
して支持される。原子炉圧力容器10の下部(下鏡)に
は原子炉の炉心に制−棒(図示せず)の出し入れを行な
う制御棒駆動機構(CRD)13が多数本林立状態で垂
設される。lll1l棒駆動機構13のCRDハウジン
グ14は原子炉圧力容器10の下鏡に溶接にて固定され
る。このCHDハウジング(長尺ハウジング)14には
5US304.5US3041等のステンレス鋼が用い
られる。
As shown in FIG. 2, the boiling water reactor is equipped with a reactor pressure vessel 10 as a reactor vessel.
0 is supported on its support pedestal 11 via a support skirt 12. At the lower part (lower mirror) of the reactor pressure vessel 10, a large number of control rod drive mechanisms (CRDs) 13 are installed vertically in a stand-alone manner for moving control rods (not shown) in and out of the reactor core. The CRD housing 14 of the lll1l rod drive mechanism 13 is fixed to the lower mirror of the reactor pressure vessel 10 by welding. This CHD housing (elongated housing) 14 is made of stainless steel such as 5US304.5US3041.

また、原子炉の出力表示や燃焼度の評価のために、原子
炉炉心部で発生する中性子束は中性子束検出器15にて
測定され、監視される。中性子束検出器15は各CRD
13間の適宜空間に配置され、細長い長尺状の中性子束
モニタ本体16を第3図に示すように有する。
Further, in order to display the output of the nuclear reactor and evaluate the burnup, the neutron flux generated in the core of the nuclear reactor is measured and monitored by the neutron flux detector 15. The neutron flux detector 15 is connected to each CRD.
As shown in FIG. 3, the main body 16 of the neutron flux monitor has an elongated shape and is disposed in an appropriate space between the monitors 13 and 13.

中性子束モニタ本体16は細長い管状をなし、その下部
側は長尺ハウジングである中性子束モニタ案内管17や
中性子束モニタハウジング(インコアモニタハウジング
)18を通って下方に延びており、その下端部は中性子
束モニタフランジ19の内周肩部に当接支持される。こ
の中性子束モニタ7ランジ19は中性子束モニタハウジ
ング18の下端外周7ランジ18aに締付ポルl−20
により固定される。中性子束モニタフランジ19により
支持された中性子束モニタ本体16はインコアナツト(
据付用締付ナツトでもよい。)21により固定される。
The neutron flux monitor main body 16 has an elongated tubular shape, and its lower side extends downward through a neutron flux monitor guide tube 17 and a neutron flux monitor housing (in-core monitor housing) 18, which are elongated housings, and its lower end is The neutron flux monitor flange 19 is abutted against and supported by the inner peripheral shoulder portion of the neutron flux monitor flange 19 . This neutron flux monitor 7 flange 19 is attached to the lower end outer circumference 7 flange 18a of the neutron flux monitor housing 18 using a tightening pole l-20.
Fixed by The neutron flux monitor main body 16 supported by the neutron flux monitor flange 19 is an in-core nut (
An installation tightening nut may also be used. )21.

一方、中性子束モニタ本体16を挿通させた中性子束モ
ニタハウジング18は5IJS304.5US304 
L、5US316L等のステンレス鋼が用いられ、この
中性子束モニタハウジング18の上部は第4図に示すよ
うに、炭素鋼を母材とする原子炉圧力容器10の挿通孔
23内を通されて原子炉圧力容器10の内側から溶接に
より固定される。
On the other hand, the neutron flux monitor housing 18 into which the neutron flux monitor main body 16 is inserted is 5IJS304.5US304.
Stainless steel such as L, 5US316L is used, and the upper part of the neutron flux monitor housing 18 is passed through the insertion hole 23 of the reactor pressure vessel 10 whose base material is carbon steel, as shown in FIG. It is fixed by welding from the inside of the furnace pressure vessel 10.

具体的には、原子炉圧力容器10の内側にはステンレス
肉盛部24が溶接にて形成され、鏡面仕上げされる。貫
通孔部23の傾斜側には開先を取ってインコネル182
等で溶接し、管台25を形成する。この管台25の頂部
に開先部を形成し、この間先部をインコネル82ヤNb
にオブ)入りのインコネル182等で溶接し、この溶接
部26を介して中性子束モニタハウジング(長尺ハウジ
ング)18を管台25に固定させ、シールしている。管
台25の溶接部26により原子炉圧力容器10内を下方
のプレッシャバウンダリ27から区画している。
Specifically, a stainless steel overlay 24 is formed on the inside of the reactor pressure vessel 10 by welding, and is mirror-finished. Inconel 182 is provided on the inclined side of the through hole portion 23 with a bevel.
etc., to form the nozzle stub 25. A groove is formed on the top of this nozzle stub 25, and the tip is made of Inconel 82 or Nb.
The neutron flux monitor housing (elongated housing) 18 is fixed to the nozzle holder 25 via this welded portion 26 and sealed. The inside of the reactor pressure vessel 10 is partitioned from the pressure boundary 27 below by the welded portion 26 of the nozzle stub 25 .

一方、長尺ハウジングである中性子束モニタハウジング
18やCRDハウジング14はステンレス鋼(SO3鋼
)で形成されているため、応力腐食割れ(SCC)の3
条件が成立すると、原子炉圧力容器10との溶接部分で
応力腐食割れが発生するJ3それがある。この応力腐食
割れが生じたり、ハウジング自身の欠陥や溶接時の融合
不良に伴う溶接欠陥などによりクラックが生じ、このク
ラックが成長して大きくなると原子炉圧力容器10内の
炉水が圧力容器外リークするおそれがある。
On the other hand, since the neutron flux monitor housing 18 and CRD housing 14, which are long housings, are made of stainless steel (SO3 steel), they are susceptible to stress corrosion cracking (SCC).
If the conditions are met, stress corrosion cracking will occur at the welded part with the reactor pressure vessel 10. Cracks occur due to stress corrosion cracking, defects in the housing itself, welding defects due to poor fusion during welding, etc., and when these cracks grow and become larger, reactor water inside the reactor pressure vessel 10 leaks outside the pressure vessel. There is a risk of

この炉水リークは種々の検出器で常時監視され、検出さ
れたり、定期検査時に検出される。炉水リークが検出さ
れたり、炉水リークの発生が生じる可能性が予知される
と、次の修理工法により中性子束モニタハウジングの欠
陥部や潜在的な欠陥発生可能箇所が完全に除去され、炉
水リーク防止対策が施される。
This reactor water leak is constantly monitored and detected by various detectors or detected during periodic inspections. When a reactor water leak is detected or the possibility of a reactor water leak occurring is predicted, the following repair method is used to completely remove the defective parts and potential defects in the neutron flux monitor housing, and the reactor Measures will be taken to prevent water leaks.

第1図(A)ないしくF)は中性子束モニタハウジング
の補修方法の一例を示すものである。
FIGS. 1A to 1F show an example of a method for repairing a neutron flux monitor housing.

この補修方法は原子炉圧力容器10の母材部近傍や溶接
部分で欠陥が認められた場合に有効的な手段であり、上
記補修方法を実施する場合には、中性子束モニタハウジ
ング18や中性子束モニタ案内管17から中性子束モニ
タ本体16を引き抜いて取り除く一方、中性子束モニタ
ハウジング18を固定支持する溶接部26に対応した位
置にボアプラグ等の水栓28を挿入し、この水栓28で
炉水の流出を防止する。
This repair method is an effective means when a defect is found near the base metal part of the reactor pressure vessel 10 or in the welded part. When implementing the above repair method, the neutron flux monitor housing 18 While pulling out and removing the neutron flux monitor main body 16 from the monitor guide tube 17, a water faucet 28 such as a bore plug is inserted into a position corresponding to the welded part 26 that fixedly supports the neutron flux monitor housing 18, and the water faucet 28 is used to control reactor water. prevent the leakage of

続いて第1図(A)に示すように、中性子束モニタハウ
ジング18を溶接部26の上方で外側切断放電加工機等
により切断し、中性子束モニタハウジング18のアッパ
部分(以下、長尺アッパハウジングという。)18aを
取り除くとともに、溶接部26より下方で内側切断放電
加工機等により中性子束モニタハウジング18を同様に
切断し、切断された中性子束モニタハウジング18のア
ンダ部分(以下、長尺アンダハウジングという。)18
bを原子炉圧力容器10の下鏡口通孔23から下方に引
き抜く。
Subsequently, as shown in FIG. 1(A), the neutron flux monitor housing 18 is cut above the welded portion 26 using an external cutting electric discharge machine or the like, and the upper part of the neutron flux monitor housing 18 (hereinafter referred to as a long upper housing) is cut. ) 18a is removed, and the neutron flux monitor housing 18 is similarly cut below the welding part 26 using an inside cutting electrical discharge machine, etc., and the under part of the cut neutron flux monitor housing 18 (hereinafter referred to as long under housing )18
b is pulled out downward from the lower head port passage hole 23 of the reactor pressure vessel 10.

その後、超音波内面探傷試験機(UT装@)や、浸透探
傷試験II (PT装置)、ヴイジュアル試験機(VT
装置)等を遠隔操作して欠陥部Aを特定する。この欠陥
部Aを特定するとともに、貫通孔23の下部をボアプラ
グ等の水栓29で密封する。
After that, we developed an ultrasonic internal flaw detection tester (UT equipment), a penetrant tester II (PT equipment), and a visual testing equipment (VT equipment).
The defective part A is identified by remotely controlling the equipment (device) etc. This defective portion A is identified, and the lower part of the through hole 23 is sealed with a water faucet 29 such as a bore plug.

その後、必要に応じて欠陥部Aのボートサンプ30a、
30bを採取するため、第1図(B)に示すように、溶
接部除去用(雄型電極)放電加工機等により溶接FI1
2,6を残りの中性子束モニタハウジング18cととも
に除去する。この除去後に、円筒型のボートサンプル用
放電加工機等により所要部分のボートサンプル30a、
30bを試験片として採取する。ボートサンプル30a
、30bの採取は必要的なものではない。
After that, if necessary, the boat sump 30a of the defective part A,
In order to collect 30b, as shown in Fig. 1(B), welding FI1 is
2 and 6 together with the remaining neutron flux monitor housing 18c. After this removal, the required parts of the boat sample 30a are removed using a cylindrical electrical discharge machine for boat samples.
30b is taken as a test piece. Boat sample 30a
, 30b is not necessary.

ボートサンプル30a、30bの採取後あるいはボート
サンプルが不要な場合には、長尺アッパおよびアンダハ
ウジング18a、18bの切断除去後、雄型電極の欠陥
除去用放電加工機等により、原子炉圧力容器10の母材
部を含めた欠陥部Aを完全に取り除く。欠陥部Aを取り
除いた後、取り除かれた母材部表面を開先状態になめら
かに形成し、この開先面Bを浸透探傷試験機(PTH置
)やヴイジュアル試験機(VT装置)で検査する。
After collecting the boat samples 30a and 30b, or when the boat samples are not required, after cutting and removing the long upper and lower housings 18a and 18b, the reactor pressure vessel 10 is cut and removed using an electric discharge machine for removing defects in the male electrodes. Completely remove the defective part A including the base material part. After removing the defective part A, the surface of the removed base material is smoothly formed into a grooved state, and this grooved surface B is inspected using a penetrant testing machine (PTH equipment) or a visual testing machine (VT equipment). .

原子炉圧力容器10の母材部開先面Bを検査した後、原
子炉圧力容器10内の炉水を除去する。
After inspecting the base material groove surface B of the reactor pressure vessel 10, the reactor water in the reactor pressure vessel 10 is removed.

この炉水除去後に、原子炉圧力容器10の貫通孔23内
にガイドバイブ32を挿入させ、このガイドバイブ挿入
状態で母材部開先面BにSCC対策を施した健全な材料
である低合金鋼の3次元肉盛り溶接を、3次元肉盛溶接
機によりTemper Bead法にて行ない、肉盛溶
接部33を形成する。このときには、ヒータ34に通電
して局所加熱し、母材部内に残留する水素を開先面Bか
ら放出させる。
After this reactor water is removed, the guide vibe 32 is inserted into the through hole 23 of the reactor pressure vessel 10, and while the guide vibe 32 is inserted, the base metal groove surface B is made of a healthy material with SCC countermeasures. Three-dimensional build-up welding of steel is performed using a three-dimensional build-up welding machine using the Temper Bead method to form build-up welded portions 33. At this time, the heater 34 is energized to perform local heating and release hydrogen remaining in the base material from the groove surface B.

3次元肉盛溶接機により母材部間先部Bに肉盛溶接をし
た後、ガイドバイブ32を除去し、上記肉盛溶接部33
の表面を雄型電極の放電加工機等により表面加工し、低
合金鋼の肉盛溶接部33の表面仕上げを第1図(C)に
示すように行なう。
After overlay welding is performed on the tip part B between the base metal parts using a three-dimensional overlay welding machine, the guide vibe 32 is removed and the overlay welded part 33 is removed.
The surface is machined using a male electrode electric discharge machine or the like, and the surface of the overlay welded part 33 of low alloy steel is finished as shown in FIG. 1(C).

この肉盛溶接部33は原子炉圧力容器10の母材部の機
械的強度を元の状態に復旧させ、維持している。その際
、肉盛溶接部33の表面はUT装置やPT装置により原
子炉圧力容器10内で遠隔操作により検査される。
This overlay welding portion 33 restores and maintains the mechanical strength of the base metal portion of the reactor pressure vessel 10 to its original state. At this time, the surface of the overlay weld 33 is inspected by remote control inside the reactor pressure vessel 10 using a UT device or a PT device.

続いて、第1図(D)に示すように、原子炉圧力容器1
0の外面研削機により、貫通孔部下側の原子炉圧力容器
外表面を研削し、研削した外表面にインコネル82ヤイ
ンコネル182等を2次元外面肉盛溶接園を用いて肉盛
溶接し、インコネルの肉盛溶接8!135を形成する。
Next, as shown in FIG. 1(D), the reactor pressure vessel 1
The outer surface of the reactor pressure vessel on the lower side of the through hole is ground using a No. Overlay weld 8!135 is formed.

この肉盛溶接後にガイドバイブ32を取り除くようにし
てもよい。
The guide vibe 32 may be removed after this overlay welding.

また、第1図(E)に示すように、原子炉圧力容器10
の貫通孔23内を孔加工用放電加工機等を用いて孔加工
して貫通孔内面を仕上げた後、貫通孔肉盛溶接機等を用
いてTemper Bead法によりインコネル82や
Nb入りのインコネル182等で溶接し、肉盛溶接部3
6を形成する。上記肉盛溶接後に成形加工用放電加工機
等を用いて貫通孔23の肉盛表面を成形加工し、貫通孔
内表面に防錆加工を施す。
In addition, as shown in FIG. 1(E), the reactor pressure vessel 10
After drilling the inside of the through-hole 23 using a hole-machining electric discharge machine or the like to finish the inner surface of the through-hole, Inconel 82 or Nb-containing Inconel 182 is formed by the Temper Bead method using a through-hole overlay welding machine or the like. etc., and build up the welded part 3.
form 6. After the overlay welding, the overlay surface of the through hole 23 is formed using a forming electric discharge machine or the like, and the inner surface of the through hole is subjected to anti-rust processing.

一方、肉盛座外形成形加工用放電加工機等を用いて原子
炉圧力容器10の下側外表面に肉盛溶接をした肉盛溶接
部35の表面を成形加工して管台37を形成する。この
管台37は先端中央部が総型放電加工機等によりJ開先
加工される。各加工面はLJT装置やPT装置により検
査される。
On the other hand, a nozzle stub 37 is formed by forming the surface of the overlay welded portion 35 that is overlay welded on the lower outer surface of the reactor pressure vessel 10 using an electric discharge machine for forming the outside of the overlay seat or the like. . The center portion of the tip of this nozzle stub 37 is subjected to J-bevel processing using a full-scale electrical discharge machine or the like. Each machined surface is inspected by an LJT device or a PT device.

次に、新しい長尺アンダハウジング38が原子炉圧力容
器10の貫通孔′23を介して下方から挿入されるとと
もに、長尺アッパハウジング39(この長尺アッパハウ
ジング39は第1図(A>で切断除去した長尺アッパハ
ウジング18aであっても、あるいは中性子束Lニタ案
内管17であつてもよい。)に開先加工用放電加工機等
を用いて開先加工をしておく。この長尺アッパハウジン
グ39に長尺アンダハウジング38の挿入先端が当接し
、嵌合するまで挿入する。
Next, a new long under housing 38 is inserted from below through the through hole '23 of the reactor pressure vessel 10, and a long upper housing 39 (this long upper housing 39 is shown in FIG. The long upper housing 18a that has been cut and removed (or the neutron flux L unit guide tube 17 may be used) is beveled using a beveling electrical discharge machine or the like. The elongated lower housing 38 is inserted until the insertion tip thereof contacts the elongated upper housing 39 and is fitted.

この挿入後、長尺アンダハウジング38を管台37に溶
接部40を介して溶着し、固定さける。
After this insertion, the elongated underhousing 38 is welded and fixed to the nozzle stub 37 via the welded portion 40.

この溶接部40を介して長尺アンダハウジング38を固
定させることにより、原子炉圧力容器10内は下方のプ
レッシャバウンダリから区画される。
By fixing the elongated underhousing 38 via this welded portion 40, the inside of the reactor pressure vessel 10 is partitioned from the pressure boundary below.

その後、長尺アンダハウジング38を長尺アッパハウジ
ング39に突き合せて溶接する。各溶接部はUTili
置やPT装置で検査されて中性子束モニタハウジング1
8の補修作業が終了する。
Thereafter, the elongated under housing 38 is butted against the elongated upper housing 39 and welded. Each weld is UTili
The neutron flux monitor housing 1 is inspected by
8 repair work is completed.

この補修作業終了後に、中性子束モニタハウジング18
内に中性子束モニタ本体16が挿入され、固定支持され
る。
After completing this repair work, the neutron flux monitor housing 18
The neutron flux monitor main body 16 is inserted therein and fixedly supported.

なお、本発明の一実施例では、中性子束モニタハウジン
グの補修方法について説明したが、CRDハウジングの
場合も同様にして適用することができる。
In one embodiment of the present invention, a method for repairing a neutron flux monitor housing has been described, but the method can be similarly applied to a CRD housing.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明に係る中性子束モニタハウジ
ング等の長尺ハウジングの補修方法においては、長尺ハ
ウジング自身や原子炉容器の溶接部分に欠陥が生じたり
、潜在的に欠陥発生可能性が大きな場合に、該当部分を
母材部とともに除去し、強度部材となる母材除去部を肉
盛溶接して強度を維持させる一方、原子炉容器の下鏡下
側に管台を溶接にて固定し、この管台の溶接部を介して
長尺ハウジングを固定させたから、欠陥部や潜在的な欠
陥発生可能部位を完全に除去し、長尺ハウジングの初期
支持構造と同等の機械的強度を有する支持構造に復旧さ
せることができ、炉水り一りを有効的かつ確実に防止で
き、恒久的なリーク防止対策を施すことができる。
As described above, in the method of repairing long housings such as neutron flux monitor housings according to the present invention, defects may occur in the long housing itself or the welded parts of the reactor vessel, or there is a potential for defects to occur. If it is large, remove the relevant part along with the base metal, and maintain the strength by overlaying the base metal removed part that will become a strength member, and fixing the nozzle to the lower side of the reactor vessel by welding. However, since the long housing is fixed through the welded part of the nozzle stub, defective parts and areas where defects could potentially occur are completely removed, and the mechanical strength is equivalent to that of the initial support structure of the long housing. The support structure can be restored, the leakage of reactor water can be effectively and reliably prevented, and permanent leak prevention measures can be taken.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)ないしくF)は本発明に係る長尺ハウジン
グの補修方法の一実施例を示す作業ステップ図、第2図
は沸騰水型原子炉の下部構造を示す図、第3図は第2図
の原子炉圧力容器に固定支持される中性子束検出器を示
す図、第4図は上記中性子束検出器の中性子束モニタハ
ウジングを原子炉圧力容器に固定支持させる取付1造を
示す図、第5図は従来の沸騰水型原子炉に取付けられる
中性子束検出器の設置例を概略的に示す図である。 3・・・炉心、5・・・上部格子板、10・・・原子炉
圧力容器、13・・・制御棒駆e11構、14・・・C
RDハウジング、15・・・中性子束検出器、16・・
・中性子束モニタ本体、17・・・中性子束モニタ案内
管、18・・・中性子束モニタハウジング、18a・・
・長尺アンダハウジング、18b・・・長尺アッパハウ
ジング、23・・・貫通孔、25・・・管台(溶接部)
、26・・・溶接部、28.29・・・水栓、A、A1
・・・欠陥部、30・・・取付座、32・・・ガイドバ
イブ、33,35゜36・・・肉盛溶接部、34・・・
ヒータ、37・・・管台、38・・・長尺アンダハウジ
ング、39・・・長尺アッパハウジング、40・・・溶
接部。 第 図
Figures 1 (A) to F) are work step diagrams showing an embodiment of the long housing repair method according to the present invention, Figure 2 is a diagram showing the lower structure of a boiling water reactor, and Figure 3 is a diagram showing the lower structure of a boiling water reactor. 2 is a diagram showing the neutron flux detector fixedly supported on the reactor pressure vessel in FIG. 2, and FIG. 4 is a diagram showing a mounting structure for fixing and supporting the neutron flux monitor housing of the neutron flux detector on the reactor pressure vessel. FIG. 5 is a diagram schematically showing an installation example of a neutron flux detector installed in a conventional boiling water nuclear reactor. 3... Reactor core, 5... Upper grid plate, 10... Reactor pressure vessel, 13... Control rod drive e11 structure, 14... C
RD housing, 15... Neutron flux detector, 16...
- Neutron flux monitor main body, 17... Neutron flux monitor guide tube, 18... Neutron flux monitor housing, 18a...
・Long under housing, 18b... Long upper housing, 23... Through hole, 25... Nozzle stub (welded part)
, 26... Welding part, 28.29... Faucet, A, A1
... Defect part, 30... Mounting seat, 32... Guide vibe, 33, 35° 36... Overlay welding part, 34...
Heater, 37... Nozzle stub, 38... Long under housing, 39... Long upper housing, 40... Welding part. Diagram

Claims (1)

【特許請求の範囲】[Claims] 原子炉容器の下鏡溶接部に固定支持された中性子束モニ
タハウジング等の長尺ハウジングを、溶接部の上下方で
それぞれ切断して長尺アッパハウジングおよび長尺アン
ダハウジングを取り除いた後、原子炉容器の母材部を含
む欠陥部位あるいは潜在的な欠陥発生可能部位を除去し
、続いて強度部材となる母材除去部を肉成溶接して元に
復旧させ、その後、原子炉容器の下鏡貫通孔部下側に管
台を溶接により形成するとともに上記下鏡貫通孔内に防
錆対策を施し、次に長尺アンダハウジングを下鏡貫通孔
内に下方から挿入して前記管台に溶接にて固定するとと
もに上記長尺アンダハウジングの挿入先端を長尺アッパ
ハウジングに溶接にて固定することを特徴とする長尺ハ
ウジングの補修方法。
The long housing, such as the neutron flux monitor housing, which is fixedly supported on the lower mirror weld of the reactor vessel, is cut above and below the weld, and the long upper housing and long under housing are removed, and then the reactor Defect areas including the base metal of the vessel or areas where defects could potentially occur are removed, and the base metal removed part, which serves as a strength member, is then welded to its original state, and then the lower mirror of the reactor vessel is removed. A nozzle holder is formed on the lower side of the through hole by welding, and rust prevention measures are taken in the lower mirror through hole, and then a long under housing is inserted into the lower mirror through hole from below and welded to the nozzle holder. A method for repairing a long housing, characterized in that the insertion tip of the long under housing is fixed to the long upper housing by welding.
JP63255430A 1988-10-11 1988-10-11 How to repair a long housing Expired - Lifetime JP2530010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255430A JP2530010B2 (en) 1988-10-11 1988-10-11 How to repair a long housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255430A JP2530010B2 (en) 1988-10-11 1988-10-11 How to repair a long housing

Publications (2)

Publication Number Publication Date
JPH02102492A true JPH02102492A (en) 1990-04-16
JP2530010B2 JP2530010B2 (en) 1996-09-04

Family

ID=17278660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255430A Expired - Lifetime JP2530010B2 (en) 1988-10-11 1988-10-11 How to repair a long housing

Country Status (1)

Country Link
JP (1) JP2530010B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040096A1 (en) 2009-09-30 2011-04-07 三菱重工業株式会社 Nozzle welding method, nozzle part repairing method, and nozzle welded structure
JP2011145271A (en) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Nozzle stub mounting structure
WO2012093612A1 (en) * 2011-01-07 2012-07-12 三菱重工業株式会社 Method for forming cylindrical component by welding, and welding device
JP2012232324A (en) * 2011-04-28 2012-11-29 Mitsubishi Heavy Ind Ltd Temper bead welding repairing method
JP2014190893A (en) * 2013-03-28 2014-10-06 Hitachi-Ge Nuclear Energy Ltd Method and apparatus for internally inspecting reactor pressure vessel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040096A1 (en) 2009-09-30 2011-04-07 三菱重工業株式会社 Nozzle welding method, nozzle part repairing method, and nozzle welded structure
JP2011145271A (en) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Nozzle stub mounting structure
US8867688B2 (en) 2010-01-18 2014-10-21 Mitsubishi Heavy Industries, Ltd. Nozzle mounting structure
WO2012093612A1 (en) * 2011-01-07 2012-07-12 三菱重工業株式会社 Method for forming cylindrical component by welding, and welding device
JP2012143769A (en) * 2011-01-07 2012-08-02 Mitsubishi Heavy Ind Ltd Method for forming cylindrical component by welding, and welding device
JP2012232324A (en) * 2011-04-28 2012-11-29 Mitsubishi Heavy Ind Ltd Temper bead welding repairing method
JP2014190893A (en) * 2013-03-28 2014-10-06 Hitachi-Ge Nuclear Energy Ltd Method and apparatus for internally inspecting reactor pressure vessel

Also Published As

Publication number Publication date
JP2530010B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JPWO2007116532A1 (en) Welded joint maintenance device and maintenance method
KR20110084839A (en) Tube stand installation structure
CN106988291B (en) The method that jacket is repaired at sea
JP2530011B2 (en) How to repair a long housing
JPH02102492A (en) Method for repairing long-sized housing
Yoda et al. Underwater laser beam welding for nuclear reactors
Baque Review of in-service inspection and repair technique developments for French liquid metal fast reactors
JP2519316B2 (en) Repair method for long housing and repair structure
Sollier Nuclear steam generator inspection and testing
JPH02105097A (en) Repairing method for neutron flux monitor housing
JPH02102491A (en) Method for repairing long-sized housing and structure for supporting this housing
Riccardella et al. Weld overlay repairs from conception to long-term qualification
US9281085B2 (en) Method of providing and evaluating a mid-wall repair
KR102503728B1 (en) Method for partially replacing nozzle
KR102503724B1 (en) Method for fully replacing nozzle
US4631167A (en) Method for the production of a nuclear reactor assembly and assembly obtained by this method
Cattant Nickel Base Alloys
Glass et al. Inspection and repair techniques and strategies for alloy 600 PWSCC in reactor vessel head CRD nozzles and welds
Thomas PWSCC of bottom mounted instrument nozzles at South Texas project
JPH03135794A (en) Processing method for long-sized housing
Matsunaga et al. ICONE11-36056 STRESS CORROSION CRACKING OF CRD STUB TUBE JOINT AND REPAIR AT HAMAOKA UNIT 1
Hess et al. Visualization of the resistance spot welding process in the production line
JPH05323078A (en) Repairing method for core shroud welding part and its device
US20050135537A1 (en) Pressure vessel
Glass et al. Inspection and repair technology for BMI penetrations