JPH02117904A - Extraction - Google Patents

Extraction

Info

Publication number
JPH02117904A
JPH02117904A JP63268157A JP26815788A JPH02117904A JP H02117904 A JPH02117904 A JP H02117904A JP 63268157 A JP63268157 A JP 63268157A JP 26815788 A JP26815788 A JP 26815788A JP H02117904 A JPH02117904 A JP H02117904A
Authority
JP
Japan
Prior art keywords
powder
extractor
granules
particle size
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63268157A
Other languages
Japanese (ja)
Inventor
Hisashi Miyagawa
久司 宮川
Naoki Mizutani
直樹 水谷
Kazuoki Urabe
卜部 和興
Kageune Yoshida
吉田 景畝
Osamu Shintani
治 新谷
Koji Hirano
平野 宏次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp, Asahi Denka Kogyo KK filed Critical Toyo Engineering Corp
Priority to JP63268157A priority Critical patent/JPH02117904A/en
Priority to CA002001202A priority patent/CA2001202A1/en
Priority to DE3935405A priority patent/DE3935405A1/en
Priority to FR8913992A priority patent/FR2638098B1/en
Priority to DD89333935A priority patent/DD286297A5/en
Priority to FR9001224A priority patent/FR2641198B1/en
Publication of JPH02117904A publication Critical patent/JPH02117904A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/005Removal of residual monomers by physical means from solid polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0219Fixed bed of solid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0288Applications, solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE:To suppress adhesion and solidification of powder or granules in an extractor, to effectively extract impurities and to obtain powder or granules purified in high purity by packing powder or granules into the interior of an extractor in a specific void, extracting and removing impurities contained in the powder or granules with an extractant. CONSTITUTION:Powder or granules (e.g., powdery polystyrene) are packed from an inlet 12 onto a support plate 14 of an extractor 7 of fixed layer type, etc., in 0.7-0.95 void, an extractant (e.g., carbon dioxide) is fed through a line 1 above an extractor 12 to a pressurizing device 2, pressurized, sent through a line 3 to a heat exchanger 4, adjusted to extraction temperature, then fed from a line 6 to the extractor 7, dispersed by a distributor 8 and impurities contained in the powder or granules packed in the interior of the extractor 7 are extracted and removed to give purified powder or granules having extremely high extraction degree of impurities.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリマー、ゴム等(以下単に重合体という)
の粉粒体に含有される不純物等の高度除去方法に関する
ものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to polymers, rubbers, etc. (hereinafter simply referred to as polymers).
The present invention relates to a method for highly removing impurities, etc. contained in powder and granular materials.

(従来の技術) 粉粒体等の中に残留する不純物(溶剤、モノマー、オリ
ゴマー、副生成物等)を除去する方法として従来加熱蒸
発、真空蒸発等の手段が用いられていた。しかし、なお
少量の不純物が残留しており、そのために製品の品質低
下や中には人体に害を及ぼすものもあった。ここでさら
に不純物含有量を減少させるためiこ重合体を加熱する
と変質、軟化等を起こすため不純物の残留濃度をある程
度以下に低下することはできない。
(Prior Art) As a method for removing impurities (solvents, monomers, oligomers, by-products, etc.) remaining in powder or granules, methods such as heating evaporation and vacuum evaporation have conventionally been used. However, a small amount of impurities still remained, which caused a decline in the quality of the product and some of which were harmful to the human body. If the copolymer is heated in order to further reduce the impurity content, deterioration and softening occur, so that the residual concentration of impurities cannot be reduced below a certain level.

そこで近年、超臨界流体等を使用する高圧抽出法が提案
されている。例えば、特公昭59−46972号には超
臨界状態の流体により重合体中のオリゴマー性環状エー
テル分を減少させる方法が開示されている。
Therefore, in recent years, high-pressure extraction methods using supercritical fluid or the like have been proposed. For example, Japanese Patent Publication No. 59-46972 discloses a method for reducing the oligomeric cyclic ether content in a polymer using a supercritical fluid.

(発明が解決しようとする課題) しかしながら、特公昭59−46972号に記載の高圧
抽出法を用いて液状の重合体から不純物を除去しようと
しても、同公報の実施例1に記載されているように不純
物をある程度以下に低下させるような高度抽出には限界
がある。
(Problems to be Solved by the Invention) However, even when attempting to remove impurities from a liquid polymer using the high-pressure extraction method described in Japanese Patent Publication No. 59-46972, as described in Example 1 of the same publication, There is a limit to the high level of extraction that reduces impurities below a certain level.

また、粉粒体等の重合体を上記した高圧抽出法を用いて
高度に抽出除去しようとする場合、粉粒体等の重合体が
抽出条件で軟化、溶融等の変化のため重合体同志の付着
を起こすことがある。また、抽出条件が重合体の軟化等
の変化をする温度以下であっても粉粒体等の粒度や粒度
分布によっては、抽出時に抽出剤を吸収して重合体の体
積が増加し、粉粒体同志の付着を起こすことがある。
In addition, when trying to extract and remove polymers such as granules at a high level using the above-mentioned high-pressure extraction method, polymers such as granules soften, melt, etc. May cause adhesion. In addition, even if the extraction conditions are below the temperature at which the polymer softens or otherwise changes, depending on the particle size and particle size distribution of the powder, the extractant may be absorbed during extraction and the volume of the polymer may increase. Body-to-body adhesion may occur.

すなわち、従来の高圧抽出法にオ゛いて、重合体の抽出
時、抽出操作を実施すると抽出が進むうちに重合体同志
の付着が発生し、固結に進み製品重合体の品質上の問題
、抽出容器よりの製品の取り出し操作の不都合、製品の
再粉砕などの新しい操作の必要性が生じた。
In other words, when extracting polymers using conventional high-pressure extraction methods, polymers adhere to each other as the extraction progresses, leading to caking, which can lead to quality problems in the product polymer. This resulted in inconvenience in the operation of removing the product from the extraction vessel, and the need for new operations such as re-grinding the product.

そこで、このような付着、固結などを起こさないように
するため、温度を下げることが考えられる。しかし温度
を下げると抽出速度が遅くなり、したがって、抽出に要
する時間が長くなるため装置が太き(なる点や抽出剤量
を多(しなければならないなど経済的に不利になる。
Therefore, in order to prevent such adhesion and caking from occurring, it is considered to lower the temperature. However, lowering the temperature slows down the extraction rate and therefore increases the time required for extraction, resulting in economical disadvantages such as the need for thicker equipment and the need for a larger amount of extractant.

特に重合体が粒度の小さく、かつ粒度分布に広がりがあ
る粉粒体の場合、付着、固結がより発生しやすく、高度
抽出が不可能であった。
Particularly, when the polymer is a granular material with a small particle size and a wide particle size distribution, adhesion and caking are more likely to occur, making high-level extraction impossible.

(課題を解決するための手段) 本発明者らは上記した従来の粉粒体製品中の不純物除去
に際しての問題を克服するため鋭意研究を重ねた結果、
重合体の粉粒体製品を抽出容器内部に充填する際、粉粒
体の粒度分布及び抽出器内部充填時の空隙率を所定範囲
内に規制して超臨界状態又は液体の抽出剤と接触させる
ことにより、粉粒体同志の付着が防止でき、かつ、不純
物の除去が効率的に行えることを見出し、この知見に基
づき本発明をなすに至った。
(Means for Solving the Problems) As a result of extensive research by the present inventors in order to overcome the problems in removing impurities from the conventional powder and granular products described above,
When filling a polymer powder product into an extraction container, the particle size distribution of the powder product and the porosity at the time of filling the extractor are controlled within a predetermined range, and the product is brought into contact with a supercritical state or a liquid extractant. It has been discovered that by doing so, it is possible to prevent adhesion of powder and granular materials to each other and to efficiently remove impurities, and based on this knowledge, the present invention has been accomplished.

すなわち本発明は、(1)粉粒体を抽出器内部に充填し
て該粉粒体中に含有される不純物を抽出剤で抽出除去す
るに当り、空隙率0.7〜0.95で抽出器内部に該粉
粒体を充填することを特徴とする抽出方法(以下第1発
明という)及び(2)粉粒体を抽出器内部に充填して該
粉粒体中に含有される不純物を抽出剤で抽出除去するに
当り、粒径を実質的に均一とするか、又は粒度分布が最
大頻度を示す粒径より小さい粒径の粒子の合計重量を全
重量に対して40%以下として、空隙率0,36〜0.
95で抽出器内部に該粉粒体を充填することを特徴とす
る抽出方法(以下第2発明という)を提供するものであ
る。
That is, the present invention (1) fills a powder into an extractor and extracts and removes impurities contained in the powder with an extractant, and extracts with a porosity of 0.7 to 0.95. An extraction method characterized by filling the inside of a container with the powder or granules (hereinafter referred to as the first invention); and (2) filling the inside of the extractor with the powder or granules to remove impurities contained in the powder or granules. When removing by extraction with an extractant, the particle size is made substantially uniform, or the total weight of particles with a particle size smaller than the particle size where the particle size distribution shows the maximum frequency is 40% or less of the total weight, Porosity 0.36~0.
The present invention provides an extraction method (hereinafter referred to as the second invention) characterized in that the inside of the extractor is filled with the granular material in step 95.

本発明の実施態様の1例を図面に従って説明する。An example of an embodiment of the present invention will be described with reference to the drawings.

第1図は、固定層型抽出器を使用した、本発明の一実施
態様を示すフローシートである。同図において抽出剤は
抽出剤のタンクやボンベのような貯槽(図示しない)か
らライン1を経て抽出剤の昇圧装置2へ供給され、抽出
に適する圧力まで昇圧される。昇圧装置はライン1から
の抽出剤がガス状の場合は圧縮機が、液体の場合にはポ
ンプが用いられる。また昇圧装置は複数基を直列または
並列に接続されてもよい。抽出の圧力まで昇圧された抽
出剤はライン3から熱交換器4に供給されライン5から
の流体により抽出温度に調整され、ライン6から抽出器
7に供給される。抽出器7内上部に抽出剤の分散装置8
として例えば焼結金属板等が用いられる。ライン6から
抽出器7へ供給された抽出剤は、分散装置8を介して均
一に分散される。
FIG. 1 is a flow sheet illustrating one embodiment of the invention using a fixed bed extractor. In the figure, the extractant is supplied from a storage tank (not shown) such as an extractant tank or cylinder through a line 1 to an extractant pressurizing device 2, and is pressurized to a pressure suitable for extraction. The pressure booster is a compressor if the extractant from line 1 is gaseous, or a pump if it is liquid. Further, a plurality of boosters may be connected in series or in parallel. The extractant pressurized to the extraction pressure is supplied from line 3 to heat exchanger 4, adjusted to the extraction temperature by fluid from line 5, and supplied from line 6 to extractor 7. An extractant dispersion device 8 is installed in the upper part of the extractor 7.
For example, a sintered metal plate or the like is used. The extractant supplied from line 6 to extractor 7 is uniformly dispersed via dispersion device 8 .

抽出器7内下部には、目の細かい金網あるいは多孔質の
金属からなる支持板14が設置されている。
A support plate 14 made of a fine wire mesh or porous metal is installed in the lower part of the extractor 7.

第1図において、抽出剤を抽出器7上部から供給してい
るが、抽出剤を抽出器7下部から供給してもよい。この
場合、支持板14は抽出剤の分散装置をかねて抽出器7
内下部に設置される。また、抽出器7内上部には粉粒体
の飛散防止のための適当な装置が設置されてもよい。
In FIG. 1, the extractant is supplied from the upper part of the extractor 7, but the extractant may be supplied from the lower part of the extractor 7. In this case, the support plate 14 also serves as an extractant dispersion device and the extractor 7
It is installed in the inner lower part. Furthermore, an appropriate device may be installed in the upper part of the extractor 7 to prevent scattering of powder and granules.

抽出器7の分散装置8より下部に被抽出物質である不純
物を含む重合体の粉粒体物質を導入口12から所定量充
填する。
A predetermined amount of a powdery substance of a polymer containing impurities, which is a substance to be extracted, is filled into a lower part of the extractor 7 than the dispersion device 8 through the inlet 12 .

不純物を抽出した抽出剤はライン9から圧力調整弁lO
を介し、ライン11を経て廃棄または回収される。抽出
剤が回収再利用される場合は抽出剤を減圧及び/又は昇
温の通常の方法又は吸着分離などの方法により抽出剤中
に含まれる不純物を分離、除去する。
The extractant that has extracted impurities is sent from line 9 to the pressure regulating valve lO.
and is disposed of or recovered via line 11. When the extractant is recovered and reused, impurities contained in the extractant are separated and removed by a conventional method such as reducing the pressure and/or increasing the temperature, or by adsorption separation.

抽出処理後の処理粉粒体物質は取出口13から取出され
る。
The treated granular material after the extraction process is taken out from the takeout port 13.

本発明において空隙率(ε)とは、粉粒体のかさ体積(
V)に対する空隙の体積の割合であり、空隙の体積は、
かさ体積(V)と粉粒体との真の体積(Vp)の差(V
−Vp)として求めることができる。また、真の体積(
Vp)は、かさ密度(ρ)と真の密度(ρ2)の比とか
さ体積(V)の積で求められる。ここで、かさ密度(ρ
)は、ある大きさの容器(V)に粉粒体を充填し、その
重量(W)を測定して求められる。
In the present invention, the porosity (ε) refers to the bulk volume (
It is the ratio of the volume of the void to V), and the volume of the void is:
The difference (V) between the bulk volume (V) and the true volume (Vp) of the powder
-Vp). Also, the true volume (
Vp) is determined by the product of the ratio of bulk density (ρ) to true density (ρ2) and bulk volume (V). Here, the bulk density (ρ
) is determined by filling a container (V) of a certain size with granular material and measuring its weight (W).

本発明の第1発明において空隙率を0.7より大とする
ことにより粒度分布に影響されず付着、固結を起こすこ
となく抽出処理を行うことができる。空隙率0.95以
上では抽出器の容積効率の低下をきたし経済的でない。
In the first aspect of the present invention, by setting the porosity to more than 0.7, the extraction process can be performed without being affected by the particle size distribution and without causing adhesion or caking. If the porosity is 0.95 or more, the volumetric efficiency of the extractor decreases and is not economical.

次に、第2発明について述べると、空隙率を0.7より
下げることは抽出器中の充填量を高め抽出の処理能力を
高める上で好ましいが粉粒体の粒径の粒度分布状態によ
り、付着、固結を起こすことがある。しかし粒径が実質
的に均一な粉粒体の場合、空隙率が少なくとも0.36
あれば付着、固結を起こさない。ここに1粒径が実質的
に均一である」とは粉粒体の全重量の95%以上が粒径
比±0.1以内に入ることを意味する。
Next, regarding the second invention, it is preferable to lower the porosity to less than 0.7 in order to increase the filling amount in the extractor and increase the extraction throughput, but depending on the particle size distribution state of the particle size of the powder, May cause adhesion and caking. However, for powders with substantially uniform particle size, the porosity is at least 0.36.
If so, it will not cause adhesion or caking. Here, "the particle size is substantially uniform" means that 95% or more of the total weight of the powder or granules falls within the particle size ratio of ±0.1.

また、粒径が不均一で粒度分布があるものの場合、粒径
の小なる部分がある割合で除かれた粒度分布をもつもの
であれば空隙率0.36以上で付着、固結を起こさない
。この場合は、第2図に示すように対象粉粒体の粒度分
布図において粒度分布の最大頻度を示す粒径な中心とし
て粒径の大なる領域と小なる領域の分布がほぼ等しいと
仮定した粉粒体の粒径分布に対して、粒径の小なる領域
が粉粒体の仮定された全分布に対して、少なくとも10
%であるAの部分が排除される(したがって最大頻度を
示す粒径より小さい粒径の粒子の合計重量が全重量の4
0%未満である)5、ことが必要であり、より好ましく
は50%であるAの部分が排除される。このような空隙
率、及び粒度分布の調整は重合体製造工程におけるペレ
ット化、粉砕、篩分等の処理条件を調節することによっ
て行うことができる。
In addition, if the particle size is uneven and has a particle size distribution, if the particle size distribution is such that a certain proportion of the small particle size is removed, adhesion and caking will not occur with a porosity of 0.36 or more. . In this case, as shown in Figure 2, in the particle size distribution diagram of the target powder, it is assumed that the distribution of large and small particle size areas is approximately equal, with the particle size center showing the maximum frequency of the particle size distribution. For the particle size distribution of the granular material, the area of small particle size is at least 10
% of the total weight is excluded (so that the total weight of particles smaller than the particle size showing the maximum frequency is 4% of the total weight).
The portion of A that is less than 0%) 5, more preferably 50% is excluded. The porosity and particle size distribution can be adjusted by adjusting processing conditions such as pelletization, pulverization, and sieving in the polymer production process.

本発明において粉粒体とは、その形状に特に制限はなく
、上記から明らかなように、粉状ばかりでな(、粒状、
球状、ベレット状などを包含する意味であり、これらの
いずれか1種または2種以上からなるものの混合物でも
よい。
In the present invention, the powder or granular material is not particularly limited in its shape, and as is clear from the above, it is not limited to powder (, granular,
It is meant to include spherical and pellet shapes, and may be any one of these shapes or a mixture of two or more thereof.

本発明において粉粒体の粒径は特に制限はない−が、例
えば平均粒径0.1mm以上、好ましくは0.3mm以
上である。
In the present invention, there is no particular restriction on the particle size of the powder, but the average particle size is, for example, 0.1 mm or more, preferably 0.3 mm or more.

本発明において粉粒体の粒径が小さいほど抽出剤の内部
への拡散が速(なり抽出効果が大となって抽出速度が速
くなる。このような粉粒体にはもともと粉体のものと、
固形物質を上記のように粉砕等により微細化したものが
ある。このような粉粒体は従来法では抽出時に容易に固
結が発生したが本発明ではこれを防止して抽出効果、抽
出速度を高めることができる。
In the present invention, the smaller the particle size of the powder, the faster the extractant will diffuse into the interior (the extraction effect will be greater, and the extraction speed will be faster. ,
There are solid substances made into fine particles by pulverization or the like as described above. In the conventional method, caking of such powder easily occurs during extraction, but in the present invention, this can be prevented and the extraction effect and extraction rate can be increased.

このような対象となる粉粒体の好ましいものは重合体(
ポリマー、ゴム等)であり、例えばポリエチレン、ポリ
プロピレン、ポリスチレン、ポリ塩化ビニル、ポリオキ
シメチレン、ポリアクリルアミド等、これらの共重合体
あるいは塩素化物、ゴム、塩化ゴムなどが挙げられる。
The preferred powder or granular material is polymer (
Examples include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyoxymethylene, polyacrylamide, copolymers or chlorinated products thereof, rubber, and chlorinated rubber.

抽出対象となる不純物はこれらのポリマー中に残存のモ
ノマー、オリゴマーなど例えば残留するホルマリン、ス
チレン、トリオキシメチレン、水分、有機溶媒などであ
る。
Impurities to be extracted include residual monomers and oligomers in these polymers, such as residual formalin, styrene, trioxymethylene, moisture, and organic solvents.

本発明方法の抽出処理に好適な粉粒体は抽出剤に対して
適度の膨潤性のある重合体であり、このような粉粒体を
適度に溶解、膨潤させる抽出剤を用いて抽出処理するこ
とができる。
The powder or granules suitable for the extraction process of the method of the present invention are polymers that have an appropriate swelling property with respect to the extractant, and the extraction process is performed using an extractant that appropriately dissolves and swells such granules. be able to.

本発明に用いられる抽出剤は、抽出処理する粉粒体に対
して適宜選択されるが、具体例とじて(a)二酸化炭素
、酸化二窒素、二硫化炭素、エタン、エチレン、プロパ
ン、プロピレン等の炭化水素、ハロゲン化炭化水素、(
b)上記のガスの2種類以上の混合物、(c)以上の物
質と不純物の第2の抽出溶剤(メタノール、エタノール
、トルエン等の通常の有機溶媒)となる物質の混合物が
挙げられる。
The extractant used in the present invention is selected as appropriate for the powder to be extracted, and specific examples include (a) carbon dioxide, dinitrogen oxide, carbon disulfide, ethane, ethylene, propane, propylene, etc. hydrocarbons, halogenated hydrocarbons, (
b) A mixture of two or more of the above gases, and (c) a mixture of the above substances and a substance that serves as a second extraction solvent for impurities (normal organic solvent such as methanol, ethanol, toluene, etc.).

本発明において用いられる抽出剤は液状又は超臨界状態
であるが、超臨界状態で用いるのがより好ましい。この
場合の抽出器の圧力と温度は、対象の粉粒体により異な
るが、−前向に圧力は40〜500 k g/crr?
Gが好ましく、温度は0〜150℃が好ましい。圧力が
40kg/cni”G未満では抽出剤の抽出能力が低く
、十分な抽出効果が得られず、500 k g/ cr
dGを越えると装置の耐圧設計のための製作費のコスト
アップや抽出剤の圧縮に要する動力を考慮すると経済的
でない。また温度が0℃より低いと抽出速度が低下し、
150℃を越えると被抽出物である粉粒体の軟化、付着
、固結や劣化などを招く。
The extractant used in the present invention is in a liquid state or in a supercritical state, but it is more preferable to use it in a supercritical state. The pressure and temperature of the extractor in this case vary depending on the target powder, but the forward pressure is 40 to 500 kg/crr?
G is preferred, and the temperature is preferably 0 to 150°C. If the pressure is less than 40 kg/cni"G, the extraction ability of the extractant is low and sufficient extraction effect cannot be obtained, and the pressure is less than 500 kg/cni"G.
If the pressure exceeds dG, it is not economical considering the increased production cost for pressure-resistant design of the device and the power required to compress the extractant. Also, if the temperature is lower than 0℃, the extraction rate will decrease,
If the temperature exceeds 150°C, softening, adhesion, caking, and deterioration of the powder and granular material to be extracted will occur.

本発明において、抽出器を複数個並列に設けて連続的に
抽出が行なえるようにしてもよいし、抽出器を複数個直
列に設けてもよい。
In the present invention, a plurality of extractors may be provided in parallel so that extraction can be performed continuously, or a plurality of extractors may be provided in series.

(発明の効果) 本発明によれば抽出器内において粉粒体の付着、固結を
起こすことなく抽出処理を行うことができる。また本発
明方法によれば不純物の抽出を効果的に行うことができ
るばかりでな(、不純物抽出度の極めて高い粉粒体の精
製を行うことができる。
(Effects of the Invention) According to the present invention, extraction processing can be performed without adhesion or caking of powder or granules in the extractor. Furthermore, according to the method of the present invention, not only can impurities be extracted effectively (but also powder and granules with an extremely high degree of impurity extraction can be purified).

(実施例) 次に本発明を実施例及び比較例に基づきさらに詳細に説
明する。
(Examples) Next, the present invention will be described in more detail based on Examples and Comparative Examples.

実施例1 塩化ゴム(残留溶剤濃度6.9%、残留溶剤は四塩化炭
素)を第1図に示すフローシートに基づいて抽出を行っ
た。抽出器内に粉状の塩化ゴム68gを充填し、空隙率
を測定したところ0.7であった。抽出器上部から抽出
剤として二酸化炭素を2.5J2/分で供給した。抽出
器内を圧力100kg/crrrG、温度30’Cで6
時間保持した後、二酸化炭素の供給を停止した。抽出器
の圧力が大気圧になったあと、塩化ゴムを取り出し、分
析に供した。粉体に固結は認められず、溶剤の濃度は6
.9%から0.5%に減少した。
Example 1 Chlorinated rubber (residual solvent concentration: 6.9%, residual solvent was carbon tetrachloride) was extracted based on the flow sheet shown in FIG. The extractor was filled with 68 g of powdered chlorinated rubber, and the porosity was measured to be 0.7. Carbon dioxide was supplied as an extractant from the top of the extractor at a rate of 2.5 J2/min. Inside the extractor, the pressure is 100 kg/crrrG and the temperature is 30'C.
After holding for a period of time, the supply of carbon dioxide was stopped. After the pressure in the extractor reached atmospheric pressure, the chlorinated rubber was taken out and subjected to analysis. No caking was observed in the powder, and the concentration of the solvent was 6.
.. It decreased from 9% to 0.5%.

比較例1 第1図に基づいて実施例1と同じ条件で抽出を実施した
。抽出器内には塩素化ポリプロピレン109gを充填し
、空隙率を測定したところ0.6であった。抽出に使用
した塩素化ポリプロピレン粉体は粒度分布において最大
頻度を示す粒径より小さい粒径粒子の重量が全重量に対
し50%であった。抽出後、抽出器内の粉体は大きな塊
状となっていた。
Comparative Example 1 Extraction was carried out under the same conditions as in Example 1 based on FIG. The extractor was filled with 109 g of chlorinated polypropylene, and the porosity was measured to be 0.6. In the chlorinated polypropylene powder used for extraction, the weight of particles smaller than the particle size showing the maximum frequency in the particle size distribution was 50% of the total weight. After extraction, the powder in the extractor was in the form of large clumps.

実施例2 粉状ポリスチレン(HIPS、残留モノマー濃度的20
00 p pm)を48メツシユのふるいで分割し、粒
度の大きい部分(粒度分布における最大頻度を示す粒径
より小さい粒径粒子の重量は全重量に対し10%)を第
1図に示すフローシートに基づいて二酸化炭素を抽出剤
として抽出を行った。抽出器内に粉状の原料20gを充
填し、空隙率を測定したところ0.4であった。抽出器
内を圧力245kg/crtrG、温度80℃に保持し
た。抽出後粉体には特に固結は認められず、残留モノマ
ー濃度は500ppm以下であった。
Example 2 Powdered polystyrene (HIPS, residual monomer concentration 20
00 p pm) was divided using a 48-mesh sieve, and the large particle size part (the weight of particles smaller than the particle size that indicates the maximum frequency in the particle size distribution is 10% of the total weight) is shown in the flow sheet shown in Figure 1. Extraction was performed using carbon dioxide as an extractant based on the following. The extractor was filled with 20 g of powdered raw material, and the porosity was measured to be 0.4. The inside of the extractor was maintained at a pressure of 245 kg/crtrG and a temperature of 80°C. No particular caking was observed in the powder after extraction, and the residual monomer concentration was 500 ppm or less.

比較例2 粉状ポリスチレン(HIPS、残留モノマー濃度的20
00 p pm)を第1図に示すフローシートに基づい
て二酸化炭素を抽出剤として抽出を行った。粉状ポリス
チレンを48メツシユのふるいで分割せずに、そのまま
抽出器内に20g充填し、空隙率を測定したところ0.
35であった。
Comparative Example 2 Powdered polystyrene (HIPS, residual monomer concentration 20
00 pp pm) was extracted using carbon dioxide as an extractant based on the flow sheet shown in FIG. 20g of powdered polystyrene was filled into the extractor without being divided through a 48-mesh sieve, and the porosity was measured and found to be 0.
It was 35.

抽出器内を圧力245 k g/crrfG、 iFA
度80″Cに保持した。抽出後、抽出器内の粉体は大き
な塊状となっていた。
Pressure inside the extractor is 245 kg/crrfG, iFA
The temperature was maintained at 80''C. After extraction, the powder in the extractor was in the form of large clumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施態様を示すフローシートであ
る。第2図は本発明方法を適用するのに好適な粉粒体の
粒度分布を示す。 符号の説明 2・・・昇圧装置     4・・・熱交換器7・・・
固定層型抽出器  8・・・分散装置IO・・・圧力調
整弁   12・・・導入口13・・・取出口    
 14・・・支持板特許出願人 東洋エンジニアリング
株式会社同   旭電化工業株式会社 第1図 第2図 粒径−大 粒度分布
FIG. 1 is a flow sheet showing one embodiment of the present invention. FIG. 2 shows the particle size distribution of a powder suitable for applying the method of the present invention. Explanation of symbols 2... Boosting device 4... Heat exchanger 7...
Fixed bed extractor 8... Dispersion device IO... Pressure adjustment valve 12... Inlet port 13... Outlet port
14... Support plate patent applicant Toyo Engineering Co., Ltd. Asahi Denka Kogyo Co., Ltd. Figure 1 Figure 2 Particle size - large particle size distribution

Claims (2)

【特許請求の範囲】[Claims] (1)粉粒体を抽出器内部に充填して該粉粒体中に含有
される不純物を抽出剤で抽出除去するに当り、空隙率0
.7〜0.95で抽出器内部に該粉粒体を充填すること
を特徴とする抽出方法。
(1) When filling powder into an extractor and extracting and removing impurities contained in the powder with an extractant, the porosity is 0.
.. An extraction method characterized by filling the inside of an extractor with the powder at a concentration of 7 to 0.95.
(2)粉粒体を抽出器内部に充填して該粉粒体中に含有
される不純物を抽出剤で抽出除去するに当り、粒径を実
質的に均一とするか、又は粒度分布が最大頻度を示す粒
径より小さい粒径の粒子の合計重量を全重量に対して4
0%以下として、空隙率0.36〜0.95で抽出器内
部に該粉粒体を充填することを特徴とする抽出方法。
(2) When filling a powder into an extractor and extracting and removing impurities contained in the powder with an extractant, the particle size is made substantially uniform or the particle size distribution is maximized. The total weight of particles with a particle size smaller than the particle size indicating the frequency is 4 to the total weight.
An extraction method characterized by filling the inside of an extractor with the granular material at a porosity of 0.36 to 0.95, with the porosity being 0% or less.
JP63268157A 1988-10-26 1988-10-26 Extraction Pending JPH02117904A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63268157A JPH02117904A (en) 1988-10-26 1988-10-26 Extraction
CA002001202A CA2001202A1 (en) 1988-10-26 1989-10-23 Method for extraction of impurities from powder material
DE3935405A DE3935405A1 (en) 1988-10-26 1989-10-24 Extn. of impurities from powdered or particulate material - using an extractant in an extractor filled with material in which the vol. fraction of pores or cavities is 0.36-0.95
FR8913992A FR2638098B1 (en) 1988-10-26 1989-10-25 PROCESS FOR THE EXTRACTION OF IMPURITIES CONTAINED IN A POWDERED MATERIAL
DD89333935A DD286297A5 (en) 1988-10-26 1989-10-26 METHOD FOR EXTRACTING CONTAMINATION FROM POWDERED OR PARTICULAR MATERIAL
FR9001224A FR2641198B1 (en) 1988-10-26 1990-02-02 PROCESS FOR THE EXTRACTION OF IMPURITIES CONTAINED IN A POWDERED MATERIAL II

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268157A JPH02117904A (en) 1988-10-26 1988-10-26 Extraction

Publications (1)

Publication Number Publication Date
JPH02117904A true JPH02117904A (en) 1990-05-02

Family

ID=17454694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268157A Pending JPH02117904A (en) 1988-10-26 1988-10-26 Extraction

Country Status (5)

Country Link
JP (1) JPH02117904A (en)
CA (1) CA2001202A1 (en)
DD (1) DD286297A5 (en)
DE (1) DE3935405A1 (en)
FR (1) FR2638098B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502802A (en) * 1992-10-23 1995-03-23 モトローラ・インコーポレイテッド Battery compartment door and latch with axial snap
JP2002263402A (en) * 2001-03-12 2002-09-17 Dia Instr:Kk Extraction method and extraction device
JP2005007232A (en) * 2003-06-17 2005-01-13 Mitsubishi Kakoki Kaisha Ltd Supercritical extraction method for powder component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK74094A3 (en) * 1991-12-18 1996-01-10 Schering Corp Method for removing residual additives from elastomeric articles
DE4201046A1 (en) * 1992-01-17 1993-07-22 Bayer Ag METHOD FOR CLEANING POLYMER SOLUTIONS
FR2699544B1 (en) * 1992-12-17 1995-02-03 Valois Process for removing low molecular weight pollutants from elastomeric seals and plastics.
GB2314336A (en) * 1996-06-18 1997-12-24 Bespak Plc Method of cleaning or purifying elastomers and elastomeric articles which are intended for medical or pharmaceutical use
FR2811951B1 (en) * 2000-07-20 2002-10-11 Distillerie Andre DYE AND / OR ESSENCE EXTRACTION DEVICE
US11130850B2 (en) 2017-01-02 2021-09-28 Sabic Global Technologies B.V. Process for recycling polyolefin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698209A (en) * 1979-12-26 1981-08-07 Monsanto Co Purification of olefinnmaleic acid copolymer
JPS60210605A (en) * 1984-04-05 1985-10-23 Nippon Petrochem Co Ltd Deodorization of odoriferous resin
JPS63205309A (en) * 1987-02-19 1988-08-24 ローン‐プーラン・サント Purification of styrene/vinyl pyridne copolymer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1795396C3 (en) * 1968-09-26 1982-05-19 Basf Ag, 6700 Ludwigshafen Process for removing volatile, odor-causing constituents from finely divided olefin polymers
DE3323940A1 (en) * 1983-07-02 1985-01-10 Hoechst Ag, 6230 Frankfurt Process for the purification of polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698209A (en) * 1979-12-26 1981-08-07 Monsanto Co Purification of olefinnmaleic acid copolymer
JPS60210605A (en) * 1984-04-05 1985-10-23 Nippon Petrochem Co Ltd Deodorization of odoriferous resin
JPS63205309A (en) * 1987-02-19 1988-08-24 ローン‐プーラン・サント Purification of styrene/vinyl pyridne copolymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502802A (en) * 1992-10-23 1995-03-23 モトローラ・インコーポレイテッド Battery compartment door and latch with axial snap
JP2002263402A (en) * 2001-03-12 2002-09-17 Dia Instr:Kk Extraction method and extraction device
JP2005007232A (en) * 2003-06-17 2005-01-13 Mitsubishi Kakoki Kaisha Ltd Supercritical extraction method for powder component
JP4632226B2 (en) * 2003-06-17 2011-02-16 三菱化工機株式会社 Supercritical extraction method of powder components

Also Published As

Publication number Publication date
CA2001202A1 (en) 1990-04-26
DE3935405A1 (en) 1990-05-03
FR2638098A1 (en) 1990-04-27
FR2638098B1 (en) 1994-07-08
DD286297A5 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
JP2794383B2 (en) Method for removing unpolymerized gaseous monomers from olefin polymers
TW518342B (en) Method and apparatus for discharging polymerization reactors
JPH02117904A (en) Extraction
NO812917L (en) GASING PROCESS FOR REMOVAL OF NON-POLYMERIZED MONOMERS FROM OLEPHINE POLYMERS.
JPH0375211B2 (en)
JPH07121321B2 (en) Extraction method
JPH093103A (en) Apparatus and method for polymerizing olefin in gas phase
US2545144A (en) Process and apparatus for the production of high molecular weight polymers
EP3935090A1 (en) Devolatilization of plastomer pellets
EP1072557B1 (en) Production of sodium borohydride from sodium borohydride dihydrate in a fluidized bed dryer
KR20210113323A (en) Polyethylene powder and molded article formed by molding the same
JP3770617B2 (en) Method and apparatus for classifying fixed particles
US20040050802A1 (en) Fluid bed filter-dryer apparatus
US3475398A (en) Continuous polymerization in mass
CA1205983A (en) Elution process and apparatus and extraction of particulate material from a vessel
NO773106L (en) PROCEDURE FOR CONTINUOUS REMOVAL OF MONOMERS FROM DIFFICULT DISTRIBUTIONS OF POLYMERS
JPS5992904A (en) Sulfur pelletization
JPS6335621A (en) Production of polycarbonate resin powder
JPS5869631A (en) Method of transferring solid
US4575950A (en) Method for removal of residual solvent from particulate crumb made by solution polymerization
US4283526A (en) Method of treating polymerlatices
EP4140572B1 (en) Method for drying polyolefin-containing particles
JPS5930164B2 (en) Method for removing unreacted monomers from aqueous dispersions of polymers
JP2000086704A (en) Method and apparatus for removing unreacted monomer
FR2641198A1 (en) Process for extracting impurities present in a material in the form of powder II