JPH02102494A - Method for repairing reactor pressure vessel - Google Patents

Method for repairing reactor pressure vessel

Info

Publication number
JPH02102494A
JPH02102494A JP63255088A JP25508888A JPH02102494A JP H02102494 A JPH02102494 A JP H02102494A JP 63255088 A JP63255088 A JP 63255088A JP 25508888 A JP25508888 A JP 25508888A JP H02102494 A JPH02102494 A JP H02102494A
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor pressure
groove
pipe
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63255088A
Other languages
Japanese (ja)
Inventor
Takanori Katori
香取 孝則
Yoshihide Kondo
近藤 由英
Keizo Harada
敬三 原田
Hideyo Saito
英世 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63255088A priority Critical patent/JPH02102494A/en
Publication of JPH02102494A publication Critical patent/JPH02102494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To automate welding operations and to allow convenient repair welding by executing cutting of the weld zone between cracked cylindrical pipe and a reactor pressure vessel and working of a groove to a through-hole by the operation in the circumference. CONSTITUTION:The pipe in the region from the position nearer the inside part side of the reactor pressure vessel than the weld zone 3 of the cylindrical pipe and the pressure vessel to the outside par of the through-hole 1B is cut away and the groove 5 is provided circumferentially to the inside wall of the through-hole 1B. A build-up weld zone is provided to the groove 5. The fresh 1st pipe is thereafter inserted to the inner part side of the pressure vessel than the build-up weld zone. The insertion front end of this pipe and the pipe remaining in the pressure vessel are joined by welding, by which the 1st pipe 2 and the 2nd pipe are build-up welded. The pipe of the region from the position nearer the inside part side of the pressure vessel than the weld zone 3 of the cylindrical pipe and the pressure vessel to the outside part of the through-hole 1B is cut away and the groove 5 is provided in the circumferential direction of the region of the inside wall of the through-hole 1B communicating with the outside part of the pressure vessel. The build-up weld zone provided to the groove 5 and the fresh pipe inserted into the through-hole 1B then welded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電プラントの供用期間中の原子炉圧力
容器において、圧力容器を貫通する円筒状の管と圧力容
器との溶接部の補修方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for repairing a weld between a cylindrical pipe penetrating the pressure vessel and a pressure vessel in a nuclear reactor pressure vessel during the service life of a nuclear power plant. Regarding.

〔従来の技術〕[Conventional technology]

原子炉圧力容器の円筒状管の貫通部の1例として、沸騰
水型原子炉の圧力容器を第17図に示す。
FIG. 17 shows a pressure vessel of a boiling water reactor as an example of a penetration part of a cylindrical pipe of a reactor pressure vessel.

原子炉圧力容器lは、胴体、下鏡、上M(図示せず)か
ら構成されており、支持スカートによって原子炉圧力容
器1のペデスタル上に固設されている。原子炉圧力容器
1は、燃料集合体14よりなる炉心、炉心支持構造物1
5、制御棒16、気水分離器17、蒸気乾燥器18等を
内蔵している。
The reactor pressure vessel 1 is composed of a fuselage, a lower mirror, and an upper M (not shown), and is fixed on the pedestal of the reactor pressure vessel 1 by a support skirt. The reactor pressure vessel 1 includes a reactor core consisting of a fuel assembly 14 and a core support structure 1.
5, a control rod 16, a steam separator 17, a steam dryer 18, etc. are built in.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

定期検査時においては、炉心上部の気水分離器17、蒸
気乾燥器18は取り除かれ、燃料集合体14も取り外し
て交換される構造であるため、第18図(A)に示すよ
うに炉心支持構造物15、制御棒貫通孔ハウジングチュ
ーブ19等の内部構造物は原子炉圧力容器1に溶接構造
で接続されており、原子炉圧力容器1の下部に上方から
接近しようとする場合、干渉物が多く、接近困難な部分
が多い。
During regular inspections, the steam separator 17 and steam dryer 18 at the top of the core are removed, and the fuel assembly 14 is also removed and replaced, so the core support is removed as shown in Figure 18(A). Internal structures such as the structure 15 and the control rod through-hole housing tube 19 are connected to the reactor pressure vessel 1 by welding, so that when attempting to approach the lower part of the reactor pressure vessel 1 from above, there is no interference. There are many parts that are difficult to access.

さらに、原子炉圧力容器lは高放射線環境であり、定期
検査時は放射線量を低下させるために通常、水で満たさ
れており、補修する機器への接近は益々悪くなる他、溶
接機等の水中での使用が不可能な機器については、使用
時には、水抜きすることが必要となる。原子炉圧力容器
1の水抜きをした場合には、放射線量が増加して原子炉
圧力容器1の上部およびその周辺への人間の入域は不可
能となり、遠隔で機器を操作するにしてもその条件は悪
くなる。
Furthermore, the reactor pressure vessel is a highly radioactive environment, and during periodic inspections it is usually filled with water to reduce the radiation dose, making it increasingly difficult to access equipment to be repaired, as well as for welding machines, etc. Equipment that cannot be used underwater must be drained before use. If water is drained from the reactor pressure vessel 1, the radiation dose will increase, making it impossible for humans to enter the upper part of the reactor pressure vessel 1 and its surroundings, even if the equipment is operated remotely. The conditions become worse.

第18図(B)は、第18図(A)の要部拡大図であり
、本発明における対象構造物の1例である1、CMハウ
ジング2の貫通孔を示している。ICMハウジング2は
鉛直に原子炉圧力容器1の下鏡IAを貫通する円筒状管
であり、炉心域の中性子計測を目的としており、その外
径は約50mmと小さいものである。このようなTCM
ハウジング2の貫通孔のような原子炉圧力容器1の下鏡
IAの最下部に溶接される構造物では、上部から接近し
て補修することは、前述の理由から困難なことである。
FIG. 18(B) is an enlarged view of the main part of FIG. 18(A), and shows the through hole of CM housing 2, which is an example of the target structure of the present invention. The ICM housing 2 is a cylindrical tube that vertically passes through the lower mirror IA of the reactor pressure vessel 1, and is intended for measuring neutrons in the reactor core region, and has a small outer diameter of about 50 mm. Such TCM
For a structure such as a through hole in the housing 2 that is welded to the lowest part of the lower mirror IA of the reactor pressure vessel 1, it is difficult to repair it by approaching from above.

溶接部への別の接近方法として、下鏡IAの下部から接
近して補修する方法があるが、この場合、下鏡IAの下
部に貫通管が林立していることが障害となるが、放射線
レベルは上部に比べて、大気中であることから溶接部へ
の接近は比較的容易である。しかしながら、最も障害と
なるのは、容器外側から補修するため、全ての補修作業
を狭隘な貫通孔部で実施しなければならないということ
である。
Another way to approach the weld is to approach the weld from the bottom of the lower mirror IA and repair it, but in this case, the number of penetration pipes at the bottom of the lower mirror IA poses an obstacle, but radiation Compared to the upper part, the level is in the atmosphere, so it is relatively easy to access the welding area. However, the biggest obstacle is that all repair work must be carried out in a narrow through-hole because the repair is carried out from outside the container.

本発明の目的は、ICMハウジングが原子炉圧力容器を
貫通する部分の溶接部を補修する場合において、比較的
接近が容易な容器外側がら狭隘な貫通孔を利用して補修
の目的を完遂することができる原子炉圧力容器の補修方
法を提供することにある。
An object of the present invention is to accomplish the purpose of repair by utilizing a narrow through hole from the outside of the vessel, which is relatively easy to access, when repairing a welded portion where an ICM housing penetrates a reactor pressure vessel. The purpose of the present invention is to provide a method for repairing a nuclear reactor pressure vessel.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的は、10Mハウジングと原子炉圧力容器と
の溶接部よりも原子炉圧力容器内部側の位置から貫通孔
外部に至る領域の管を切断除去すると共に原子炉圧力容
器の前記貫通孔内壁にその周方向に溝を形成し、該溝に
肉盛溶接部を形成した後、前記肉盛溶接部よりも原子炉
圧力容器内部側に新規な第1の管を挿入し、該第1の管
の挿入先端部と原子炉圧力容器に残存する管とを溶接接
合し、前記第1の管と前記貫通孔に挿入される第2の管
とを前記肉盛溶接部で溶接接合すること、および 10Mハウジングと原子炉圧力容器との溶接部よりも原
子炉圧力容器内部側の位置から前記貫通孔外部に至る領
域の管を切断除去すると共に原子炉圧力容器の前記貫通
孔内壁の原子炉圧力容器外部に連通ずる領域の周方向に
溝を形成し、該溝に形成した肉盛溶接部と貫通孔に挿入
された新規な管とを溶接部により接合することによって
達成される。
The above purpose is to cut and remove the pipe in the area from the inside of the reactor pressure vessel to the outside of the through-hole than the welded part between the 10M housing and the reactor pressure vessel, and to cut and remove the pipe from the inside of the through-hole of the reactor pressure vessel. After forming a groove in the circumferential direction and forming an overlay weld in the groove, a new first pipe is inserted inside the reactor pressure vessel from the overlay weld, and the first pipe is Welding and joining the insertion tip of the pipe remaining in the reactor pressure vessel, and welding and joining the first pipe and the second pipe to be inserted into the through hole at the overlay welding part, and Cut and remove the pipe in the area from the welded part of the 10M housing and the reactor pressure vessel to the outside of the through hole from a position on the inside of the reactor pressure vessel, and remove the pipe on the inner wall of the through hole of the reactor pressure vessel. This is achieved by forming a groove in the circumferential direction of a region that communicates with the outside, and joining an overlay weld formed in the groove and a new pipe inserted into the through hole using the weld.

〔作用〕[Effect]

一般に容器と円筒管とが交わる境界線は、複雑な3次元
軌跡となり、溶接が複雑となる。このような複雑な動作
ができる遠隔自動溶接機を狭隘な貫通孔へ挿入して作動
させることは、困難である。
Generally, the boundary line where the container and the cylindrical tube intersect becomes a complicated three-dimensional trajectory, making welding complicated. It is difficult to insert and operate a remote automatic welding machine capable of such complicated operations into a narrow through hole.

このような狭隘な部分では、管の同上に溶接するような
2次元的な溶接動作で溶接する作業性が大幅に向上する
In such a narrow area, welding efficiency is greatly improved by a two-dimensional welding operation such as welding on the top of a pipe.

また、管の切断加工、亀裂等の生じた円筒状管(10M
ハウジング)と原子炉圧力容器との溶接部の切削加工、
および貫通孔に対する溝の加工は、いずれも略円周上の
作業でよいから、従来のような作業の困難性は回避され
る。
In addition, cylindrical pipes (10M) with cracks, etc.
cutting of the weld between the housing) and the reactor pressure vessel,
The processing of grooves for the through-holes can be performed on a substantially circumferential surface, thereby avoiding the difficulty of conventional work.

(実施例〕 以下、本発明の実施例を第1図および第2図〜第4図を
参照して説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. 1 and FIGS. 2 to 4.

第1図は、沸騰水原子炉圧力容器の下鏡IAに取り付け
られる円筒状の管からなるECMハウジング貫通孔IB
の補修前の断面図を示す。10Mハウジング(以下、単
にハウジングという)2は製作時には、原子炉圧力容器
下鏡IAの内面の肉盛座IDと部分溶造溶接(溶接部3
)により原子炉圧力容器1の内部から溶接され、中性子
モニタ案内管4と接合される。しかし、このような溶接
は、無放射線下で炉内に人が接近可能な場合の溶接方法
であり、運転時にその溶接部を補修するには困難な要素
が多い。
Figure 1 shows the ECM housing through hole IB, which is a cylindrical tube attached to the lower mirror IA of the boiling water reactor pressure vessel.
shows a cross-sectional view before repair. During manufacture, the 10M housing (hereinafter simply referred to as housing) 2 is partially melt-welded (welded part 3
) is welded from inside the reactor pressure vessel 1 and joined to the neutron monitor guide tube 4. However, this type of welding is a welding method that requires access to the inside of the furnace without radiation, and there are many factors that make it difficult to repair the welded portion during operation.

第2図は、溶接部3′を補修するために、既設ハウジン
グ2の一部を取り除き、溶接部3と肉盛座IDの一部を
除去して、溶接削取部6を形成し、貫通孔IB内に肉盛
溶接のための溝5を機械加工により設けた状態を示して
いる。第2図において、2Bはハウジングの切断位置、
2人は溶接内に残ったハウジングを示している。第3図
(A)はその溝5に遠隔自動溶接機8によるテンパービ
ード溶接によってインコネル肉盛溶接7を施した後の状
態を示す図である。肉盛は制限された低入熱の溶接で多
層盛で行われ、第3図(B)に示すように一層目7Aの
肉盛溶接で生じた容器低合金鋼材料の熱影響部は、順次
行われる二層目7B、三層目7Cの肉盛により再び軟化
し、応力除去のための焼鈍処理としての溶接後熱処理を
実施する必要がなくなる。そして、このテンパービード
溶接による肉盛溶接は、通常6〜7層目まで行われる。
Fig. 2 shows that in order to repair the welded part 3', a part of the existing housing 2 is removed, the welded part 3 and a part of the overlay seat ID are removed, a welded part 6 is formed, and the welded part 6 is penetrated. A groove 5 for overlay welding is provided in the hole IB by machining. In Fig. 2, 2B is the cutting position of the housing;
Two people show the housing remaining in the weld. FIG. 3(A) shows the state after Inconel overlay welding 7 has been applied to the groove 5 by temper bead welding using a remote automatic welding machine 8. Overlaying is performed in multiple layers using limited low heat input welding, and as shown in Figure 3 (B), the heat-affected zone of the container low-alloy steel material created by overlaying the first layer 7A is sequentially As the second layer 7B and third layer 7C are built up, they are softened again, and there is no need to perform post-weld heat treatment as an annealing treatment for stress relief. The overlay welding by temper bead welding is usually performed up to the 6th to 7th layers.

また、この肉盛溶接では貫通孔IBの溝5内壁周上に溶
接していくことができるため、狭隘部における遠隔自動
溶接機8の適用が容易となっている。
Moreover, since this overlay welding can be performed on the inner wall circumference of the groove 5 of the through hole IB, it is easy to apply the remote automatic welding machine 8 to narrow areas.

さらにこの溝5は遠隔自動溶接機8の位置の設定にも役
に立っている。
Furthermore, this groove 5 is also useful for setting the position of the remote automatic welding machine 8.

第4図は、第3図で形成した肉盛溶接部7に新規のハウ
ジング9A、9Bを溶接した後の断面図である。新規の
ハウジングは上部9Aと下部9Bに2つに分割し、先に
上部ハウジング9Aを容器内に残されたハウジング2A
と溶接した後、下部ハウジング9Bを上部ハウジング9
Aと溶接する。
FIG. 4 is a sectional view after new housings 9A and 9B are welded to the overlay welded portion 7 formed in FIG. 3. The new housing is divided into two parts, an upper housing 9A and a lower housing 9B.
After welding the lower housing 9B to the upper housing 9
Weld with A.

これによ・って、中性子モニタ案内管4に接続された状
態で残存するハウジング2Aは、溶接部10.11.1
2を介して新規な上部ハウジング9Aおよび下部ハウジ
ング9Bに接続される。第4図に示す全ての新規ハウジ
ングに対する溶接は円筒管の軸に対して直角であるので
、管同士を二次元的に溶接していくことができ、狭隘部
における遠隔自動溶接機8の適用が容易となっている。
As a result, the remaining housing 2A connected to the neutron monitor guide tube 4 has a welded portion 10.11.1.
2 to the new upper housing 9A and lower housing 9B. Since the welding for all new housings shown in FIG. 4 is perpendicular to the axis of the cylindrical tube, the tubes can be welded together two-dimensionally, and the remote automatic welding machine 8 can be used in narrow spaces. It's easy.

次に本発明の補修方法の一例を第5図〜第13図を基に
説明する。
Next, an example of the repair method of the present invention will be explained based on FIGS. 5 to 13.

第5図において、原子炉圧力容器下鏡IAは低合金鋼、
ICはステンレス鋼又はインコネル肉盛オーバーレイ 
(クラッド)、溶接肉盛座IDはステンレス鋼又はイン
コネル肉盛溶接、ハウジング2はステンレス鋼、溶接部
3はステンレス鋼又はインコネル溶着金属、中性子モニ
タ案内管4はステンレス鋼からなっている。
In Figure 5, the reactor pressure vessel lower mirror IA is made of low alloy steel.
IC is stainless steel or Inconel overlay
(clad), the weld overlay ID is made of stainless steel or Inconel welded, the housing 2 is made of stainless steel, the welded part 3 is made of stainless steel or Inconel welded metal, and the neutron monitor guide tube 4 is made of stainless steel.

まず、第5図に示すように補修対象となる既設ハウジン
グ2の溶接部3より下側部分を遠隔機械加工機13によ
り切断し既設ハウジング2の一部を取り除く。次に遠隔
機械加工機13が下降し、第6図に示すように原子炉圧
力容器の貫通孔IBの壁に管軸方向に直角な面で管の周
方向に溝5を加工する。その後、貫通孔IB内部の遠隔
機械加工機13が下降した後、遠隔自動溶接ImBが貫
通孔IB内に挿入されて第7図に示すように溝5にテン
パービード法によりインコネル肉盛溶接7を施す、第8
図は肉盛溶接後、その肉盛部7の表面仕上げを機械加工
により行う状態を示している。
First, as shown in FIG. 5, a portion of the existing housing 2 to be repaired below the welded portion 3 is cut by a remote machining machine 13, and a part of the existing housing 2 is removed. Next, the remote machining machine 13 descends to machine a groove 5 in the wall of the through hole IB of the reactor pressure vessel in the circumferential direction of the tube in a plane perpendicular to the tube axis direction, as shown in FIG. Thereafter, after the remote machining machine 13 inside the through hole IB is lowered, the remote automatic welding machine IMB is inserted into the through hole IB, and as shown in FIG. give, 8th
The figure shows a state in which the surface of the built-up portion 7 is finished by machining after overlay welding.

次に既設ハウジング溶接部3を除去するため、まず、第
9図に示すように溶接部3に取り付けられた既設ハウジ
ングを機械加工により一点鎖線で示す部分を除去する。
Next, in order to remove the existing housing welded part 3, first, as shown in FIG. 9, the existing housing attached to the welded part 3 is machined to remove the portion shown by the dashed line.

次に第10図に示すように既設ハウジング溶接部3を機
械加工により除去し、溶接部削取部6を形成する。
Next, as shown in FIG. 10, the existing housing welded portion 3 is removed by machining to form a welded portion 6.

次に新設上部ハウジング9Aを挿入し、既設ハウジング
2Aにインコネル溶接する(溶接部10)、この状態を
第11図に示す。この場合、既設ハウジング2A側は遠
隔機械加工13により開先形状に加工され、上部ハウジ
ング9Aの挿入先端部は予め開先形状に加工されている
。新設上部ハウジング9Aの長さは、上部ハウジング9
Aを既設ハウジング2Aに溶接した時に上部ハウジング
9Aの下端が、貫通孔IB内部に施した肉盛溶接部7の
位置になるように予め調整されている。
Next, a new upper housing 9A is inserted and Inconel welded to the existing housing 2A (welding portion 10). This state is shown in FIG. 11. In this case, the existing housing 2A side is machined into a groove shape by remote machining 13, and the insertion tip of the upper housing 9A is previously machined into a groove shape. The length of the new upper housing 9A is the upper housing 9A.
The lower end of the upper housing 9A is adjusted in advance so that when the upper housing 9A is welded to the existing housing 2A, the lower end of the upper housing 9A is located at the overlay welding part 7 formed inside the through hole IB.

次に第12図に示すように、新設上部ハウジング9Aを
原子炉圧力容器の貫通孔IBに形成されたインコネル肉
盛部7にすみ肉溶接する(溶接部11)。この溶接は低
合金鋼材料である圧力容器に直接肉盛されないので溶接
後熱処理を必要としない。次に第13図に示すように、
新設下部ハウジング9Bを貫通孔IBに挿入し、新設上
部ハウジング上部9Aと肉盛溶接部7との溶接部11あ
るいは肉盛溶接部7との溶接部12により溶接される。
Next, as shown in FIG. 12, the newly installed upper housing 9A is fillet welded to the Inconel built-up part 7 formed in the through hole IB of the reactor pressure vessel (weld part 11). Since this welding is not directly applied to the pressure vessel, which is made of low-alloy steel, no post-weld heat treatment is required. Next, as shown in Figure 13,
The new lower housing 9B is inserted into the through hole IB and welded by the weld 11 between the new upper housing upper part 9A and the build-up weld 7 or the weld 12 between the build-up weld 7 and the build-up weld 7.

このようにして既設ハウジングの溶接部またはその近傍
に万一亀裂が発生し、漏洩等の不具合が生じた場合にお
いても、上記の補修手順により、比較的容易に新設ハウ
ジングとの交換および補修が可能となる。
In this way, even in the unlikely event that a crack occurs in or near the welded part of the existing housing and a problem such as leakage occurs, it can be replaced and repaired with a new housing relatively easily by following the repair procedure described above. becomes.

このように第5図〜第13図の手順で補修作業を行う場
合、第6図から第8図に示す溝5の加工およびこの溝5
における肉盛溶接時において、既設のハウジング2が貫
通孔IBの上部に残っているため、炉内下部からの放射
性物質を含んだ塵埃が貫通孔IBに入り込むのを防止す
ることができる利点がある。
When performing repair work in the steps shown in FIGS. 5 to 13, the grooves 5 and 5 shown in FIGS.
During overlay welding, the existing housing 2 remains above the through hole IB, which has the advantage of preventing dust containing radioactive materials from entering the through hole IB from the lower part of the furnace. .

上記の手順は、順序を入れ換えて作業することは可能で
ある0例えば、第9図および第10図に示す既設ハウジ
ング短管の切削除去作業および既設ハウジングと容器と
の溶接部と肉盛溶接部の一部の切削除去作業は、第5図
の既設ハウジング下部の除去後のステップで行うことは
可能である。
It is possible to perform the above steps in a different order. For example, it is possible to cut and remove the short tubes of the existing housing as shown in Figures 9 and 10, and to work on the welds and overlay welds between the existing housing and the container. It is possible to cut and remove a part of the housing in the step after removing the lower part of the existing housing shown in FIG.

この場合、切削除去作業をまとめて実施することができ
るので、機械加工切削機の設定回数が減り、作業効率が
良くなるという利点がある。
In this case, since the cutting and removing work can be performed all at once, there is an advantage that the number of times the machining cutting machine is set is reduced and work efficiency is improved.

第14図〜第16図は各々の他の実施例を示している。FIGS. 14 to 16 show other embodiments.

第14図においては、既設ハウジングを機械加工により
除去する際、図に示すように溶接部10側に連通ずる溝
を貫通孔IBの上部に設け、この溝にハウジングの軸に
直交する方向の溝用方向に沿ってテンパービード肉盛溶
接部7を設け、このテンパービード肉盛溶接部7で上部
ハウジング9Aと下部ハウジング9Bとを溶接部11.
12により接合している。
In Fig. 14, when the existing housing is removed by machining, a groove communicating with the welded part 10 side is provided in the upper part of the through hole IB as shown in the figure, and a groove in the direction perpendicular to the axis of the housing is added to the groove. A temper bead overlay welding section 7 is provided along the direction of use, and the tempering bead overlay welding section 7 connects the upper housing 9A and the lower housing 9B to the welding section 11.
It is joined by 12.

また、第15図において、既設ハウジングを機械加工に
より除去した後、貫通孔IBを圧力容器外部側に連続す
る溝を設け、この溝にハウジングの軸に直交する方向の
溝間方向に沿ってテンパービード肉盛溶接部7を設け、
このテンパービード肉盛溶接部7で上部ハウジング9A
を下部ハウジング9Bとを溶接部11.12により接合
している。
In addition, in FIG. 15, after removing the existing housing by machining, a groove is provided that continues the through hole IB on the outside of the pressure vessel, and this groove is tempered along the direction between the grooves in the direction perpendicular to the axis of the housing. A bead overlay welding part 7 is provided,
This temper bead overlay welding part 7 connects the upper housing 9A.
The lower housing 9B is joined to the lower housing 9B by a welded portion 11.12.

上記した実施例において、テンパービード肉盛溶接部7
、溶接部11.12の位置が容器板厚方向のいずれに位
置にあっても、円筒状のハウジングの軸に対して直角な
二次元周溶接が可能である。
In the embodiment described above, the temper bead overlay welding part 7
, two-dimensional circumferential welding perpendicular to the axis of the cylindrical housing is possible no matter where the welding portions 11, 12 are located in the thickness direction of the container.

また、既設原子炉圧力容器の炉内又は炉外の周辺の環境
条件によっては、第14図および第15図に示す実施例
の方が作業性が向上することもある。
Furthermore, depending on the environmental conditions around the inside or outside of the existing nuclear reactor pressure vessel, the embodiments shown in FIGS. 14 and 15 may have improved workability.

さらに第16図において、貫通孔IBの圧力容器の外側
に溝を設け、この溝にテンパービード肉盛溶接部7を設
けて既設ハウジング2Aに対して、新設ハウジング9C
を溶接部10と容器外側からの溶接作業によりすみ肉溶
接による溶接部12Aにより接合している。本実施例で
は、特にナンバービード肉盛溶接部を新設ハウジングと
の溶接をハウジングの外側から実施できる利点がある。
Furthermore, in FIG. 16, a groove is provided on the outside of the pressure vessel of the through hole IB, and a temper bead build-up welding part 7 is provided in this groove to connect the new housing 9C to the existing housing 2A.
are joined to the welding part 10 by a welding part 12A by fillet welding by welding from the outside of the container. In this embodiment, there is an advantage that the number bead overlay welding portion can be welded to the newly installed housing from outside the housing.

原子炉圧力容器には低合金鋼材料等が使用されているた
め、容器と円筒管を直接溶接する場合には、溶接後熱処
理が必要となる。しかしながら、既設の原子炉圧力容器
を定期検査時に溶接後熱処理することは困難であるばか
りでなく、熱処理を与えることが好ましくない炉内構造
物等、周辺の機器への悪影響が考えられるので、避ける
ことが好ましい。
Since low-alloy steel materials are used in the reactor pressure vessel, post-weld heat treatment is required when directly welding the vessel and the cylindrical tube. However, it is not only difficult to heat-treat existing reactor pressure vessels after welding during periodic inspections, but also because it may have an adverse effect on surrounding equipment, such as reactor internal structures, for which heat treatment is not recommended. It is preferable.

上記した実施例のようにテンパービード溶接を用いれば
、溶接後熱処理を行わずに低合金鋼に肉盛を施すことが
できる。このテンパービード法とは、本来、溶接後熱処
理が必要となり低合金鋼の熱影響部における材料の硬化
域を、入熱量を充分、制御した低入熱の肉盛溶接を行う
ことにより、順次、軟化させていくものである。肉盛溶
接材料として、後で実施する肉盛部と円筒管との溶接時
に溶接後熱処理を必要としないステンレス系あるいは高
ニツケル合金系等の溶接材料を用いて、テンパービード
による溝部の肉盛を実施する。
If temper bead welding is used as in the embodiments described above, it is possible to overlay low alloy steel without performing post-weld heat treatment. This temper bead method originally requires heat treatment after welding, and the hardened area of the material in the heat affected zone of low alloy steel is sequentially cured by performing low heat input overlay welding with sufficient control of the heat input. It is meant to soften it. As the overlay welding material, welding material such as stainless steel or high nickel alloy that does not require post-weld heat treatment when welding the overlay part and the cylindrical tube, which will be performed later, is used to overlay the groove part with a temper bead. implement.

特に溝部は貫通孔の軸に対して直角に機械加工されてい
る場合には、テンパービード法による溶接も遠隔自動溶
接機の二次元平面上の動作により溶接が可能であり、貫
通孔内の狭隘部においても溶接が比較的容易となる。引
き続く円筒管端部と肉盛溶接部との溶接も、溶接部分と
円筒管の軸に対して直角にとることができるため、遠隔
自動溶接機の二次元平面上の動作により溶接が可能とな
り、円筒管内の狭隘部においても溶接が比較的容易とな
る。
In particular, if the groove is machined perpendicular to the axis of the through-hole, welding by the temper bead method can also be performed by the operation of a remote automatic welding machine on a two-dimensional plane. It is also relatively easy to weld the parts. The subsequent welding between the end of the cylindrical tube and the overlay weld can also be performed at right angles to the axis of the welded portion and the cylindrical tube, making it possible to perform welding by operating the remote automatic welding machine on a two-dimensional plane. Welding is relatively easy even in narrow areas within a cylindrical pipe.

上記した実施例では、テンパービード法によって溝5に
肉盛溶接部7を形成する例を示したが、本発明は、溝5
に肉盛溶接部を形成した後、誘導加熱コイルを用いた局
部的な溶接後熱処理を実施して肉盛部の応力除去焼鈍を
行うことができる。
In the embodiment described above, an example was shown in which the overlay welded portion 7 was formed in the groove 5 by the temper bead method, but the present invention
After forming an overlay weld, local post-weld heat treatment using an induction heating coil can be performed to perform stress relief annealing of the overlay.

誘導加熱コイルによる加熱とは、コイルに交流電流を通
して、それによって生じる磁界の変動により加熱する方
法であり、周波数と電流とを調整することによってコイ
ル外側近傍の任意の部分を磁界の変動のピーク部分、す
なわち、発熱部分として設定することができる。このこ
とは、原子炉圧力容器や管表面の肉盛溶接の場合、肉盛
部分が表面に限定されるため、上記の誘導加熱コイルの
特徴を用いると、次のような利点がある。
Heating with an induction heating coil is a method of passing an alternating current through the coil and heating it by the fluctuations in the magnetic field generated by it. By adjusting the frequency and current, any part near the outside of the coil can be heated at the peak of the fluctuation of the magnetic field. In other words, it can be set as a heat generating part. This means that in the case of overlay welding on the surface of a nuclear reactor pressure vessel or a tube, the overlay part is limited to the surface, so using the above characteristics of the induction heating coil has the following advantages.

低合金鋼に溶接を施した場合、一般に溶接後熱処理が要
求されるのは、溶接部近傍の母材である低合金鋼の熱影
響部の一部が硬化し、硬化部分の靭性が低下して割れが
生じやすくなる現象を防止するためである。硬化した熱
影響部を溶接後熱処理で再熱して、硬化域を軟化域に変
えることができる。ここで、肉盛溶接は低合金鋼の表面
における溶接材料を盛るものであるから、低合金鋼にお
ける熱影響部の硬化域は必然的に表面から一定の深さの
所に位置することになる。したがって、電磁誘導コイル
を用いれば、肉盛溶接下の熱影響部の硬化域を目標とし
て加熱することができ、他の部分の不要な熱の供給を最
小限に抑えることができる。
When welding low-alloy steel, post-weld heat treatment is generally required because part of the heat-affected zone of the low-alloy steel, which is the base metal near the weld, hardens and the toughness of the hardened part decreases. This is to prevent the phenomenon in which cracks are likely to occur. The hardened heat-affected zone can be reheated in a post-weld heat treatment to transform the hardened zone into a softened zone. Here, since build-up welding involves applying welding material to the surface of low-alloy steel, the hardened region of the heat-affected zone in low-alloy steel is necessarily located at a certain depth from the surface. . Therefore, by using an electromagnetic induction coil, it is possible to heat the hardening region of the heat affected zone under build-up welding, and it is possible to minimize unnecessary heat supply to other parts.

原子炉圧力容器の一部を加熱することは、必然的に熱伝
導により熱が周辺部に伝わり、その近傍の加熱すること
によって有害な炉内構造物との接合部にも温度上昇を及
ぼすことになる。しかし、温度上昇が好ましくない部分
については、水等の冷却手段を用いて温度上昇を抑える
ことができる。
When heating a part of the reactor pressure vessel, heat is inevitably transferred to the surrounding area by thermal conduction, and by heating the surrounding area, the temperature also increases at the joints with harmful reactor internals. become. However, for portions where temperature rise is undesirable, the temperature rise can be suppressed using cooling means such as water.

誘導加熱コイルによる加熱は、溝5に肉盛溶接部7を形
成した後、その肉盛溶接部7に対して局部的に加熱する
ように行われる。したがって、第7図に示す肉盛溶接作
業後に誘導加熱コイルによる加熱が実施される。肉盛で
生じた原子炉圧力容器材料の熱影響による硬化部は、肉
盛部下近傍に限定されるため、この部分が発熱部となる
ように電磁誘導コイルの周波数、電流等の条件が設定さ
れる。
The heating by the induction heating coil is performed after forming the build-up weld part 7 in the groove 5, so as to locally heat the build-up weld part 7. Therefore, heating by the induction heating coil is performed after the overlay welding operation shown in FIG. 7. The hardened area due to the heat effect of the reactor pressure vessel material caused by overlay is limited to the area below the overlay, so conditions such as the frequency and current of the electromagnetic induction coil are set so that this area becomes the heat generating area. Ru.

本発明における溝は、貫通孔IBの軸方向のいずれでも
よく、要はこの溝における溶接部によりハウジングと貫
通孔IBとの間隙をシールできるものであればよい。
The groove in the present invention may be in any direction in the axial direction of the through hole IB, as long as the welded portion in this groove can seal the gap between the housing and the through hole IB.

また、本発明において、貫通孔IBに形成される溝5お
よび肉盛溶接部7は、必ずしもハウジングの管軸に厳密
に直角な方向に形成される必要はなく、ハウジング内の
遠隔自動溶接機、遠隔機械加工機を管軸方向から若干偏
心した状態で周方向に形成される範囲も包含される。
Further, in the present invention, the groove 5 and the overlay welding part 7 formed in the through hole IB do not necessarily have to be formed in a direction strictly perpendicular to the tube axis of the housing, and the remote automatic welding machine in the housing, It also includes a range formed in the circumferential direction with the remote machining machine slightly eccentric from the tube axis direction.

本発明による補修工法によれば、既設ハウジングの除去
、新設ハウジングの挿入、機械加工、溶接等の全ての補
修作業は原子炉圧力容器下鏡IAの下部の外側から行う
ことができる。補修作業は炉水を抜いて実施されること
を基本とするが、この場合でも、圧力容器の上部側が高
放射線環境となり、かなり遠方まで、人間の接近が不可
能となるのに対して、圧力容器の下方では放射線レベル
がそれ程高(なく、短時間であればハウジングの直下迄
、人間が接近することができる。このことは、補修機器
の取り扱い又は部品の交換時において作業性が著しく容
易となることを意味している。
According to the repair method according to the present invention, all repair work such as removal of the existing housing, insertion of a new housing, machining, welding, etc. can be performed from outside the lower part of the reactor pressure vessel lower mirror IA. Repair work is basically carried out by draining the reactor water, but even in this case, the upper part of the pressure vessel becomes a highly radioactive environment, making it impossible for humans to approach quite far away. Radiation levels are not so high below the container, and humans can access directly below the housing for a short period of time.This greatly facilitates work when handling repair equipment or replacing parts. It means becoming.

さらに、圧力容器の下部から作業を行う場合には既設ハ
ウジングを取り除くか、または、ハウジング孔の内側か
ら、補修部に直線的に接近することができる。逆に、上
部側から作業を行う場合には炉内構造物が障害となって
補修部に直線的に接近できず迂回して接近することが必
要となる。
Furthermore, when working from the bottom of the pressure vessel, the existing housing can be removed or the repair part can be accessed in a straight line from inside the housing bore. On the other hand, when working from the upper side, the reactor internals become an obstacle and the repaired area cannot be approached in a straight line, making it necessary to take a detour.

このように補修部に直線的に接近できること志原子炉容
器のような放射線環境下での作業では重要な意味をもっ
ており、部品の挿入、搬出あるいは遠隔自動機器の搬出
入、操作において作業性あるい機器の設計製作性が著し
く容易となる。
Being able to approach the repair area in a straight line is important when working in a radiation environment such as a nuclear reactor vessel, and it improves workability when inserting and removing parts, or when carrying in and out of remote automated equipment, and when operating remote automated equipment. The design and manufacture of equipment becomes significantly easier.

したがって、本発明により、下部側から作業する場合の
問題点であった貫通部の狭隘さを克服した補修工法が開
発されたため、上述の効果が得ら籾具体的には全補修作
業時間の低減、作業員の被曝線量の低減、遠隔自動機器
、治工具等の設計の合理化とコスト低減、作業性の向上
による安全裕度の増加等を図ることができる。
Therefore, according to the present invention, a repair method has been developed that overcomes the narrowness of the penetration part, which was a problem when working from the bottom side, so that the above-mentioned effects can be obtained. Specifically, the total repair work time is reduced. It is possible to reduce the radiation exposure dose of workers, rationalize the design and cost of remote automated equipment, jigs, and tools, and increase safety margins by improving workability.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、亀裂等の生じた円筒状管
(tcMハウジング)と原子炉圧力容器との溶接部の切
削加工、および貫通孔に対する溝の加工は、いずれも略
円周上の作業でよいから、従来のような作業の困難性は
回避されると共に溶接作業は自動化により簡便に補修溶
接を行うことができる。
As described above, according to the present invention, cutting of the welded part between the cylindrical tube (tcM housing) and the reactor pressure vessel in which cracks have occurred, and processing of the groove for the through hole are both carried out approximately on the circumference. The difficulty of conventional work can be avoided, and repair welding can be easily performed by automating the welding work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の補修方法による補修前の状態を示す断
面図、第2図〜第4図は本発明の補修方法の一実施例の
概要を示し、第2図は既設ハウジングの一部を取り除き
、貫通孔に溝を形成した状態を示す断面図、第3図は溝
にテンパービード法による肉盛溶接部を形成した状態を
示す断面図、第4図はテンパービード法による肉盛溶接
部で新設ハウジングを溶接した状態を示す断面図、第5
図、第6図、第7図、第8図、第9図、第10!第11
図、第12図および第13図は本発明の補修方法の一実
施例を工程順に示す断面図、第14図、第15図、第1
6図は各々本発明の補修方法の他の実施例を示す概要図
、第17図は定期検査時の原子炉圧力容器の断面図、第
18図(A)は第17図の要部拡大図、第18図(B)
は第18図(A)の要部拡大図である。
Fig. 1 is a sectional view showing the state before repair by the repair method of the present invention, Figs. 2 to 4 show an overview of an embodiment of the repair method of the present invention, and Fig. 2 shows a part of the existing housing. Fig. 3 is a sectional view showing a state in which a groove is formed in the through-hole by removing the groove, Fig. 3 is a cross-sectional view showing a state in which an overlay welded part is formed in the groove by the temper bead method, and Fig. 4 is an overlay welded part by the temper bead method. Sectional view showing the state where the new housing is welded in the fifth section.
Figure, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10! 11th
12 and 13 are cross-sectional views showing an embodiment of the repair method of the present invention in the order of steps, FIG. 14, FIG. 15, and FIG.
6 is a schematic diagram showing other embodiments of the repair method of the present invention, FIG. 17 is a sectional view of the reactor pressure vessel during periodic inspection, and FIG. 18 (A) is an enlarged view of the main part of FIG. 17. , Figure 18(B)
is an enlarged view of the main part of FIG. 18(A).

Claims (10)

【特許請求の範囲】[Claims] (1)原子炉圧力容器を貫通孔を介して貫通する円筒状
の管と原子炉圧力容器が溶接部で接合されて圧力バウン
ダリを構成する原子炉圧力容器の補修方法において、前
記溶接部よりも原子炉圧力容器内部側の位置から前記貫
通孔外部に至る領域の管を切断除去すると共に原子炉圧
力容器の前記貫通孔内壁にその周方向に溝を形成し、該
溝に肉盛溶接部を形成した後、前記肉盛溶接部よりも原
子炉圧力容器内部側に新規な第1の管を挿入し、該第1
の管の挿入先端部と原子炉圧力容器に残存する管とを溶
接接合し、前記第1の管と前記貫通孔に挿入される第2
の管とを前記肉盛溶接部で溶接接合することを特徴とす
る原子炉圧力容器の補修方法。
(1) In a method for repairing a reactor pressure vessel in which a cylindrical pipe that penetrates the reactor pressure vessel via a through hole and the reactor pressure vessel are joined at a welded portion to form a pressure boundary, the Cutting and removing the pipe in the area from the inside of the reactor pressure vessel to the outside of the through hole, forming a groove in the circumferential direction on the inner wall of the through hole of the reactor pressure vessel, and forming an overlay weld in the groove. After forming, a new first pipe is inserted inside the reactor pressure vessel from the overlay welded part, and the first pipe is
The insertion tip of the tube and the tube remaining in the reactor pressure vessel are welded together, and the first tube and the second tube inserted into the through hole are welded together.
A method for repairing a nuclear reactor pressure vessel, characterized in that the pipe is welded to the pipe at the overlay welding part.
(2)前記溝にテンパービード法により肉盛溶接部を形
成することを特徴とする請求項(1)記載の原子炉圧力
容器の補修方法。
(2) The method for repairing a nuclear reactor pressure vessel according to claim (1), characterized in that an overlay weld is formed in the groove by a temper bead method.
(3)前記溝は、前記円筒状の管軸に対して直角な方向
に形成されることを特徴とする請求項(1)記載の原子
炉圧力容器の補修方法。
(3) The method for repairing a nuclear reactor pressure vessel according to claim (1), wherein the groove is formed in a direction perpendicular to the axis of the cylindrical tube.
(4)前記貫通孔に溝を形成する位置よりも原子炉圧力
容器内部側であって、前記円筒状の管と原子炉圧力容器
との溶接部よりも原子炉圧力容器外側の貫通孔内の管を
切断除去した後、貫通孔に前記溝を形成し、その後該溝
に肉盛溶接を施すことを特徴とする請求項(1)記載の
原子炉圧力容器の補修方法。
(4) Inside the reactor pressure vessel from the position where the groove is formed in the through hole and outside the reactor pressure vessel from the weld between the cylindrical pipe and the reactor pressure vessel. 2. The method for repairing a nuclear reactor pressure vessel according to claim 1, wherein the groove is formed in the through hole after the pipe is cut and removed, and then overlay welding is applied to the groove.
(5)前記溝に形成された肉盛溶接部に対して、誘導加
熱により局部的に後熱処理することを特徴とする請求項
(1)記載の原子炉圧力容器の補修方法。
(5) The method for repairing a nuclear reactor pressure vessel according to claim (1), wherein the overlay weld formed in the groove is locally subjected to post-heat treatment by induction heating.
(6)原子炉圧力容器を貫通孔を介して貫通する円筒状
の管と原子炉圧力容器が溶接部で接合されて圧力バウン
ダリを構成する原子炉圧力容器の補修方法において、前
記溶接部よりも原子炉圧力容器内部側の位置から前記貫
通孔外部に至る領域の管を切断除去すると共に原子炉圧
力容器の前記貫通孔内壁の原子炉圧力容器外部に連通す
る領域の周方向に溝を形成し、該溝に形成した肉盛溶接
部と貫通孔に挿入された新規な管とを溶接部により接合
することを特徴とする原子炉圧力容器の補修方法。
(6) In a method for repairing a reactor pressure vessel in which a cylindrical pipe that penetrates the reactor pressure vessel via a through hole and the reactor pressure vessel are joined at a weld to form a pressure boundary, the Cutting and removing the pipe in the area from the inside of the reactor pressure vessel to the outside of the through hole, and forming a groove in the circumferential direction of the area of the inside wall of the through hole of the reactor pressure vessel that communicates with the outside of the reactor pressure vessel. A method for repairing a nuclear reactor pressure vessel, characterized in that a welded portion formed in the groove and a new pipe inserted into the through hole are joined by a welded portion.
(7)前記溝にテンパービード法により肉盛溶接部を形
成することを特徴とする請求項(6)記載の原子炉圧力
容器の補修方法。
(7) The method for repairing a nuclear reactor pressure vessel according to claim (6), characterized in that an overlay weld is formed in the groove by a temper bead method.
(8)前記溝は、前記円筒状の管軸に対して直角な方向
に形成されることを特徴とする請求項(6)記載の原子
炉圧力容器の補修方法。
(8) The method for repairing a nuclear reactor pressure vessel according to claim (6), wherein the groove is formed in a direction perpendicular to the axis of the cylindrical tube.
(9)前記貫通孔に溝を形成する位置よりも原子炉圧力
容器内部側であって、前記円筒状の管と原子炉圧力容器
との溶接部よりも原子炉圧力容器外側の貫通孔内の管を
切断除去した後、貫通孔に前記溝を形成し、その後該溝
に肉盛溶接を施すことを特徴とする請求項(6)記載の
原子炉圧力容器の補修方法。
(9) Inside the reactor pressure vessel from the position where the groove is formed in the through hole and outside the reactor pressure vessel from the weld between the cylindrical pipe and the reactor pressure vessel. 7. The method for repairing a nuclear reactor pressure vessel according to claim 6, wherein the groove is formed in the through hole after the pipe is cut and removed, and then overlay welding is applied to the groove.
(10)前記溝に形成された肉盛溶接部に対して、誘導
加熱により局部的に後熱処理することを特徴とする請求
項(6)記載の原子炉圧力容器の補修方法。
(10) The method for repairing a nuclear reactor pressure vessel according to claim (6), wherein the overlay weld formed in the groove is locally subjected to post-heat treatment by induction heating.
JP63255088A 1988-10-11 1988-10-11 Method for repairing reactor pressure vessel Pending JPH02102494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255088A JPH02102494A (en) 1988-10-11 1988-10-11 Method for repairing reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255088A JPH02102494A (en) 1988-10-11 1988-10-11 Method for repairing reactor pressure vessel

Publications (1)

Publication Number Publication Date
JPH02102494A true JPH02102494A (en) 1990-04-16

Family

ID=17273961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255088A Pending JPH02102494A (en) 1988-10-11 1988-10-11 Method for repairing reactor pressure vessel

Country Status (1)

Country Link
JP (1) JPH02102494A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118499A (en) * 1988-10-28 1990-05-02 Hitachi Ltd Repairing method for neutron flux monitor housing
JPH0429095A (en) * 1990-05-24 1992-01-31 Hitachi Ltd Method for preserving neutron flux monitor housing and heat treating device thereof
FR2813700A1 (en) * 2000-09-06 2002-03-08 Framatome Sa Nuclear reactor vessel cover adapter repair comprises cutting between adapter and sleeve at weld level and re-welding after chamfering sleeve end
JP2011145271A (en) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Nozzle stub mounting structure
JP2013108918A (en) * 2011-11-24 2013-06-06 Mitsubishi Heavy Ind Ltd Nozzle welded part corrosion prevention and repair method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118499A (en) * 1988-10-28 1990-05-02 Hitachi Ltd Repairing method for neutron flux monitor housing
JPH0429095A (en) * 1990-05-24 1992-01-31 Hitachi Ltd Method for preserving neutron flux monitor housing and heat treating device thereof
FR2813700A1 (en) * 2000-09-06 2002-03-08 Framatome Sa Nuclear reactor vessel cover adapter repair comprises cutting between adapter and sleeve at weld level and re-welding after chamfering sleeve end
JP2011145271A (en) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Nozzle stub mounting structure
US8867688B2 (en) 2010-01-18 2014-10-21 Mitsubishi Heavy Industries, Ltd. Nozzle mounting structure
JP2013108918A (en) * 2011-11-24 2013-06-06 Mitsubishi Heavy Ind Ltd Nozzle welded part corrosion prevention and repair method

Similar Documents

Publication Publication Date Title
US20050061853A1 (en) Crack repair using friction stir welding on materials including metal matrix composites, ferrous alloys, non-ferrous alloys, and superalloys
CA2449620C (en) Reactor head with integral nozzles
US5271048A (en) Replacement nozzle and method for replacing a nozzle in a pressure vessel
US4960650A (en) Method of repairing or protecting an end of a metal tube in a heat exchanger and sleeve for implementing same
US5670072A (en) Method and apparatus for joining metal components with mitigation of residual stresses
JPH02102494A (en) Method for repairing reactor pressure vessel
KR101842356B1 (en) Maintenance method for welding part of small pipe for nuclear reactor
Hattingh et al. Friction processing as an alternative joining technology for the nuclear industry
US5267279A (en) Method and structure for repairing an elongated metal hollow member
JP3127512B2 (en) Maintenance method for furnace internals
KR101825817B1 (en) Maintenance method for welding part of small pipe for nuclear reactor
US5227124A (en) Method and structure for preventive maintaining an elongated metal hollow member
JP7238122B2 (en) Repair process using laser metal powder deposition
JP6200410B2 (en) Repair welding method, plug for repair welding, and reactor vessel
KR20060051542A (en) Welding of vessel internals with noble metal technology
JPH02105097A (en) Repairing method for neutron flux monitor housing
JP2595114B2 (en) Preventive maintenance of neutron flux monitor housing
JP2013108918A (en) Nozzle welded part corrosion prevention and repair method
JP2533622B2 (en) Method of repairing neutron flux monitor housing
JP2810066B2 (en) Repair method of neutron flux monitor housing
KR102503724B1 (en) Method for fully replacing nozzle
JP5706836B2 (en) How to repair shroud support
JPH0298697A (en) Method for repairing neutron flux monitor housing
JPH03199997A (en) Method for repairing neutron flux monitor housing
Smith et al. Pressure vessel nozzle repair