JP4632226B2 - Supercritical extraction method of powder components - Google Patents

Supercritical extraction method of powder components Download PDF

Info

Publication number
JP4632226B2
JP4632226B2 JP2003171877A JP2003171877A JP4632226B2 JP 4632226 B2 JP4632226 B2 JP 4632226B2 JP 2003171877 A JP2003171877 A JP 2003171877A JP 2003171877 A JP2003171877 A JP 2003171877A JP 4632226 B2 JP4632226 B2 JP 4632226B2
Authority
JP
Japan
Prior art keywords
pressure
extraction
powder
extractant
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2003171877A
Other languages
Japanese (ja)
Other versions
JP2005007232A (en
Inventor
仁志 伊藤
康信 南野
Original Assignee
三菱化工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化工機株式会社 filed Critical 三菱化工機株式会社
Priority to JP2003171877A priority Critical patent/JP4632226B2/en
Publication of JP2005007232A publication Critical patent/JP2005007232A/en
Application granted granted Critical
Publication of JP4632226B2 publication Critical patent/JP4632226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、粉体成分の超臨界抽出方法、詳しくは超臨界状態の抽剤を利用し、粉体が圧密化して固結することなく、粉体から所定成分を効率良く抽出する粉体成分の超臨界抽出方法に関する。
【0002】
【従来の技術】
従来、例えば圧密性を有する卵黄粉末から所定成分を抽出する方法として、例えば特許文献1に記載されたものが知られている。これは、抽出槽において、コレステロールを含有する乾燥した卵黄粉末、全卵粉、粉乳などを、高圧の超臨界二酸化炭素と接触させることで、卵黄粉末からコレステロールを抽出する方法である。
ここで、二酸化炭素の抽出槽への供給においては、加圧しながら一定流量で二酸化炭素を供給し、短時間に抽出槽の内圧を大気圧から超臨界状態の圧力まで高めるものである。
【0003】
【特許文献1】
特開昭59−135847号公報
【0004】
しかしながら、特許文献1のように、二酸化炭素を一定流量で抽出槽に供給していくと、抽出槽の内圧が低い段階では、二酸化炭素の流速が大きい。そのため、圧損が大きくなって、卵黄粉末の圧密化が進行して固結し、抽出槽内で超臨界状態となったときに超臨界二酸化炭素の流れが阻害され、所定流量での抽出が困難となり、抽出時間が長くなるか、または、抽出ができなくなる恐れがあった。しかも、卵黄粉末の充填層にクラックが発生し、その部分を超臨界二酸化炭素がショートパスして通過することにより、抽出効率が低下するなどの不都合が発生していた。
【0005】
【発明が解決しようとする課題】
この発明は、粉体が圧密化して固結することなく、粉体から所定成分を効率良く抽出することができる粉体の超臨界抽出方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1の発明は、超臨界状態の抽剤を利用して、抽出槽に充填された圧密性を有する粉体から所定成分を抽出する粉体の超臨界抽出方法において、上記抽出槽の抽剤供給部と抽剤排出部とにおける単位層高当たりの圧力差が、下記式(1)を満足するように抽剤の供給流量を制御することを特徴とする粉体の超臨界抽出方法である。
M>ΔPa・L+ΔW・L………(1)
ここで、Mは耐圧密荷重(kg/cm2
ΔPaは単位層高当たりの圧力差(kg/cm2 ・m)
ΔWは単位層高当たりの自重による負荷(kg/cm2 ・m)
Lは層高(m)である。
【0007】
粉体成分の超臨界抽出方法とは、超臨界状態の抽剤を利用して、粉体中の有用または有害な成分などを抽出分離する方法をいう。ここでは、液体と同様の抽出能力を有しながら、気体に近い拡散能力を有する超臨界状態の抽剤を使用する。そのため、抽出効率が高く、また温度や圧力を適宜選択することで、容易に抽出能力を制御することができる。さらには、抽出溶媒である抽剤を少ないエネルギーで容易かつ完全に分離することができる。
抽剤としては、例えば、二酸化炭素、メタン、エタン、プロパン、亜酸化窒素などを採用することができる。
超臨界抽出の条件は、抽剤として二酸化炭素を用いる場合においては、通常、温度が31℃以上、好ましくは31〜100℃、圧力が7.37〜40MPa、好ましくは7.37〜35MPaである。
粉体成分の抽出初期では、抽出槽内の充填層前後における圧力差を監視しながら、抽出槽の内圧を大気圧から0.98Mpaまで、10分間以上、好ましくは10〜60分間を要して昇圧する。10分間未満では二酸化炭素の流速が高くなり、圧密を生じるという不都合が生じる。
【0008】
その後、抽出槽内の充填層前後における圧力差を監視しながら、抽出槽に供給される抽剤の供給速度を徐々に高め、最終的に超臨界状態の圧力とする。
粉体としては、例えば卵黄粉末、茶葉粉末、全卵粉、粉乳などを採用することができる。
抽出槽における粉体の充填量および充填高さ(層高)は、抽出槽の形状、内容積に応じて適宜選択される。
【0009】
請求項2の発明は、上記粉体が、卵黄を乾燥させた卵黄粉である請求項1に記載の超臨界抽出方法である。
なお、粉体の乾燥方法としては、噴霧乾燥方法、凍結乾燥方法、あるいは通常の加熱乾燥方法などで行うことができるが、粉体粒子の凝結が起こりにくい噴霧乾燥方法が好ましい。
【0010】
請求項3の発明は、上記抽剤が、二酸化炭素である請求項1または請求項2に記載の超臨界抽出方法である。
抽剤を二酸化炭素とすることにより、安全性や経済性などの面から優位となる。また、原料となる粉体成分によっては、アルコールなどの適宜溶剤をエントレナーとして混合して用いることも、抽出効率向上から好ましい。
【0011】
【発明の実施の形態】
この発明によれば、粉体成分の抽出時、抽出槽の内圧が低い抽出初期では抽出槽に供給される抽剤の供給流速を低くし、その後、抽出槽内の充填層前後における圧力差を監視しながら、抽出槽に供給される抽剤の供給速度を徐々に高める。その結果、粉体が圧密化して固結することなく、粉体から所定成分を効率良く抽出することができる。
【0012】
以下、この発明の実施例を図面を参照して説明する。
図1において、10はこの発明の一実施例に係る粉体の超臨界抽出方法が適用される粉体の超臨界抽出装置で、この超臨界抽出装置10は、主に、卵黄粉末(粉体)が充填される内筒11を有した抽出槽12と、抽出槽12に供給される二酸化炭素(抽剤)を貯留する抽剤貯留槽13と、この抽剤貯留槽13および抽出槽12を連通する抽剤供給経路14とを備えている。
【0013】
以下、これらの構成体を詳細に説明する。
卵黄粉末の粒子径は10〜100μmである。抽出槽12は、円筒形状を有し、上端面に密閉蓋が設けられた槽(内容量4,000cc)で、外周面から底面にかけてジャケット15が一体形成されている。ジャケット15には、加熱媒体である温水が、下部の供給口から上部の排出口に向かって流通されている。また、抽出槽12の下端部には、ジャケット15を貫通して、排出管路16が形成されている。排出管路16を通して、卵黄粉末の成分を抽出した超臨界二酸化炭素が槽外に排出される。排出管路16の上流部分には、抽出後の超臨界二酸化炭素の排出量を調整する排出弁V1が設けられている。
【0014】
上記内筒11は円筒形状で、その開口した下端面が多孔質板18により蓋止めされている。内筒11は、抽出槽12の長さ方向の中間部一帯に収納されている。内筒11の内容量は3,000ccで、1.0kgの卵黄粉末が充填されている。これにより、内筒11の内部空間には高さ(充填高さ)0.4m、充填密度0.3g/cm3の卵黄粉末の充填層19が形成される。このように、抽出槽12の中央部に内筒11を配置することで、抽出槽12の上部内には抽剤供給部(上部空間)が、抽出槽12の下部内には抽剤排出部(下部空間)がそれぞれ形成される。これらの抽剤供給部と抽剤排出部との間には、細いバイパス管20を介して、圧力差を計測する差圧計21が外設されている。
【0015】
上記抽剤供給経路14は、抽剤貯留槽13の抽剤供給口と上記抽出槽12の抽剤供給部とを連通する管流路で、順次、その上流から下流に向かって二酸化炭素の供給圧を高めるコンプレッサー22、弁開度を制御することで二酸化炭素の供給量を調整する流量調整弁V2、抽剤供給経路14を通過する二酸化炭素の温度を高める抽剤加熱器(ヒータ)23、二酸化炭素の圧力を計測する供給圧力計24、二酸化炭素の流量を計測する流量計25がそれぞれ配設されている。
【0016】
次に、この超臨界抽出装置10を適用した卵黄粉末の超臨界抽出方法を説明する。
図1に示すように、まず抽出槽12の上部の開閉蓋を開け、卵黄粉末を内筒11に所定量だけ充填し、その後、開閉蓋を閉めて抽出槽12を密閉する。
そして、弁開度を制御しながら流量調整弁V2を徐々に開弁し、必要によりコンプレッサー22により二酸化炭素を少しずつ昇圧し、抽出槽12内に供給する。これにより、抽出槽12内の圧力を大気圧から0.98Mpaまで10分間以上(ここでは20分間)をかけて昇圧する(図2中、実線の折線グラフ)。抽剤貯留槽13として、二酸化炭素の高圧ボンベを使用したときには、コンプレッサー22による昇圧は必要なく、ボンベ圧だけで供給する。
【0017】
その後、流量調整弁V2の弁開度およびコンプレッサー22による昇圧をさらに高める。これにより、抽出槽12内の圧力を0.98Mpaから3.92Mpaまで10分間以上(ここでは20分間)をかけて昇圧する。抽剤貯留槽13として、二酸化炭素の高圧ボンベを使用したときには、コンプレッサー22による昇圧は必要なく、ボンベ圧だけで供給する。
【0018】
その後、さらに流量調整弁V2の弁開度およびコンプレッサー22による昇圧を続けて圧力を高める。しかも、ジャケット15へ加熱媒体を供給し、抽出槽12を加熱することで、抽出槽12の内圧を3.92Mpaから超臨界状態の圧力まで昇圧し、さらに昇圧を続けて圧力を高め29.4Mpaまで30分間以上(ここでは50分間)をかけて昇圧する。
その後、排出弁V1を開弁して、この圧力における超臨界状態を1時間以上(ここでは4時間)維持しながら、超臨界二酸化炭素によって卵黄粉末から油脂成分を抽出する。
排出経路16を通して排出された油脂成分を含む超臨界二酸化炭素は、図示しない抽出物分離回収装置に供給される。この装置により、超臨界二酸化炭素が分離され、油脂成分が回収される。
【0019】
前記の昇圧中、差圧計21により、抽出槽12に充填した卵黄粉末の充填層19の前後における圧力差を計測する。その圧力差が、常時、M>ΔPa・L+ΔW・Lの式を満足するように維持し、二酸化炭素の供給量を制御する。ここで、Mは耐圧密荷重(kg/cm2
)、ΔPaは抽剤供給部と抽剤排出部との圧力差ΔPと層高から求められる値であり、平均した際の単位層高当たりの圧力差(kg/cm ・m)、ΔWは単位層高当たりの自重による負荷(kg/cm ・m)、Lは層高(m)である。また、供給圧力計24の測定値に基づき、コンプレッサー22による二酸化炭素の昇圧の度合いを調整する。一方、流量計25および差圧計21の値に基づき、流量調整弁V2の弁開度を自動的に調整する。
なお、Mは圧密度測定テスト時に荷重を徐々に増加させ、圧縮率が急に増加する変曲点の値であって、卵黄粉末に対して事前に測定しておく。ΔPaは差圧計21により求めたΔPと層高から求められる値である。また、ΔWは抽出槽12に充填された卵黄粉末の重量と層高により決定される値である。さらに、Lは最初に充填したときの卵黄粉末の層高の値である。
【0020】
上記ΔPと超臨界二酸化炭素の流速とは以下の関係を有している。よって、下記式(2)を満足するようにΔPを監視することで、二酸化炭素の供給流量が決定される。
【0021】
ΔP=fc・{L・6(1−ε)/ε・Dp}・{ρ(Uf/ε)2/2gc}………(2)
【0022】
ΔPは差圧計21により求める(kg/cm2 )。fcは二酸化炭素とレイノズル数により決定される摩擦係数である。Lは最初に抽出槽12に充填したときの卵黄粉末の層高(m)である。εは卵黄粉末の充填による空隙率である。Dpは処理物の粒子径(m)である。ρは二酸化炭素の密度(kg/cm3 )、Ufは二酸化炭素の見かけの流速(m/sec)である。このUfは、Q(m3 /hr)/内筒断面積(m2 )・3,600でも求められる。Qは流速計により求める(m3 /hr)。gcは重力の加速度(kg/sec2 )である。
【0023】
ここで、fcは、レイノズル数(Rec)
Rec=ρ・Dp・uf/{6(1−ε)μ}に対して、以下のように示される。
ここで、上記μは、抽剤の粘性係数(kg/m・sec)である。
Re<1:fc=9.45/Re
Re=1〜5:fc=0.734+8.84/Re
Re=5〜100:fc={9.45+0.944(Re−0.833)0.88}/Reとなる。
このように、卵黄粉末の油脂成分の抽出開始時には、抽出槽12内への二酸化炭素の流速を低く抑え、その後、抽出槽12内での二酸化炭素の密度に応じて二酸化炭素の供給速度を徐々に高める。その結果、卵黄粉末が圧密化して固結することなく、卵黄粉末から油脂成分を効率良く抽出することができる。
また、図2中、二点鎖線の曲線グラフは、抽出初期には徐々に抽出層12の内圧を高め、3.92Mpa程度から急激な曲線を描いてその内圧を連続的に高めた別の実施例を示す。その他の構成、作用および効果は、上記図2中に示す実線グラフの場合と同じである。
【0024】
【発明の効果】
この発明の粉体の超臨界抽出方法によれば、粉体成分の抽出開始時には、抽出槽内への抽剤の供給流速を低く抑え、その後、抽出槽内での抽剤の密度に応じて抽剤の供給速度を徐々に高めるので、粉体が圧密化して固結することなく、粉体から所定成分を効率良く抽出することができる。
【図面の簡単な説明】
【図1】この発明の一実施例に係る粉体の超臨界抽出方法が適用された粉体の超臨界抽出装置の説明図である。
【図2】この発明の一実施例に係る粉体の超臨界抽出方法の運転パターンである。
【符号の説明】
10 粉体成分の超臨界抽出装置
12 抽出槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for supercritical extraction of a powder component, and more specifically, a powder component that efficiently extracts a predetermined component from a powder without the powder being consolidated and consolidated by using a supercritical extractant. The present invention relates to a supercritical extraction method.
[0002]
[Prior art]
Conventionally, for example, a method described in Patent Document 1 is known as a method of extracting a predetermined component from egg yolk powder having compactness. This is a method for extracting cholesterol from egg yolk powder by bringing dried egg yolk powder, whole egg powder, milk powder and the like containing cholesterol into contact with high-pressure supercritical carbon dioxide in an extraction tank.
Here, in supplying carbon dioxide to the extraction tank, carbon dioxide is supplied at a constant flow rate while being pressurized, and the internal pressure of the extraction tank is increased from atmospheric pressure to a supercritical pressure in a short time.
[0003]
[Patent Document 1]
JP 59-135847 A
However, as in Patent Document 1, when carbon dioxide is supplied to the extraction tank at a constant flow rate, the flow rate of carbon dioxide is large when the internal pressure of the extraction tank is low. Therefore, the pressure loss increases, the consolidation of the egg yolk powder progresses and solidifies, and when it becomes a supercritical state in the extraction tank, the flow of supercritical carbon dioxide is inhibited, and extraction at a predetermined flow rate is difficult Thus, there is a possibility that the extraction time becomes long or the extraction cannot be performed. In addition, cracks occur in the packed bed of egg yolk powder, and supercritical carbon dioxide passes through the portion in a short path, thereby causing inconveniences such as a decrease in extraction efficiency.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a supercritical extraction method of powder that can efficiently extract a predetermined component from the powder without the powder being consolidated and consolidated.
[0006]
[Means for Solving the Problems]
The invention of claim 1 is a supercritical extraction method for a powder, wherein a predetermined component is extracted from a compacted powder filled in an extraction tank by using a supercritical extractant. In the supercritical extraction method of powder, the supply flow rate of the extractant is controlled so that the pressure difference per unit layer height in the extractant supply unit and the extractant discharge unit satisfies the following formula (1): is there.
M> ΔPa · L + ΔW · L (1)
Where M is the pressure tight load (kg / cm 2 )
ΔPa is the pressure difference per unit layer height (kg / cm 2 · m)
ΔW is the load due to its own weight per unit layer height (kg / cm 2 · m)
L is the layer height (m).
[0007]
The supercritical extraction method of powder components refers to a method of extracting and separating useful or harmful components in powder using a supercritical extractant. Here, an extractant in a supercritical state having an extraction ability similar to that of a liquid and having a diffusion ability close to a gas is used. Therefore, the extraction efficiency is high, and the extraction capability can be easily controlled by appropriately selecting the temperature and pressure. Furthermore, the extractant as the extraction solvent can be easily and completely separated with less energy.
As the extractant, for example, carbon dioxide, methane, ethane, propane, nitrous oxide and the like can be employed.
The conditions for supercritical extraction are, when carbon dioxide is used as the extractant, usually the temperature is 31 ° C. or higher, preferably 31 to 100 ° C., and the pressure is 7.37 to 40 MPa, preferably 7.37 to 35 MPa. .
In the initial stage of extraction of the powder component, while monitoring the pressure difference before and after the packed bed in the extraction tank, the internal pressure of the extraction tank is required to be 10 minutes or more from atmospheric pressure to 0.98 Mpa, preferably 10 to 60 minutes. Boost the pressure. If it is less than 10 minutes, the flow rate of carbon dioxide becomes high, resulting in inconvenience that compaction occurs.
[0008]
Thereafter, while monitoring the pressure difference before and after the packed bed in the extraction tank, the supply rate of the extractant supplied to the extraction tank is gradually increased to finally set the pressure in a supercritical state.
Examples of powder that can be used include egg yolk powder, tea leaf powder, whole egg powder, and powdered milk.
The filling amount and filling height (layer height) of the powder in the extraction tank are appropriately selected according to the shape and internal volume of the extraction tank.
[0009]
The invention according to claim 2 is the supercritical extraction method according to claim 1, wherein the powder is egg yolk powder obtained by drying egg yolk.
As a method for drying the powder, a spray drying method, a freeze drying method, a normal heat drying method, or the like can be used, but a spray drying method in which the powder particles do not easily aggregate is preferable.
[0010]
A third aspect of the present invention is the supercritical extraction method according to the first or second aspect, wherein the extractant is carbon dioxide.
By using carbon dioxide as the extractant, it is advantageous in terms of safety and economy. Moreover, depending on the powder component used as a raw material, it is also preferable from the viewpoint of improving extraction efficiency that an appropriate solvent such as alcohol is used as an entrainer.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
According to this invention, when extracting the powder component, the supply flow rate of the extractant supplied to the extraction tank is lowered at the beginning of extraction when the internal pressure of the extraction tank is low, and then the pressure difference before and after the packed bed in the extraction tank is reduced. While monitoring, gradually increase the supply speed of the extract to be supplied to the extraction tank. As a result, the predetermined component can be efficiently extracted from the powder without the powder being consolidated and consolidated.
[0012]
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 10 denotes a powder supercritical extraction apparatus to which a powder supercritical extraction method according to an embodiment of the present invention is applied. This supercritical extraction apparatus 10 mainly includes egg yolk powder (powder). ) Filled with an extraction tank 12, an extractant storage tank 13 for storing carbon dioxide (extractant) supplied to the extraction tank 12, and the extract storage tank 13 and the extraction tank 12 The extraction agent supply path 14 communicates.
[0013]
Hereinafter, these components will be described in detail.
The particle size of egg yolk powder is 10 to 100 μm. The extraction tank 12 has a cylindrical shape and is a tank (with an internal capacity of 4,000 cc) provided with a sealing lid on the upper end surface, and a jacket 15 is integrally formed from the outer peripheral surface to the bottom surface. Warm water as a heating medium is circulated through the jacket 15 from the lower supply port toward the upper discharge port. A discharge pipe 16 is formed at the lower end of the extraction tank 12 through the jacket 15. Through the discharge line 16, supercritical carbon dioxide extracted from the components of egg yolk powder is discharged out of the tank. A discharge valve V <b> 1 that adjusts the discharge amount of supercritical carbon dioxide after extraction is provided in an upstream portion of the discharge pipe 16.
[0014]
The inner cylinder 11 has a cylindrical shape, and an open lower end surface is covered with a porous plate 18. The inner cylinder 11 is housed in the middle part of the extraction tank 12 in the length direction. The inner volume of the inner cylinder 11 is 3,000 cc and is filled with 1.0 kg of egg yolk powder. As a result, a filling layer 19 of egg yolk powder having a height (filling height) of 0.4 m and a filling density of 0.3 g / cm 3 is formed in the inner space of the inner cylinder 11. Thus, by arranging the inner cylinder 11 at the center of the extraction tank 12, the extractant supply part (upper space) is in the upper part of the extraction tank 12, and the extractant discharge part is in the lower part of the extraction tank 12. (Lower space) is formed. A differential pressure gauge 21 for measuring a pressure difference is provided outside the extractant supply unit and the extractant discharge unit via a thin bypass pipe 20.
[0015]
The extract supply path 14 is a pipe channel that communicates the extract supply port of the extract storage tank 13 and the extract supply part of the extract tank 12, and sequentially supplies carbon dioxide from the upstream toward the downstream. A compressor 22 for increasing the pressure, a flow rate adjusting valve V2 for adjusting the supply amount of carbon dioxide by controlling the valve opening, an extractant heater (heater) 23 for increasing the temperature of carbon dioxide passing through the extractant supply path 14, A supply pressure gauge 24 that measures the pressure of carbon dioxide and a flow meter 25 that measures the flow rate of carbon dioxide are provided.
[0016]
Next, a supercritical extraction method of egg yolk powder to which the supercritical extraction apparatus 10 is applied will be described.
As shown in FIG. 1, first, the open / close lid at the top of the extraction tank 12 is opened, egg yolk powder is filled into the inner cylinder 11 by a predetermined amount, and then the open / close lid is closed to seal the extraction tank 12.
Then, the flow rate adjustment valve V2 is gradually opened while controlling the valve opening, and the carbon dioxide is gradually increased by the compressor 22 as necessary, and supplied into the extraction tank 12. Thereby, the pressure in the extraction tank 12 is increased from atmospheric pressure to 0.98 Mpa over 10 minutes (here, 20 minutes) (indicated by a solid line graph in FIG. 2). When a high-pressure cylinder of carbon dioxide is used as the extractant storage tank 13, pressure increase by the compressor 22 is not necessary, and supply is performed only by the cylinder pressure.
[0017]
Thereafter, the valve opening degree of the flow rate adjusting valve V2 and the pressure increase by the compressor 22 are further increased. Thereby, the pressure in the extraction tank 12 is increased from 0.98 Mpa to 3.92 Mpa over 10 minutes (here, 20 minutes). When a high-pressure cylinder of carbon dioxide is used as the extractant storage tank 13, pressure increase by the compressor 22 is not necessary, and supply is performed only by the cylinder pressure.
[0018]
Thereafter, the valve opening degree of the flow rate adjusting valve V2 and the pressure increase by the compressor 22 are continued to increase the pressure. Moreover, by supplying a heating medium to the jacket 15 and heating the extraction tank 12, the internal pressure of the extraction tank 12 is increased from 3.92 Mpa to a supercritical pressure, and the pressure is further increased by increasing the pressure to 29.4 Mpa. The pressure is increased over 30 minutes (here 50 minutes).
Thereafter, the discharge valve V1 is opened, and the fat component is extracted from the egg yolk powder with supercritical carbon dioxide while maintaining the supercritical state at this pressure for 1 hour or longer (here, 4 hours).
The supercritical carbon dioxide containing the fat and oil component discharged through the discharge path 16 is supplied to an extract separation and recovery device (not shown). With this apparatus, supercritical carbon dioxide is separated and the oil and fat component is recovered.
[0019]
During the pressurization, the pressure difference between the front and back of the packed bed 19 of egg yolk powder filled in the extraction tank 12 is measured by the differential pressure gauge 21. The pressure difference is always maintained so as to satisfy the equation of M> ΔPa · L + ΔW · L, and the supply amount of carbon dioxide is controlled. Here, M is a pressure tight load (kg / cm 2
), ΔPa is a value obtained from the pressure difference ΔP between the extractant supply part and the extractant discharge part and the layer height, the pressure difference per unit layer height (kg / cm 2 · m) when averaged , ΔW is The load (kg / cm 2 · m) due to its own weight per unit layer height, L is the layer height (m). Further, the degree of pressure increase of carbon dioxide by the compressor 22 is adjusted based on the measured value of the supply pressure gauge 24. On the other hand, based on the values of the flow meter 25 and the differential pressure gauge 21, the valve opening degree of the flow rate adjustment valve V2 is automatically adjusted.
Note that M is a value of an inflection point at which the load is gradually increased during the pressure density measurement test and the compressibility rapidly increases, and is measured in advance for the egg yolk powder. ΔPa is a value obtained from ΔP obtained by the differential pressure gauge 21 and the bed height. ΔW is a value determined by the weight and layer height of the egg yolk powder filled in the extraction tank 12. Furthermore, L is the value of the layer height of the egg yolk powder when it is first filled.
[0020]
The ΔP and the flow rate of supercritical carbon dioxide have the following relationship. Therefore, the supply flow rate of carbon dioxide is determined by monitoring ΔP so as to satisfy the following formula (2).
[0021]
ΔP = f c · {L · 6 (1−ε) / ε · D p } · {ρ (U f / ε) 2 / 2g c } (2)
[0022]
ΔP is determined by the differential pressure gauge 21 (kg / cm 2 ). f c is the coefficient of friction is determined by the carbon dioxide and Reynolds number. L is the layer height (m) of the egg yolk powder when the extraction tank 12 is initially filled. ε is the porosity due to filling with egg yolk powder. D p is the particle size (m) of the processed product. ρ is the density of carbon dioxide (kg / cm 3 ), and U f is the apparent flow rate of carbon dioxide (m / sec). This U f is also obtained by Q (m 3 / hr) / inner cylinder cross-sectional area (m 2 ) · 3,600. Q is determined by an anemometer (m 3 / hr). g c is the acceleration of gravity (kg / sec 2 ).
[0023]
Where f c is the number of ray nozzles (Rec)
For Rec = ρ · Dp · uf / {6 (1-ε) μ}, it is shown as follows.
Here, μ is the viscosity coefficient (kg / m · sec) of the extractant.
Re <1: fc = 9.45 / Re
Re = 1 to 5: fc = 0.734 + 8.84 / Re
Re = 5 to 100: fc = {9.45 + 0.944 (Re−0.833) 0.88 } / Re.
Thus, at the start of extraction of the oil and fat component of egg yolk powder, the flow rate of carbon dioxide into the extraction tank 12 is kept low, and then the supply rate of carbon dioxide is gradually increased according to the density of carbon dioxide in the extraction tank 12. To increase. As a result, the fat component can be efficiently extracted from the egg yolk powder without the egg yolk powder being consolidated and consolidated.
In FIG. 2, the alternate long and two short dashes curve graph shows another implementation in which the internal pressure of the extraction layer 12 is gradually increased in the initial stage of extraction, and the internal pressure is continuously increased by drawing a steep curve from about 3.92 Mpa. An example is shown. Other configurations, operations, and effects are the same as those of the solid line graph shown in FIG.
[0024]
【The invention's effect】
According to the powder supercritical extraction method of the present invention, at the start of extraction of the powder component, the supply flow rate of the extractant into the extraction tank is kept low, and then, depending on the density of the extractant in the extraction tank. Since the supply speed of the extractant is gradually increased, the predetermined component can be efficiently extracted from the powder without the powder being consolidated and consolidated.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a powder supercritical extraction apparatus to which a powder supercritical extraction method according to an embodiment of the present invention is applied.
FIG. 2 is an operation pattern of a supercritical extraction method for powder according to one embodiment of the present invention.
[Explanation of symbols]
10 Supercritical extraction equipment for powder components 12 Extraction tank

Claims (3)

  1. 超臨界状態の二酸化炭素を抽剤に利用して、抽出槽に充填された卵黄を乾燥させた卵黄粉末から所定成分を抽出する粉体成分の超臨界抽出方法において、
    上記抽出槽の抽剤供給部と抽剤排出部とにおける単位層高当たりの圧力差が、下記式(1)を満足するように抽剤の供給流量を制御し、
    抽出槽内の圧力を大気圧から0.98Mpaまで10分間以上をかけて昇圧することを特徴とする粉体成分の超臨界抽出方法。
    M>ΔPa・L+ΔW・L………(1)
    ここで、Mは耐圧密荷重(kg/cm )であり、圧密度測定テスト時に荷重を徐々に増加させ、圧縮率が急に増加する変曲点の値であって、卵黄粉末に対して事前に測定するもの:
    ΔPaは抽剤供給部と抽剤排出部との圧力差ΔPと層高から求められる値であり、平均した際の単位層高当たりの圧力差(kg/cm ・m):
    ΔWは単位層高当たりの自重による負荷(kg/cm ・m):
    Lは層高(m)。
    In the supercritical extraction method of the powder component using the carbon dioxide in the supercritical state as the extractant, the predetermined component is extracted from the egg yolk powder obtained by drying the yolk filled in the extraction tank.
    The supply flow rate of the extractant is controlled so that the pressure difference per unit layer height in the extractant supply part and the extractant discharge part of the extraction tank satisfies the following formula (1) :
    A supercritical extraction method for powder components , wherein the pressure in the extraction tank is increased from atmospheric pressure to 0.98 Mpa over 10 minutes .
    M> ΔPa · L + ΔW · L (1)
    Here, M is a pressure tight load (kg / cm 2 ), which is a value of an inflection point at which the load is gradually increased and the compressibility rapidly increases during the pressure density measurement test, Things to measure in advance:
    ΔPa is a value obtained from the pressure difference ΔP between the extractant supply part and the extractant discharge part and the layer height, and the pressure difference per unit layer height (kg / cm 2 · m) when averaged:
    ΔW is the load due to its own weight per unit layer height (kg / cm 2 · m):
    L is the bed height (m).
  2. 抽出槽内の圧力を0.98Mpaから3.92Mpaまで10分間以上をかけて昇圧する、請求項1に記載の粉体成分の超臨界抽出方法。The method for supercritical extraction of powder components according to claim 1, wherein the pressure in the extraction tank is increased from 0.98 Mpa to 3.92 Mpa over 10 minutes.
  3. 抽出槽内の圧力を3.92Mpaから29.4Mpaまで30分間以上をかけて昇圧する、請求項1または2記載の粉体成分の超臨界抽出方法。The method of supercritical extraction of a powder component according to claim 1 or 2, wherein the pressure in the extraction tank is increased from 3.92 Mpa to 29.4 Mpa over 30 minutes.
JP2003171877A 2003-06-17 2003-06-17 Supercritical extraction method of powder components Active JP4632226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171877A JP4632226B2 (en) 2003-06-17 2003-06-17 Supercritical extraction method of powder components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171877A JP4632226B2 (en) 2003-06-17 2003-06-17 Supercritical extraction method of powder components

Publications (2)

Publication Number Publication Date
JP2005007232A JP2005007232A (en) 2005-01-13
JP4632226B2 true JP4632226B2 (en) 2011-02-23

Family

ID=34096206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171877A Active JP4632226B2 (en) 2003-06-17 2003-06-17 Supercritical extraction method of powder components

Country Status (1)

Country Link
JP (1) JP4632226B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042508B2 (en) * 2006-02-28 2012-10-03 味の素株式会社 Method for producing extract
JP5334292B2 (en) * 2008-10-22 2013-11-06 花王株式会社 Method for producing composite particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117904A (en) * 1988-10-26 1990-05-02 Asahi Denka Kogyo Kk Extraction
JPH06134203A (en) * 1992-10-29 1994-05-17 Japan Tobacco Inc Interior container for soluble matter extraction device
JPH07507930A (en) * 1992-05-15 1995-09-07

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117904A (en) * 1988-10-26 1990-05-02 Asahi Denka Kogyo Kk Extraction
JPH07507930A (en) * 1992-05-15 1995-09-07
JPH06134203A (en) * 1992-10-29 1994-05-17 Japan Tobacco Inc Interior container for soluble matter extraction device

Also Published As

Publication number Publication date
JP2005007232A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US9371177B2 (en) Coffee pod having a flexible microporous or microperforated casing
US20180128092A1 (en) System and apparatus for creating a liquid carbon dioxide fracturing fluid
US10315846B2 (en) Methods for storing hydrogen in a salt cavern
CN103069261B (en) Leak inspection device and leak inspection method
RU2337602C2 (en) Drinks preparation device
RU2116737C1 (en) Tobacco swelling method (versions), tobacco product and tobacco impregnating apparatus
TW199884B (en)
EP2027362B1 (en) Liquified petroleum gas fracturing system
US4898673A (en) Dynamic supercritical fluid extraction system
Seol et al. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand
KR101645934B1 (en) Instant drink powder
JP5432190B2 (en) Beverage cartridge
Enríquez et al. The quasi-static growth of CO2 bubbles
AU696717B2 (en) High proppant concentration/high CO2 ratio fracturing system
Kumoro et al. Supercritical carbon dioxide extraction of andrographolide from Andrographis paniculata: effect of the solvent flow rate, pressure, and temperature
ES2552064T3 (en) Procedure for supplying a coffee beverage by centrifugation in a beverage production device
Michaels et al. Permeability of kaolinite
US7152637B2 (en) Method and apparatus for dispensing compressed gas
Wiegand et al. Interfacial tension between water and non‐polar fluids up to 473 K and 2800 bar
Taber The mechanics of frost heaving
JP2898076B2 (en) Infused coffee pack and its manufacturing method
CN101854810B (en) Instant beverage product
US7875304B2 (en) Method of extracting a consumable material
EP1336843A1 (en) Protection of a chromatographic bed in chromatography devices with dynamic axial compression
US7964029B2 (en) Process flowstream collection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

R150 Certificate of patent or registration of utility model

Ref document number: 4632226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250