JPS6335621A - Production of polycarbonate resin powder - Google Patents

Production of polycarbonate resin powder

Info

Publication number
JPS6335621A
JPS6335621A JP17877586A JP17877586A JPS6335621A JP S6335621 A JPS6335621 A JP S6335621A JP 17877586 A JP17877586 A JP 17877586A JP 17877586 A JP17877586 A JP 17877586A JP S6335621 A JPS6335621 A JP S6335621A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
amount
resin powder
methylene chloride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17877586A
Other languages
Japanese (ja)
Other versions
JPH0512371B2 (en
Inventor
Susumu Taniyama
谷山 侑
Rikuta Kishimoto
岸本 陸太
Yutaka Kojima
豊 小島
Yoshio Tanaka
良夫 田中
Kimihisa Iwaki
岩城 公久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17877586A priority Critical patent/JPS6335621A/en
Publication of JPS6335621A publication Critical patent/JPS6335621A/en
Publication of JPH0512371B2 publication Critical patent/JPH0512371B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-bulk density polycarbonate resin powder low in the content of both residual solvent and fine powder, by subjecting a specified polycarbonate resin powder obtained by solution polymerization to dry compression molding and crushing the obtained molding. CONSTITUTION:A polycarbonate resin powder at least 90% of the total weight of which can not pass through a 16-mesh screen and which, after drying, has a content of residual methylene chloride <=100ppm and a content of other residual solvents <=500ppm is subjected to dry compression molding and the obtained molding is crushed. A desirable polycarbonate resin powder in one obtained by adding a nonsolvent for polycarbonate resin in such an amount as not to cause precipitation to a methylene chloride solution of a polycarbonate and dropping or spraying the obtained mixture into hot water kept at 45-100 deg.C. Said dry compression molding is preferably carried out at a temperature in the range of room temperature to 170 deg.C and a molding pressure >=5kg/cm<2>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリカーボネート樹脂粉状体の製造法に係わ
り、公知の溶液法によって得られるポリカーボネート樹
脂粉粒状体から塩化メチレンその他の溶媒の残存量が少
なく、かつ、微粉が少なく、高い嵩密度を有するポリカ
ーボネート樹脂粉状体の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing polycarbonate resin powder, and the present invention relates to a method for producing polycarbonate resin powder, and the remaining amount of methylene chloride and other solvents from polycarbonate resin powder and granules obtained by a known solution method. The present invention relates to a method for producing a polycarbonate resin powder having a high bulk density and a small amount of fine powder.

〔従来の方法およびその問題点〕[Conventional methods and their problems]

ビスフェノール頚とホスゲンとの反応により得られるポ
リカーボネート樹脂の一般的な製法は、塩化メチレンと
アルカリ水系との界面重縮合反応による方法である。そ
のため、重縮合反応並びに精製終了後、樹脂は塩化メチ
レン溶液として取り出される。そして溶液のままでは輸
送等の取り扱いにも不都合であり、更には、安定剤、染
顔料、充填剤等各種の添加剤を混合する操作の便利さの
ため、通常、この溶液からポリカーボネート樹脂を粉状
体として単離する。この粉体に安定剤、染顔料、充填剤
等各種の添加剤を混合し、最終的には溶融押出しによる
ペレット状体とし、このペレットが射出成形その他の用
に供せられる。
A general method for producing polycarbonate resin obtained by the reaction of bisphenol neck and phosgene is an interfacial polycondensation reaction between methylene chloride and an aqueous alkaline system. Therefore, after the polycondensation reaction and purification are completed, the resin is taken out as a methylene chloride solution. It is inconvenient to transport and handle the polycarbonate resin as a solution.Furthermore, for the convenience of mixing various additives such as stabilizers, dyes and pigments, and fillers, polycarbonate resin is usually powdered from this solution. It is isolated as a solid. This powder is mixed with various additives such as stabilizers, dyes and pigments, and fillers, and finally formed into pellets by melt extrusion, and these pellets are used for injection molding and other purposes.

ポリカーボネート樹脂の塩化メチレン溶液から樹脂を単
離する方法としては、既に多くの方法が提案されている
が、例えば、特公昭46−37424号公報に開示され
ている塩化メチレン溶液自体を濃縮し、最終的に塩化メ
チレンを数千〜数百ppm含有する粉状体とする方法と
、例えば、特公昭53−137297号公報に開示され
る塩化メチレン溶液にポリカーボネート樹脂の非溶媒を
添加し、これを濃縮し、最終的に非溶媒を数千ppm含
有する粉状体とする方法とによって代表される。
Many methods have already been proposed for isolating a polycarbonate resin from a methylene chloride solution. For example, the method disclosed in Japanese Patent Publication No. 53-137297 involves adding a non-solvent of polycarbonate resin to a methylene chloride solution and concentrating it. This is typified by the method of finally producing a powder containing several thousand ppm of non-solvent.

前者の方法によって塩化メチレン溶液自体から得た粉状
体には、乾煙後においても、前述の通り、数千〜数百p
pmの塩化メチレンが残存するため、これを溶融押出し
した場合には、塩化メチレンの熱分解により樹脂が著し
く着色する。一方、貧溶媒を用いる後者の方法では、非
溶媒の種類により、その影山が異なるが、例えば、アル
コール類を用いた場合には、残存アルコールによる熱時
のアルコリシスによって樹脂の分解が起こり、好ましく
ない。そのため、一般には脂肪族炭化水素類もしくは芳
香族炭化水素類等の不活性溶媒が多く用いられている。
As mentioned above, the powder obtained from the methylene chloride solution itself by the former method contains several thousand to several hundred parts even after drying.
Since methylene chloride of pm remains, when this is melt-extruded, the resin is significantly colored due to thermal decomposition of the methylene chloride. On the other hand, in the latter method using a poor solvent, the effects differ depending on the type of non-solvent, but for example, when alcohols are used, the resin decomposes due to alcoholysis due to residual alcohol when heated, which is undesirable. . Therefore, inert solvents such as aliphatic hydrocarbons or aromatic hydrocarbons are generally used.

しかし、これらの溶媒は、溶融押出時にも樹脂から完全
には離脱せず、最終成形品にまで残存し、実使用下での
応力亀裂の発生による著しい強度低下の原因となる。
However, these solvents do not completely separate from the resin during melt extrusion and remain in the final molded product, causing stress cracks to occur during actual use and resulting in a significant decrease in strength.

以上のように、ポリカーボネート樹脂粉状体中の残存溶
媒は極力少なくすることが、耐熱性ならびに耐久性に優
れたポリカーボネート樹脂成形品を製造するための必要
条件である。
As described above, minimizing the amount of residual solvent in the polycarbonate resin powder is a necessary condition for producing polycarbonate resin molded products with excellent heat resistance and durability.

さて、少量の有機溶媒を包含する粉状体より有機溶媒を
除去するために、その粉状体をさらに微粉化し、乾愚す
る試みは、当業者が当然に想起するところであるが、微
粉とするために要する装置、動力を考えた場合、この方
法は必ずしも経済的に有利な方法ではない。また、係る
微粉体は、乾繰、種々の添加剤その他との混合などの作
業において、粉塵の飛故による環境悪化等の取り扱い上
の問題、およびスクリュー押出機によるペレット化の際
にスクリューへの食い込み不良によりサージングを生じ
たりして生産量が低下するという問題の原因となる。な
お、嵩密度の高いポリカーボネート樹脂粉状体とするこ
とは、粉末計量、輸送及び貯蔵等の粉状体取り扱い上、
極めて重要なことである。
Now, in order to remove the organic solvent from a powder containing a small amount of organic solvent, attempts have been made to further pulverize the powder and dry it, as those skilled in the art will naturally recall. Considering the equipment and power required for this, this method is not necessarily economically advantageous. In addition, such fine powders pose handling problems such as environmental deterioration due to flying dust during operations such as drying and mixing with various additives, etc., and when pelletizing using a screw extruder. This causes problems such as surging due to poor biting and a decrease in production. In addition, the use of polycarbonate resin powder with a high bulk density makes handling of the powder such as powder measurement, transportation, and storage difficult.
This is extremely important.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記粉状体の微粉化による不都合を避け
、乾燥後に粒度分布の整った嵩密度の高いポリカーボネ
ート樹脂粉状体を得る方法について鋭意検討した結果、
極めて簡単に、しかも、20〜40メツシュが粒度分布
の主体となり、微粉体を含まず、嵩密度が0.5〜0.
7g/cJであるポリカーボネート樹脂粉状体を得るこ
とに成功し、本発明を完成させた。
The present inventors have conducted intensive studies on a method for obtaining a polycarbonate resin powder with a uniform particle size distribution and high bulk density after drying, avoiding the inconvenience caused by the pulverization of the powder.
Very easily, the particle size distribution mainly consists of 20 to 40 mesh, does not contain fine powder, and has a bulk density of 0.5 to 0.
We succeeded in obtaining polycarbonate resin powder having a weight of 7 g/cJ, and completed the present invention.

すなわち、本発明は、その全量の90%以上が16メツ
シュの篩を通過せず、乾燥後の残存塩化メチレンの量が
1100pp以下であり、かつ、その他の残存溶媒の量
が500ppm以下であるポリカーボネート樹脂粉粒状
体を乾式圧縮成形し、次いで、得られた成形物を破砕す
ることからなる残存溶媒量が少なく、かつ、嵩密度が高
いポリカーボネート樹脂粉状体の製造法である。
That is, the present invention provides polycarbonate in which 90% or more of the total amount does not pass through a 16-mesh sieve, the amount of residual methylene chloride after drying is 1100 ppm or less, and the amount of other residual solvents is 500 ppm or less. This is a method for producing a polycarbonate resin powder with a small amount of residual solvent and a high bulk density, which comprises dry compression molding a resin powder granule and then crushing the resulting molded product.

以下、本発明の構成について説明する。The configuration of the present invention will be explained below.

まず、本発明のその全量の90%以上が16メツシュの
篩を通過せず、乾爆後の残存塩化メチレンの量が110
0pp以下であり、かつ、その他の残存溶媒の量が50
0ppm以下であるポリカーボネート樹脂粉粒状体とは
、界面重合法により得られたポリカーボネート樹脂の塩
化メチレン溶液にポリカーボネ−1・樹脂の非溶媒、例
えば、n−ヘプタン、n−ヘキサン、シクロヘキサン、
ベンゼン、クロルベンゼン、トルエンなどを沈澱物が生
成しない程度の量だけ添加混合し、この混合液を約45
〜100℃に保持した温熱水中に滴下もしくは噴霧して
、塩化メチレンおよび添加非溶媒を蒸発せしめポリカー
ボネート樹脂固体状物を得、その後、その全量の90%
以上が16メツシュの篩を通過しない粒度になるように
湿式粉砕もしくは乾燥粉砕してなるものである。
First, more than 90% of the total amount of the present invention does not pass through a 16-mesh sieve, and the amount of methylene chloride remaining after dry explosion is 110%.
0 pp or less, and the amount of other residual solvent is 50
A polycarbonate resin powder having a concentration of 0 ppm or less is a methylene chloride solution of a polycarbonate resin obtained by an interfacial polymerization method, and a polycarbonate resin non-solvent such as n-heptane, n-hexane, cyclohexane,
Benzene, chlorobenzene, toluene, etc. are added and mixed in an amount that does not form a precipitate.
Methylene chloride and the added non-solvent are evaporated by dropping or spraying into hot water maintained at ~100°C to obtain a polycarbonate resin solid, and then 90% of the total amount
The above particles are wet-pulverized or dry-pulverized to a particle size that does not pass through a 16-mesh sieve.

ここに、ポリカーボネート樹脂の塩化メチレン溶液に添
加する非溶媒の添加量が、少なすぎると緻密な粉粒状体
となり乾燥が困難となり、多すぎると溶媒蒸発時に微粉
化してしまいその後の取り扱いが、例えば、水との分離
の際、槙布の目を通過するとか、目づまりするとか、總
過分離機では微粉が水側に排出されるなどの不都合があ
り、極めて困難となる。
Here, if the amount of non-solvent added to the methylene chloride solution of polycarbonate resin is too small, it will become a dense granular material that will be difficult to dry, and if it is too large, it will become fine powder when the solvent evaporates, making subsequent handling difficult, for example. Separation from water is extremely difficult due to inconveniences such as passing through the mesh of the mulch cloth, clogging, and fine powder being discharged to the water side in a filtration separator.

非溶媒のうちで、アルコール系、エーテル系等は、上記
で説明した如く、加熱時アルコリシス等による樹脂の分
解が起こり易いので不適当であり、好ましいものは、前
記に例示した脂肪族炭化水素や芳香族炭化水素類である
Among non-solvents, alcohol-based, ether-based, etc. are unsuitable as they tend to cause decomposition of the resin due to alcoholysis when heated, as explained above, and preferred ones are aliphatic hydrocarbons and ethers as exemplified above. They are aromatic hydrocarbons.

非溶媒の添加量は、ポリカーボネート樹脂のSP値と非
溶媒のSP値との差、およびポリカーボネート樹脂溶液
の濃度により適宜選択されるものであり、上記に例示し
た非溶媒のなかで、例えば、ポリカーボネート樹脂溶液
の濃度が15〜25重量%の場合、SP値の差が約2.
3である叶へブタンでは樹脂液の好ましくは、0.15
〜0.58蚤倍であり、SP値の差が約1.55である
シクロヘキサンでは樹脂液の0.3〜0.6容量倍、S
P値の差が約0.9であるトルエンでは樹脂液の0.5
〜0.8容量倍の範囲より適宜選択されるが、非溶媒の
使用量およびポリカーボネート樹脂粉粒状体の安定した
生成からは、n−ヘプタンが最も好ましい。
The amount of the nonsolvent added is appropriately selected depending on the difference between the SP value of the polycarbonate resin and the SP value of the nonsolvent, and the concentration of the polycarbonate resin solution. Among the nonsolvents listed above, for example, polycarbonate When the concentration of the resin solution is 15 to 25% by weight, the difference in SP value is about 2.
3, the resin liquid is preferably 0.15
In cyclohexane, the difference in SP value is about 1.55, it is 0.3 to 0.6 times the volume of the resin liquid, S
In toluene, where the difference in P value is approximately 0.9, the difference in P value is 0.5 of the resin liquid.
Although it is appropriately selected from the range of 0.8 to 0.8 times the volume, n-heptane is most preferred in terms of the amount of nonsolvent used and stable production of polycarbonate resin powder.

上記で調製した混合液を45〜100℃の水中に滴下も
しくは噴霧し、溶媒および非溶媒を蒸発線速度が好まし
くは20 c+n/sec以下となるように蒸発させて
ポリカーボネート樹脂粉粒状体とし、そのままもしくは
水を分離した後、粉砕する。蒸発線速度が、20 cm
/secより高くなる条件で滴下もしくは噴霧した場合
には、気液界面での泡立ち現象が激しくなり、蒸発溶媒
への樹脂の同伴や気液界面でブロック状の樹脂塊が生じ
たりしがちであり好ましくない。
The liquid mixture prepared above is dropped or sprayed into water at 45 to 100°C, and the solvent and nonsolvent are evaporated so that the linear evaporation velocity is preferably 20 c+n/sec or less to obtain polycarbonate resin powder and granules, and then Or, after separating the water, crush it. Evaporation linear velocity is 20 cm
If dripping or spraying is carried out at a temperature higher than /sec, the bubbling phenomenon at the gas-liquid interface becomes more intense, and the resin tends to be entrained in the evaporated solvent and block-shaped resin lumps occur at the gas-liquid interface. Undesirable.

以上の方法により通常5mm〜10mm程度の粒子径で
、乾燥後の嵩密度が0.25〜0.45程度のポリカー
ボネート樹脂の固体状物が得られる。
By the above method, a solid polycarbonate resin having a particle size of about 5 mm to 10 mm and a bulk density of about 0.25 to 0.45 after drying can be obtained.

この固体状物はそのままでは乾燥速度が不充分であるの
で、水懸濁液のままもしくは埴過後、粉砕し乾燥する。
Since the drying rate of this solid substance is insufficient as it is, it is pulverized and dried either as an aqueous suspension or after passing through clay.

粉砕は、上記の如く、その全量の90%以上が16メツ
シュの篩を通過しない粒度になるよう行い、ついで、こ
の粉粒状体を通常、温度120〜150℃で1.0〜1
0.0時間乾燥し、乾燥後の残存塩化メチレンの量が1
100pp以下であり、かつ、その他の残存溶媒の量が
500ppm以下であるポリカーボネート樹脂粉粒状体
とする。ここに、粉体の粒子径が小さい程、乾燥は容易
となり、かつ、乾燥温度も高い程乾繰時間が短くてよい
と考えられるが、粉体の高温による固結や乾煙時の劣化
などの点から、粒度、嵩密度および乾燥温度が上記のご
とくに選択されるものである。
As mentioned above, pulverization is performed so that 90% or more of the total amount does not pass through a 16-mesh sieve, and then this powder is usually sieved at a temperature of 1.0 to 1.
After drying for 0.0 hours, the amount of residual methylene chloride after drying is 1
The polycarbonate resin powder has a content of 100 ppm or less and an amount of other residual solvents of 500 ppm or less. Here, it is thought that the smaller the particle size of the powder, the easier it is to dry, and the higher the drying temperature, the shorter the drying time. from which the particle size, bulk density and drying temperature are selected as described above.

以上の方法で調製したポリカーボネート樹脂粉粒状体は
、そのままでは嵩密度が低く、貯蔵、運搬の際、さらに
は溶融ペレット化時の生産能力が低下するなどの不都合
かあるので、乾式圧縮成形し粉砕することにより、嵩密
度のより高い粉状体とする。
The polycarbonate resin powder prepared by the above method has a low bulk density as it is, which causes disadvantages such as a decrease in production capacity during storage and transportation, and even during melt pelletization, so it is dry compression molded and pulverized. By doing so, a powder having a higher bulk density is obtained.

圧縮成形は、室温〜170℃程度の範囲で、圧力5kg
 / ci以上で適宜選択することにより、粉砕可能な
高嵩密度の板状体とすることによる。例えば、室温で圧
縮圧力1200 kg/cnfと170℃で5kg/c
lの条件で得た板状体を、粉状体の粒度分布の主成分が
20〜40メツシュとなるように粉砕したものの嵩密度
は、前者で0.58g / cc 、後者で0.6g/
CCであった。
Compression molding is performed at a pressure of 5 kg at a temperature ranging from room temperature to 170°C.
By appropriately selecting a value of /ci or more, a plate-like body having a high bulk density that can be crushed can be obtained. For example, the compression pressure is 1200 kg/cnf at room temperature and 5 kg/cnf at 170°C.
The bulk density of the plate obtained under the conditions of 1 was pulverized so that the main component of the particle size distribution of the powder was 20 to 40 mesh, the former was 0.58 g / cc, and the latter was 0.6 g / cc.
It was CC.

圧縮成形温度が170℃を越えると、僅かの加圧により
得られる板状体は高強度のものとなり粉砕が困難となる
。また、圧縮成形後の粉砕粉状体の粒度は、粉砕機の機
種、条件その他により任意に選択することが可能である
が、押出ペレット化時などに種々の添加物を均一に混合
するため、あるいは粉塵の発生による障害を無くするこ
となどのため、20〜40メツシュとなるように粉砕す
るのが好ましい。
When the compression molding temperature exceeds 170° C., the plate-like material obtained by slight pressure becomes so strong that it becomes difficult to crush it. In addition, the particle size of the pulverized powder after compression molding can be arbitrarily selected depending on the type of pulverizer, conditions, etc., but in order to uniformly mix various additives during extrusion pelletization, etc. Alternatively, in order to eliminate problems caused by the generation of dust, it is preferable to grind the material into 20 to 40 meshes.

以上の方法により得た本発明のポリカーボネート樹脂粉
状体は、通常、押出ベレット化し、成形に用いる。
The polycarbonate resin powder of the present invention obtained by the above method is usually formed into extrusion pellets and used for molding.

以下、本発明を実施例により説明する。The present invention will be explained below with reference to Examples.

〔実施例〕〔Example〕

実施例−1 攪拌機、排出口、滴下ノズル、脱気口の付いた75 A
のジャケット付き容器に水を40 A入れ、攪拌しなが
ら水温を55℃に昇温した。別に準備した樹脂濃度25
重量%、分子ff12.5X10’のポリカーボネート
樹脂のメチレンクロライド溶液201とn−ヘプタン5
1を均一に混合した混合液を、強攪拌下の上記水に、約
1時間で滴下した。滴下中の容器内の温度は55℃に維
持した。滴下終了後、直ちに容器内温度を95℃以上に
昇温し、残余の溶媒を約30分かかって蒸発除去した。
Example-1 75 A with a stirrer, discharge port, dripping nozzle, and deaeration port
40 A of water was put into a jacketed container, and the water temperature was raised to 55° C. while stirring. Separately prepared resin concentration 25
Weight %, methylene chloride solution of polycarbonate resin with molecules ff 12.5 x 10' 201 and n-heptane 5
A uniformly mixed solution of 1 was added dropwise to the above water under strong stirring over about 1 hour. The temperature inside the container was maintained at 55° C. during the dropping. Immediately after the dropwise addition was completed, the temperature inside the container was raised to 95° C. or higher, and the remaining solvent was evaporated off over a period of about 30 minutes.

ついで、容器内のポリカーボネート樹脂水懸濁液を取り
出し、濾過分離し水切りをした。このようにして得たポ
リカーボネート樹脂粉粒状体は直径5mm〜10mm程
度の大きさであった。
Then, the aqueous polycarbonate resin suspension in the container was taken out, filtered and drained. The polycarbonate resin powder thus obtained had a diameter of about 5 mm to 10 mm.

この粉粒状体を粉砕機(ターボ工業■製、ターボミルT
−400−4−J型)を用い、90%以上が16メツシ
ュの篩を通過しない程度の大きさまで粉砕し、この粉砕
品を140℃で3時間熱風循環乾繰機で乾煙した。乾燥
後の樹脂粉状体品中のメチレンクロライドは10ppm
以下、n−ヘプタンは150ppm 、嵩密度は0.3
2g / ccであった。
This powder and granule material is processed using a pulverizer (Turbo Kogyo ■, Turbo Mill T).
-400-4-J type) to a size such that 90% or more did not pass through a 16-mesh sieve, and the pulverized product was dried and smoked in a hot air circulation dryer at 140°C for 3 hours. Methylene chloride in the resin powder product after drying is 10 ppm.
Below, n-heptane is 150 ppm, bulk density is 0.3
It was 2g/cc.

この乾燥粉状体を圧縮造粒機(不二パウダル0菊製、I
IM−1600S II ri型)を用い、常温で圧縮
圧力2000 kg/ cnlで圧縮し、板状晶とし、
粗粉砕後、更に、粉砕機を用いて粉砕し、粒度分布が1
0〜30メツシュア0%、30メツシュ以下30%で、
嵩密度0、590のポリカーボネート樹脂粉状体を得た
This dry powder was processed using a compression granulator (manufactured by Fuji Powdal 0 Kiku, I
IM-1600S II ri type) at room temperature with a compression pressure of 2000 kg/cnl to form plate crystals.
After coarse pulverization, further pulverization is performed using a pulverizer until the particle size distribution is 1.
0 to 30 mesh 0%, 30 mesh or less 30%,
A polycarbonate resin powder having a bulk density of 0.590 was obtained.

〔発明の作用および効果〕[Operation and effects of the invention]

以上、発明の詳細な説明および実施例から明白な如く、
本発明の方法によれば、容易に粒子径が揃い、かつ残存
溶媒の少ない粉体が得られるものであり、熱安定性、そ
の他の優れた高品質のポリカーボネート樹脂が?昇られ
るものであり、1重々の用途に極めて好適に利用出来る
ものである。
As is clear from the detailed description and examples of the invention,
According to the method of the present invention, it is possible to easily obtain a powder with a uniform particle size and a small amount of residual solvent, and to obtain a high-quality polycarbonate resin with excellent thermal stability and other properties. It can be used very suitably for multiple purposes.

Claims (1)

【特許請求の範囲】 1 その全量の90%以上が16メッシュの篩を通過せ
ず、乾燥後の残存塩化メチレンの量が100ppm以下
であり、かつ、その他の残存溶媒の量が500ppm以
下であるポリカーボネート樹脂粉粒状体を乾式圧縮成形
し、次いで、得られた成形物を破砕することからなる残
存溶媒量が少なく、かつ、嵩密度が高いポリカーボネー
ト樹脂粉状体の製造法 2 該ポリカーボネート樹脂粉粒状体が、ポリカーボネ
ート樹脂の塩化メチレン溶液にポリカーボネート樹脂の
非溶媒を沈澱物が生じない程度の量で加え、得られた混
合液を45〜100℃に保たれた熱水中に滴下あるいは
噴霧することによって得られるものである範囲第1項記
載の製造法。 3 ポリカーボネート樹脂の非溶媒がノルマルへプタン
(n−ヘプタン)である特許請求の範囲第2項記載の製
造法。 4 樹脂量が15〜25重量%の濃度になるように予め
濃縮されたポリカーボネート樹脂の塩化メチレン溶液に
容量比で0.15〜0.5となる量のn−ヘプタンを加
え、均一になるまで攪拌混合して得られる混合液を用い
る特許請求の範囲第3項記載の製造法。 5 室温ないし170℃の温度で成形圧力5kg/cm
^2以上で乾式圧縮成形する特許請求の範囲第1項記載
の製造法。
[Claims] 1. 90% or more of the total amount does not pass through a 16 mesh sieve, the amount of methylene chloride remaining after drying is 100 ppm or less, and the amount of other residual solvents is 500 ppm or less Method 2 for producing a polycarbonate resin powder with a small amount of residual solvent and a high bulk density, which comprises dry compression molding a polycarbonate resin powder and then crushing the obtained molded product. The process involves adding a non-solvent for polycarbonate resin to a methylene chloride solution of polycarbonate resin in an amount that does not cause precipitation, and dropping or spraying the resulting mixture into hot water maintained at 45 to 100°C. The manufacturing method according to item 1, which is obtained by. 3. The manufacturing method according to claim 2, wherein the non-solvent of the polycarbonate resin is normal heptane (n-heptane). 4 Add n-heptane in an amount of 0.15 to 0.5 by volume to a methylene chloride solution of polycarbonate resin that has been concentrated in advance so that the resin amount is 15 to 25% by weight, and mix until uniform. The manufacturing method according to claim 3, which uses a liquid mixture obtained by stirring and mixing. 5 Molding pressure 5kg/cm at a temperature between room temperature and 170℃
The manufacturing method according to claim 1, which comprises dry compression molding at a temperature of ^2 or more.
JP17877586A 1986-07-31 1986-07-31 Production of polycarbonate resin powder Granted JPS6335621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17877586A JPS6335621A (en) 1986-07-31 1986-07-31 Production of polycarbonate resin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17877586A JPS6335621A (en) 1986-07-31 1986-07-31 Production of polycarbonate resin powder

Publications (2)

Publication Number Publication Date
JPS6335621A true JPS6335621A (en) 1988-02-16
JPH0512371B2 JPH0512371B2 (en) 1993-02-17

Family

ID=16054409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17877586A Granted JPS6335621A (en) 1986-07-31 1986-07-31 Production of polycarbonate resin powder

Country Status (1)

Country Link
JP (1) JPS6335621A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300485A2 (en) * 1987-07-21 1989-01-25 Mitsubishi Gas Chemical Company, Inc. Process for producing polycarbonate resin molding material with low particle content
WO1994005722A1 (en) * 1992-08-31 1994-03-17 Mitsubishi Rayon Co., Ltd. Process for producing powdery thermoplastic copolymer
WO1995008585A1 (en) * 1993-09-21 1995-03-30 Teijin Chemicals Ltd. Aromatic polycarbonate resin particulate and process for producing the same
US5760160A (en) * 1993-09-21 1998-06-02 Teijin Chemicals Ltd. Aromatic polycarbonate resin granule
WO2019188953A1 (en) * 2018-03-30 2019-10-03 株式会社Adeka Granular ultraviolet absorber and resin composition
JPWO2018216516A1 (en) * 2017-05-24 2020-04-02 三菱瓦斯化学株式会社 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322015B (en) * 2020-10-16 2022-06-24 金发科技股份有限公司 Polycarbonate/polystyrene alloy and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300485A2 (en) * 1987-07-21 1989-01-25 Mitsubishi Gas Chemical Company, Inc. Process for producing polycarbonate resin molding material with low particle content
WO1994005722A1 (en) * 1992-08-31 1994-03-17 Mitsubishi Rayon Co., Ltd. Process for producing powdery thermoplastic copolymer
US5521231A (en) * 1992-08-31 1996-05-28 Mitsubishi Rayon Co., Ltd. Process for producing thermoplastic copolymer powder
WO1995008585A1 (en) * 1993-09-21 1995-03-30 Teijin Chemicals Ltd. Aromatic polycarbonate resin particulate and process for producing the same
US5663277A (en) * 1993-09-21 1997-09-02 Teijin Chemicals, Ltd. Aromatic polycarbonate resin granule and process for the production thereof
US5760160A (en) * 1993-09-21 1998-06-02 Teijin Chemicals Ltd. Aromatic polycarbonate resin granule
US11365298B2 (en) 2017-05-24 2022-06-21 Mitsubishi Gas Chemical Company, Inc. Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
JPWO2018216516A1 (en) * 2017-05-24 2020-04-02 三菱瓦斯化学株式会社 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
WO2019188953A1 (en) * 2018-03-30 2019-10-03 株式会社Adeka Granular ultraviolet absorber and resin composition
CN112105704A (en) * 2018-03-30 2020-12-18 株式会社艾迪科 Particulate ultraviolet absorber and resin composition
JP2021050345A (en) * 2018-03-30 2021-04-01 株式会社Adeka Granular ultraviolet absorber and resin composition
JPWO2019188953A1 (en) * 2018-03-30 2020-04-30 株式会社Adeka Granular ultraviolet absorber and resin composition
CN112105704B (en) * 2018-03-30 2023-08-22 株式会社艾迪科 Particulate ultraviolet absorber and resin composition

Also Published As

Publication number Publication date
JPH0512371B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
JPH0790077A (en) Compressed high-molecular-weight polyamide particle pellet
US2895939A (en) Method for coating rubber in granular form with impalpable resinous vinyl aromatic polymer dusts
JPS6335621A (en) Production of polycarbonate resin powder
US5380594A (en) Microspherules of activated carbon and a process for manufacturing the same
US4391920A (en) Porose, pulverformige polymerteilchen
JPH0829109B2 (en) Preparation of riboflavin in the form of spray-dried granules or microgranules produced by the microbial method
US5290495A (en) Process for granulating 2,2,6,6-tetramethylpiperidine-containing light stabilizer
US4244776A (en) Fluidized bed treatment of granular potassium sorbate
WO1995008585A1 (en) Aromatic polycarbonate resin particulate and process for producing the same
US3494987A (en) Method for particulating polyacrylates
US3518329A (en) Preparation of diphenylolpropane granules
US20060165981A1 (en) Method for brightening synthetic fibers and plastics with granulated optical brighteners
EP0488199A1 (en) Process for granulating potassium salts
JP2885970B2 (en) Granulation of polycarbonate
US3591671A (en) Agglomeration of plastic particles in liquid suspension
JP2562334B2 (en) Method for producing granular seaweed extract
KR100842992B1 (en) Method of producing styrenic resin granulate and shaped articles
JP3053932B2 (en) Granulation method of tetrabromobisphenol flame retardant
JPH0564625B2 (en)
JPH11152339A (en) Manufacture of polymer granule
JPH06170206A (en) Spherical granulation method
JPS62169605A (en) Granulation of polycarbonate
JPH02212454A (en) Production of powder potassium sorbate
JPH0465822B2 (en)
JPS6232123A (en) Production of fine para-oriented aromatic polyamide particle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term