JPH0211783A - Method of monitoring contact corrosion of different metals and corrosion resistance tester - Google Patents

Method of monitoring contact corrosion of different metals and corrosion resistance tester

Info

Publication number
JPH0211783A
JPH0211783A JP63163066A JP16306688A JPH0211783A JP H0211783 A JPH0211783 A JP H0211783A JP 63163066 A JP63163066 A JP 63163066A JP 16306688 A JP16306688 A JP 16306688A JP H0211783 A JPH0211783 A JP H0211783A
Authority
JP
Japan
Prior art keywords
cathode
metal
sample
anode
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63163066A
Other languages
Japanese (ja)
Other versions
JP2690947B2 (en
Inventor
Osami Seri
修美 世利
Shuichi Furuya
古谷 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AREFU KK
Furukawa Aluminum Co Ltd
Original Assignee
AREFU KK
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AREFU KK, Furukawa Aluminum Co Ltd filed Critical AREFU KK
Priority to JP63163066A priority Critical patent/JP2690947B2/en
Publication of JPH0211783A publication Critical patent/JPH0211783A/en
Application granted granted Critical
Publication of JP2690947B2 publication Critical patent/JP2690947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To rapidly decide the corrosiveness of a bi-metal can by immersing an anode sample metal and a cathode nobler than said metal into a test soln. and determining the anode polarization resistance on the surface of the sample metal by increasing or decreasing the cathode area by a specific means and by using the specific equation. CONSTITUTION:The sample electrode (anode) 3 consisting of an Al alloy material and the 1st cathode 4 consisting of an iron material are immersed into the test soln. 2 in an electrolytic cell 1 at the time of deciding the contact corrosion of the bi-metal can having a can body which consists of the iron material and a can cap which consists of the Al alloy material. The 2nd cathode 4 having the same nature as the nature of the 1st cathode 4 is simultaneously so provided as to be electrically turned on-off with the 1st cathode 4 to increase or decrease the cathode area. The displacement of galvanic current (Ig) and sample metal potential (Em) is calculated and recorded by a recorder 26 and the anode polarization resistance (Ha) on the surface of the sample metal is determined from the equation by a personal computer 27 and is displayed on an X-Y plotter 26. The corrosion resistance of the different metals to the contact corrosion is easily and rapidly decided with high accuracy in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、バイメタル化におけるA1合金と鉄の接触の
ように異種金属同志の接触による腐食性を迅速に判定す
る耐食性測定方法とそれに用いる装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a corrosion resistance measuring method and apparatus for quickly determining the corrosivity caused by contact between dissimilar metals, such as contact between A1 alloy and iron in bimetalization. Regarding.

(従来の技術) 食缶、飲用化として近年、缶胴を鉄材、缶蓋をA1合金
材としたバイメタル化か多用されている。このような缶
においてはいわゆる異種金属接触腐食を起こしゃずいと
いう問題かある。異種金属接触腐食とは電位の卑な金属
と貴な金属とか水溶液中て接触する場合、卑な金属かア
ノード、貴な金属かカソードとなって電気化学的な回路
か形成され、アノードとなる方か腐食を受ける腐食のこ
とである。
(Prior Art) In recent years, bimetallic cans, in which the can bodies are made of iron and the can lids are made of A1 alloy, have been widely used for food and drinking cans. In such cans, there is a problem that so-called dissimilar metal contact corrosion may occur. Contact corrosion of dissimilar metals is when a metal with a base potential comes into contact with a noble metal in an aqueous solution, the base metal becomes an anode and the noble metal becomes a cathode, forming an electrochemical circuit and forming an anode. This refers to corrosion caused by corrosion.

例えばA文合金と鉄か接触した場合には電位の卑なA1
合金かアノードとなって腐食される。この缶胴か鉄材、
缶蓋かA1合金のバイメタル化においで、A見合金蓋の
接触腐食に対する耐食性はA文合金組成、缶内容物であ
る水溶液の塩素イオン(0文−)濃度、溶存酸素量など
に依存している。
For example, when an A-pattern alloy comes into contact with iron, A1, which has a base potential,
It becomes an alloy or an anode and corrodes. This can body or iron material,
When converting can lids to bimetallic A1 alloys, the contact corrosion resistance of A-type alloy lids depends on the A-type alloy composition, the chlorine ion (0-type) concentration of the aqueous solution that is the contents of the can, the amount of dissolved oxygen, etc. There is.

したかってバイメタル化を食缶、飲用化として使用する
場合、これらの条件について耐食性の試験か必要となる
。そこで従来耐食性を判定する方法としで、実際の缶を
多数使用したパックテストか使用されてきた。また、バ
イメタル化に使用される金属を電極としてそれぞれの照
合電極に対する電位差を測定し、それから両金属間の接
触時の電位差を知り、接触腐食の起こりやすさを推定す
る方法などがある。
Therefore, when bimetallic products are used as food cans or drinking cans, it is necessary to conduct corrosion resistance tests under these conditions. Conventionally, the method of determining corrosion resistance has been to use a pack test using a large number of actual cans. Another method is to use the metal used for bimetalization as an electrode and measure the potential difference with respect to each reference electrode, then find out the potential difference when the two metals come into contact, and estimate the likelihood of contact corrosion.

(発明か解決しようとする課題) しかし、上記バックテス1〜による方法は、結果につい
ては信頼性はあるか、膨大な数の実缶と長い試験期間(
3〜12ケ月)か必要であり、簡便に実施てきる方法て
はない。また両金属の照合電極に対する電位差をそれぞ
れ測定する方法は個々に行う測定操作が面倒てあり、ま
た、実際の両金属の接触腐食に対しては精度、信頼性の
点て良い方法とは言えなかった。
(Problem to be solved by the invention) However, the results of the above-mentioned backtest methods 1 to 1 are not reliable;
It requires 3 to 12 months), and there is no easy way to do it. In addition, the method of measuring the potential difference of both metals with respect to reference electrodes requires individual measurement operations, and is not a good method in terms of accuracy and reliability for actual contact corrosion of both metals. Ta.

したかって本発明の目的は簡易て精度の高い耐食性測定
方法(モニタリンク方法)を提供することにある。
Therefore, an object of the present invention is to provide a simple and highly accurate corrosion resistance measuring method (monitor link method).

また本発明の目的は耐食性に対する金属の合金組成1種
類、溶液のイオン濃度などの影響について簡便に測定を
行える試験装置を提供することにある。
Another object of the present invention is to provide a test device that can easily measure the influence of one type of metal alloy composition, the ion concentration of a solution, etc. on corrosion resistance.

(課題を解決するための手段) 本発明者は上記の目的を達成するため種々研究を重ねた
結果、試験したい溶液、アノードとなる金属(例えばA
1合金)および第1カソード極を電解槽にセットし、別
に第2カソードを用いてカソード面積を増減させること
により、変化するガルバニック電流(I g)と試料電
極電位(A文合金電位)の変位からAfL合金表面の分
極抵抗(Ha)を観察したとき試料金属(アルミニウム
合金)表面が耐食域(不働態城)にある時には分極抵抗
(Ha)か腐食域(孔食城)の時の数十倍〜数千倍又は
それ以上の値を示すこと、また孔食時には分極抵抗(H
a)かほとんど0に急減することを見い出し、この知見
に基づき本発明をなすに至った。
(Means for Solving the Problem) As a result of various studies to achieve the above object, the present inventor has discovered that the solution to be tested, the metal that will be the anode (for example, A
1 alloy) and the first cathode electrode are set in an electrolytic bath, and a second cathode is used separately to increase or decrease the cathode area, thereby changing the galvanic current (I g) and the displacement of the sample electrode potential (A alloy potential). When observing the polarization resistance (Ha) of the AfL alloy surface from Polarization resistance (H
We have found that a) suddenly decreases to almost 0, and based on this knowledge, we have accomplished the present invention.

すなわち本発明は、試験溶液中にアノードとなる試料金
属と該金属より貴な自然電位を有する金属からなる第1
カソードを浸漬し、この第1カソードと同時に浸漬した
同材質の第2カッ−1〜とを電気的にON−OFFさせ
ることによりカソード面積を増減させ、ガルバニック電
流(I g)と試料金属電位(E m )の変位より試
料金属表面のアノード分極抵抗(Ha)を式 により求めることを特徴とする異種金属接触腐食モニタ
リンク法を提供するものである。
That is, the present invention provides a first method comprising a sample metal to serve as an anode and a metal having a nobler natural potential than the sample metal in a test solution.
The cathode area is increased or decreased by immersing the cathode and electrically turning on and off the first cathode and second cups 1 to 1 made of the same material that were immersed at the same time, and the galvanic current (I g) and sample metal potential ( The present invention provides a dissimilar metal catalytic corrosion monitoring link method characterized in that the anode polarization resistance (Ha) of the sample metal surface is calculated from the displacement of E m ) using a formula.

さらに本発明は試験溶液を入れる電解槽にアノードとな
る試料金属と該金属より貴な自然電位を有する材料から
なる第1カソードと、さらに第1カソードと同材質から
なり、第1カソードとON−OFF自在のスイッチを介
して接続した第2カソードとを設け、第2カソードのO
NOFFによるガルバニック電流(Ig)の変化を無抵
抗電流計で、また試料電位(Em)の変化を電圧計て測
定し、アノード分極抵抗(Ha)を求めるようにしたこ
とを特徴とする金属耐食性試験装置を提供するものであ
る。
Furthermore, in the present invention, an electrolytic cell containing a test solution is provided with a sample metal serving as an anode, a first cathode made of a material having a natural potential nobler than the metal, and further made of the same material as the first cathode, and an ON- A second cathode connected via a switch that can be turned off freely is provided, and the O of the second cathode is
A metal corrosion resistance test characterized by measuring changes in galvanic current (Ig) due to NOFF with a non-resistance ammeter and changes in sample potential (Em) with a voltmeter to determine anode polarization resistance (Ha). It provides equipment.

本発明において電解槽は通常、ガラス、ステンレス、プ
ラスチックなどより構成されるかこれに制限されるもの
てはない。
In the present invention, the electrolytic cell is usually made of glass, stainless steel, plastic, etc., but is not limited thereto.

本発明方法を適用するアノードとなる試料金属には特に
制限はないか、例えばA1合金、炭素鋼、ステンレス鋼
、銅合金などが挙げられる。第1カソードの材料はAI
合合金缶蓋色バイメタル化のA文合金の耐食性を試験す
る場合、スズメツキ鋼板又はティンフリースディール鋼
板を用いることになる。照合電極は、飽和カロメル電極
、塩化銀電極などを用いるのか好ましい。
There are no particular restrictions on the sample metal that becomes the anode to which the method of the present invention is applied; examples thereof include A1 alloy, carbon steel, stainless steel, copper alloy, and the like. The material of the first cathode is AI
When testing the corrosion resistance of A pattern alloy with bimetallic alloy can lid color, a tin plated steel plate or a tin fried steel plate will be used. It is preferable to use a saturated calomel electrode, a silver chloride electrode, or the like as the reference electrode.

本発明方法に用いられるカソードの大きさは第1カソー
ドと第2カソードの表面積比として1:0.2からl 
lの間か好ましく、1・0.5かより好ましい。またア
ノードと第1カッ−1〜との表面積比は製品にて使用さ
れているアノード側材料とカソード側材料の面積比を参
考にして決めるのが好ましい。
The size of the cathode used in the method of the present invention is from 1:0.2 to l as the surface area ratio of the first cathode to the second cathode.
It is preferably between 1 and 0.5, and more preferably between 1 and 0.5. The surface area ratio between the anode and the first cup 1 is preferably determined with reference to the area ratio between the anode side material and the cathode side material used in the product.

スイッチ開閉(ON−OFF)の間隔はあまり短いと測
定か不正確になり、あまり長すぎると測定時間か長くな
る。20〜120分ぐらいか好ましい。
If the switch opening/closing (ON-OFF) interval is too short, the measurement will be inaccurate, and if it is too long, the measurement time will become long. It is preferably about 20 to 120 minutes.

なお、試料極(アノード)をセットしてから測定開始す
るまての時間、大気中て測定する場合にはセット直後か
ら測定可能であるが、脱気下又は雰囲気ガスを調整して
いる場合には試料極セット後〜3時間以内は測定か真の
値を示さないことかあるので、測定開始後3〜4時間後
のアノード分極抵抗Haて判定するのか好ましい。
Note that the time from setting the sample electrode (anode) to starting the measurement.When measuring in the atmosphere, it is possible to measure immediately after setting, but when the sample electrode (anode) is set and the atmospheric gas is adjusted. Since it may not show the true value within 3 hours after setting the sample electrode, it is preferable to judge the anode polarization resistance Ha 3 to 4 hours after the start of measurement.

本発明方法においては、上記のように試料金属からなる
アノードの分極抵抗(Ha)を測定するか試料金属か耐
食性の時は高い分極抵抗値を示すか、腐食か開始すると
急激に低下する。これにより試料金属表面か耐食域(不
4@態域)にあるか腐食域(孔食域)にあるがを迅速に
判定できる。すなわち、試験したい環境中てHaを測定
することにより、試料極材料か耐食域にあるか腐食域に
あるかを測定することによりその耐食性を簡便に知るこ
とかてきる。
In the method of the present invention, the polarization resistance (Ha) of the anode made of the sample metal is measured as described above.When the sample metal is corrosion resistant, it shows a high polarization resistance value, or when corrosion starts, it rapidly decreases. This makes it possible to quickly determine whether the sample metal surface is in a corrosion-resistant region (non-corrosion region) or in a corroded region (pitting region). That is, by measuring Ha in the environment to be tested, it is possible to easily know the corrosion resistance of the sample electrode material by determining whether it is in the corrosion-resistant region or in the corrosion-resistant region.

また本発明においては必要に応して電解槽を恒温装置に
入れて試験溶液の温度を制御することかてきる。
Further, in the present invention, the temperature of the test solution can be controlled by placing the electrolytic cell in a constant temperature device, if necessary.

さらに本発明においてはスイッチの開閉と、これに連動
して行うIg、Emの計測と、さらにHaの計算表示と
を自動計測システムを装備して行うようにしてもよい。
Further, in the present invention, an automatic measurement system may be installed to perform the opening/closing of the switch, the measurement of Ig and Em in conjunction with this, and the calculation display of Ha.

この場合自動計測システム自体はパソコンなどによるも
のて公知のものを用いることかてきる。このようにすれ
ば測定の自動化か計れる。
In this case, the automatic measurement system itself may be a known one based on a personal computer or the like. In this way, you can automate the measurement.

なお、前述の如く、異種金属の接触腐食は介在する水溶
液の各種イオン濃度、水溶液中の溶存酸素量などにも依
存するか、本発明方法によれば、これらの条件を変える
ことにより、異種金属接触腐食試験を行い、これらの影
響を試験することかてきる。
As mentioned above, the contact corrosion of dissimilar metals depends on the concentration of various ions in the intervening aqueous solution, the amount of dissolved oxygen in the aqueous solution, etc. According to the method of the present invention, by changing these conditions, the corrosion of dissimilar metals It is possible to test these effects by conducting a contact corrosion test.

(実施例) 次に本発明方法の実施に用いるのに好適な測定装置の1
例を図面に従って説明する。第1図は測定装置の断面図
てあり、図中1は試験液2を入れる電解槽、3は試料金
属で構成した試料極(アノード)、4は試料金属より貴
な自然電位を有する材料からなる第1カソード、5は第
1カソード4と同材質の第2カソードてあり、試料極3
と第1カソード4を、無抵抗電流計Z−Aを介在させて
電気的に接続し、第2カソード5をONOFF自在のス
イッチSWを介して電気的に接続する。
(Example) Next, one of the measuring devices suitable for use in carrying out the method of the present invention
An example will be explained according to the drawings. Figure 1 is a cross-sectional view of the measuring device. In the figure, 1 is an electrolytic tank containing test liquid 2, 3 is a sample electrode (anode) made of sample metal, and 4 is made of a material with a higher natural potential than the sample metal. A first cathode 5 is made of the same material as the first cathode 4, and a second cathode 5 is made of the same material as the sample electrode 3.
and the first cathode 4 are electrically connected via a non-resistance ammeter Z-A, and the second cathode 5 is electrically connected via a switch SW which can be turned on and off.

6は照合電極であり、それに接続した電圧計Vにより、
試料電位の変化を測定する。
6 is a reference electrode, and the voltmeter V connected to it indicates that
Measure the change in sample potential.

7はガスボンベにあり、これより電解槽1の内部空間8
にライン9を通しで、ガス(窒素ガス、アルゴンガスな
と)を送り込む。10は流量計、11はバルブである。
7 is in the gas cylinder, and from this the internal space 8 of the electrolytic cell 1
Gas (nitrogen gas, argon gas, etc.) is sent through line 9. 10 is a flow meter, and 11 is a valve.

一方、12はガスシール装置てあり、電解槽よりのガス
は管13.14を介して排出される。図示の如く電解槽
1は好ましくは上部密閉構造である。上面1aと前記カ
ソード、アノード等を電気的に接続する接続線との間は
電気絶縁性を有するシール構造15としである。
On the other hand, 12 is a gas sealing device, and gas from the electrolytic cell is discharged through pipes 13 and 14. As shown in the figure, the electrolytic cell 1 preferably has a top-closed structure. A sealing structure 15 having electrical insulation properties is provided between the upper surface 1a and a connecting wire that electrically connects the cathode, anode, etc.

また本発明の電解槽には図示のように適宜攪拌装置、温
度制御装置などを設けてもよい。図中16は攪拌機てあ
り、17は温度計、18は温度計と接続19L/た温度
コントローラー、20は温調付きヒーターである。この
ようにして攪拌機により試験液2を攪拌するとともに、
測定温度を検知した温度コントローラーにより、温調付
きヒーターをON−OFFさせて電解槽1の試験液を所
定温度に保持する。攪拌装置としてはマグネットスタラ
ーを用いてもよい。
Further, the electrolytic cell of the present invention may be appropriately provided with a stirring device, a temperature control device, etc. as shown in the drawings. In the figure, 16 is a stirrer, 17 is a thermometer, 18 is a temperature controller connected to the thermometer (19L/19L), and 20 is a heater with temperature control. In this way, while stirring the test liquid 2 with the stirrer,
The temperature controller detects the measured temperature and turns on and off the temperature-controlled heater to maintain the test liquid in the electrolytic cell 1 at a predetermined temperature. A magnetic stirrer may be used as the stirring device.

次に、第2図に自動計測システムとした場合の本発明の
測定装置の1例の模式図を示す。図中、電解槽部分の構
成は基本的に第1図と同しであるのて要部のみを示す。
Next, FIG. 2 shows a schematic diagram of an example of the measuring device of the present invention when used as an automatic measuring system. In the figure, the structure of the electrolytic cell portion is basically the same as that in FIG. 1, so only the main parts are shown.

第2図において説明の重複を省くため第1図と同しもの
を同符号て示し、図中、攪拌装置としてマクネットスタ
ラ−21を用いている。22は第1カソードと第2カソ
ードをON−OFFさせるタイマー付電磁リレーを示し
、23は無抵抗電流計、24は電位計てありこれらをI
g、Emの計測記録用のレコーダー25に接続し、この
レコーダーをX−Yプロッター26を有しHaの計算表
示を行う、パソコン27に接続してシステムを形成する
In FIG. 2, the same parts as in FIG. 1 are indicated by the same reference numerals to avoid duplication of explanation, and in the figure, a Macnet stirrer 21 is used as the stirring device. 22 is an electromagnetic relay with a timer that turns on and off the first cathode and the second cathode, 23 is a non-resistance ammeter, and 24 is an electrometer.
A system is formed by connecting a recorder 25 for recording measurements of g and Em, and connecting this recorder to a personal computer 27 having an X-Y plotter 26 and displaying calculations of Ha.

本発明を実施例に基づきさらに詳細に説明する。以下の
実施例は第2図に示す装置を用いて行った。
The present invention will be explained in more detail based on examples. The following examples were carried out using the apparatus shown in FIG.

実施例1 高純度窒素ガスで十分溶液中の酸素を脱気したのち、試
験液として0.1%NaC1水溶液(温度25℃)を用
い、試料極として5052A1合金(表面積1crrI
′)を、第1カソードとしてスズメツキ鋼板(3crn
’)を、第2カソードとしてスズメツキ鋼板(2c r
n’ )を、それぞれ用いて各電極類を装置にセットし
、3時間放置後測定を開始した。測定は下記条件にて行
った。
Example 1 After sufficiently degassing the oxygen in the solution with high-purity nitrogen gas, a 0.1% NaCl aqueous solution (temperature 25°C) was used as the test liquid, and a 5052A1 alloy (surface area 1crrI) was used as the sample electrode.
') was used as the first cathode using a tin plated steel plate (3crn
') as the second cathode, and a tin plated steel plate (2c r
n'), each electrode was set in the device, and the measurement was started after being left for 3 hours. The measurements were conducted under the following conditions.

■スイッチの開閉 30分間隔て自動開閉 ■Haの測定 上記開閉か開始してから5分間隔てEm、Igを測定し
、Ha=ΔE m /ΔIgをその都度計算し、計算値
の30分平均を自動記録させた。
■Switch opening/closing automatically at 30 minute intervals ■Measurement of Ha Measure Em and Ig at 5 minute intervals after the above opening/closing starts, calculate Ha = ΔE m /ΔIg each time, and average the calculated values for 30 minutes. was automatically recorded.

■空気吹込みと脱気の中止 測定開始後2時間目に空気吹込み開始し、大気中測定に
変更した。
■Stopping air blowing and degassing Two hours after the start of the measurement, air blowing was started and the measurement was changed to atmospheric air.

測定結果は第3図に示すように脱気条件下ては5052
AJJ合金は耐食域にあったか、空気吹込みと同時にH
aは低下し、5052AM合金に孔食の発生しているこ
とを示している。これまでのパックテストによるとこの
条件ては脱気雰囲気なら5052A1合金は耐食性かあ
り、一方大気中では孔食の発生することかわかっており
、第3図に示す結果はこの知見とよく一致している。
The measurement results are 5052 under degassing conditions as shown in Figure 3.
Is the AJJ alloy in the corrosion resistant range?
a decreased, indicating that pitting corrosion occurred in the 5052AM alloy. According to past pack tests, it has been found that under these conditions, 5052A1 alloy is corrosion resistant in a degassed atmosphere, but pitting corrosion occurs in the atmosphere, and the results shown in Figure 3 are in good agreement with this knowledge. ing.

実施例2 高純度窒素ガスて十分溶液中の酸素を脱気したのち、試
験液として0.03%NaC1を用いたのち1.0%N
aC1に変更する試験を、温度258Cて行った。試料
極として5052A4合金(表面積1crrf)を、第
1カソードとしてスズメツキ鋼板(5crn’)を、第
2カソードとしてスズメツキ鋼板(3crn’)を、そ
れぞれ用い、各電極類を装置にセットし、さらに4時間
N2て脱気しなから安定するまて待ち、測定を開始した
。測定は下記条件にて行った。
Example 2 After sufficiently degassing the oxygen in the solution with high-purity nitrogen gas, 0.03% NaCl was used as the test liquid, and then 1.0% N
A test to change to aC1 was conducted at a temperature of 258C. A 5052A4 alloy (surface area 1 crrf) was used as the sample electrode, a tin steel plate (5 crn') was used as the first cathode, and a tin steel plate (3 crn') was used as the second cathode. Each electrode was set in the device and left for another 4 hours. After degassing with N2, we waited until it stabilized and started measurement. The measurements were conducted under the following conditions.

■スイッチの開閉 30分間間隔で自動開閉 ■Haの測定 上記開閉か開始してから3分間隔てEm、Igを測定し
、Ha=ΔE m /ΔIgをその都度計算し、計算値
の30分平均を自動的に記録させた。
■Automatic opening/closing of the switch at 30-minute intervals ■Measurement of Ha Measure Em and Ig at 3-minute intervals after the above opening/closing starts, calculate Ha = ΔE m /ΔIg each time, and average the calculated values for 30 minutes. was automatically recorded.

■NaCuの添加による溶液濃度の変更測定開始後2時
間目に1%NaC1に相当するNaC1を溶液中に投入
し、外部よりマタネットスターラーで均一に攪拌した。
(2) Change in solution concentration by addition of NaCu Two hours after the start of the measurement, NaCl equivalent to 1% NaCl was added to the solution and uniformly stirred from the outside with a matanet stirrer.

測定結果は第4図に示すように0.03%NaC!:L
水溶液中てはHaは13000Ωcm’と高く、505
2AsL合金は耐食域にあったか、NaC1の添加と同
時にHaは低下し、5052合金表面は腐食域(孔食域
)に移行したことを示し、5052A1合金表面ては孔
食か発生していることかわかる。
The measurement results are as shown in Figure 4: 0.03% NaC! :L
In aqueous solution, Ha is as high as 13,000 Ωcm', and 505
The 2AsL alloy was in the corrosion resistance range, or the Ha decreased at the same time as NaC1 was added, indicating that the 5052 alloy surface had moved into the corrosion range (pitting corrosion range), indicating that pitting corrosion had occurred on the 5052A1 alloy surface. Recognize.

この測定に先立つパックテストにより、同しAllj合
金とカソードのガルバニック対て0,03%NaC1で
は5052A1合金は耐食性かあり、1%N a Cl
中で孔食の発生することかわかっており、第4図に示す
結果とこの知見とはよい一致か見られた。
A pack test prior to this measurement showed that the 5052A1 alloy was corrosion resistant at 0.03% NaCl compared to the same Allj alloy and galvanic cathode, and 1% NaCl.
It is known that pitting corrosion occurs in the steel, and the results shown in Figure 4 are in good agreement with this knowledge.

実施例3 高純度窒素ガスて十分溶液中の酸素を脱気した後、試験
液0.03%Nacl、温度25°Cで試料極として5
052 (表面積1crrf)を最初用い、次に508
2合金(表面積1cm’)に変更した。第1カソードと
してスズメツキ鋼板(5cm’)を、第2カソードとし
てスズメツキ鋼板(3c m )を用い、各電極類を装
置にセウトし、さらに2時間N2て脱気しなから安定す
るまて待ち、測定を開始した。測定は下記条件て行った
Example 3 After sufficiently degassing the oxygen in the solution using high-purity nitrogen gas, a test solution of 0.03% NaCl was used as a sample electrode at a temperature of 25°C.
052 (surface area 1 crrf) was first used, then 508
2 alloy (surface area 1 cm'). Using a tin plated steel plate (5 cm) as the first cathode and a tin plated steel plate (3 cm) as the second cathode, each electrode was placed in the device, and then degassed with N2 for 2 hours and waited for it to stabilize. Measurement started. The measurements were conducted under the following conditions.

■スイッチの開閉 30分間隔で自動開閉 ■Haの測定 上記開閉か開始してから、3分間隔てEm、Igを測定
し、Ha−ΔE m /ΔIgをその都度計算し、計算
値の30分平均を自動的に記録させた。
■Automatic opening/closing of the switch at 30 minute intervals ■Measurement of Ha After starting the above opening/closing, measure Em and Ig at 3 minute intervals, calculate Ha - ΔE m /ΔIg each time, and calculate the calculated value for 30 minutes. The average was recorded automatically.

■試料電極とりかえ 測定開始後10詩間後に試料極を5052合金から50
82合金へ変換した。
■Replace the sample electrode 10 minutes after starting the measurement, change the sample electrode from 5052 alloy to 50
Converted to 82 alloy.

測定結果は第5図に示すように0,03%NaC文水溶
液中で、5052合金のHaは12000〜13000
Ωcm’と高く、耐食域にあるか、5082合金に変え
るとHaは低下し、腐食域(孔食域)にあることかわか
る。NaC1を300ppm (0,03%NaCJ1
)含む飲料缶のパックテストではA1缶蓋か5052合
全て合金全耐食性であるか、5082合金ては塗膜欠陥
部より孔食か発生することかあり、本試験方法の結果は
パックテストの結果とよい一致か見られた。
As shown in Figure 5, the measurement results show that the Ha of the 5052 alloy is 12,000 to 13,000 in a 0.03% NaC aqueous solution.
It can be seen that the value is as high as Ωcm', indicating that it is in the corrosion resistance range, or that Ha decreases when changing to 5082 alloy, indicating that it is in the corrosion range (pitting corrosion range). 300ppm NaC1 (0,03%NaCJ1
) In the pack test of beverage cans containing A1 can lids, 5052 alloys may have complete corrosion resistance, or 5082 alloys may cause pitting corrosion from coating defects, and the results of this test method are the results of the pack test. A good match was seen.

(発明の効果) 本発明方法によれば、異種金属の接触腐食に対する耐食
性を簡易にかつ高い精度て迅速に測定することかてきる
。さらに本発明の測定装置によれば、具体的にはバイメ
タル構造のAn製缶蓋に発生する異種金属接触腐食の内
容物のイオン濃度、溶存酪素などとの関係を簡便かつ迅
速に測定することかてき信頼性の高いものである。しか
も測定装置自体は構造か簡単てあり、比較的廉価に製作
てきるという利点を有する。本発明の方法及び装置は食
缶、飲用缶のバイメタル缶(胴か鉄、蓋かアルミ合金の
缶)のA1合金の耐食性判定に特に好適である。
(Effects of the Invention) According to the method of the present invention, the corrosion resistance of dissimilar metals against contact corrosion can be easily and quickly measured with high accuracy. Furthermore, according to the measuring device of the present invention, it is possible to easily and quickly measure, specifically, the relationship between the ion concentration of the content of catalytic corrosion of dissimilar metals occurring on a bimetallic structure of an An-made can lid, dissolved butyric, etc. It is highly reliable. Moreover, the measuring device itself has a simple structure and has the advantage of being relatively inexpensive to manufacture. The method and apparatus of the present invention are particularly suitable for determining the corrosion resistance of A1 alloy of bimetallic food cans and drinking cans (cans made of steel for the body and aluminum alloy for the lid).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の耐食性試験装置の1実施例を示す断面
図てあり、第2図は該試験装置の他側の模式図てあり、
第3〜第5図は、本発明の実施例1〜3におけるアノー
ド分極抵抗(Ha)の経時的変化を示すグラフである。
FIG. 1 is a sectional view showing one embodiment of the corrosion resistance testing device of the present invention, and FIG. 2 is a schematic diagram of the other side of the testing device.
3 to 5 are graphs showing changes over time in anode polarization resistance (Ha) in Examples 1 to 3 of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)試験溶液中にアノードとなる試料金属と該金属よ
り貴な自然電位を有する金属からなる第1カソードを浸
漬し、同時に浸漬した第1カソードと同材質の第2カソ
ードと第1カソードとを電気的にON−OFFさせるこ
とによりカソード面積を増減させ、ガルバニック電流(
Ig)と試料金属電位(Em)の変位より試料金属表面
のアノード分極抵抗(Ha)を式 ▲数式、化学式、表等があります▼ により求めることを特徴とする異種金属接触腐食モニタ
リング法。
(1) A sample metal that will serve as an anode and a first cathode made of a metal with a higher natural potential than the metal are immersed in a test solution, and a second cathode and a first cathode made of the same material as the first cathode are immersed at the same time. By electrically turning on and off the cathode area, the galvanic current (
A dissimilar metal catalytic corrosion monitoring method that is characterized by determining the anode polarization resistance (Ha) of the sample metal surface from the displacement of the sample metal potential (Ig) and the sample metal potential (Em) using the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
(2)試験溶液を入れる電解槽にアノードとなる試料金
属と該金属より貴な自然電位を有する材料からなる第1
カソードと、さらに第1カソードと同材質からなり、第
1カソードとON−OFF自在のスイッチを介して接続
した第2カソードとを設け、第2カソードのON−OF
Fによるガルバニック電流(Ig)の変化を無抵抗電流
計で、また試料電位(Em)の変化を電圧計で測定し、
アノード分極抵抗(Ha)を求めるようにしたことを特
徴とする金属耐食性試験装置。
(2) A first tube consisting of a sample metal and a material having a nobler natural potential than the metal, which will serve as an anode, is placed in an electrolytic cell containing a test solution.
A cathode and a second cathode made of the same material as the first cathode and connected to the first cathode via a switch that can be turned ON and OFF are provided.
Measure the change in galvanic current (Ig) due to F with a non-resistance ammeter, and measure the change in sample potential (Em) with a voltmeter.
A metal corrosion resistance testing device characterized in that the anode polarization resistance (Ha) is determined.
(3)電解槽内部が外部の大気に対しシールされている
ことを特徴とする請求項(2)の金属耐食性試験装置。
(3) The metal corrosion resistance testing device according to claim (2), wherein the inside of the electrolytic cell is sealed from the outside atmosphere.
(4)第2カソードのスイッチの開閉と、これに連動し
て行うガルバニック電流(Ig)、試料電位(Em)の
計測と、さらにアノード分極抵抗(Ha)の計算表示と
を自動計測システムにより行うことを特徴とする請求項
(2)の金属耐食性試験装置。
(4) Opening/closing the switch of the second cathode, measuring the galvanic current (Ig) and sample potential (Em) in conjunction with this, and calculating and displaying the anode polarization resistance (Ha) using an automatic measurement system. The metal corrosion resistance testing device according to claim (2), characterized in that:
JP63163066A 1988-06-30 1988-06-30 Dissimilar metal contact corrosion monitoring method and corrosion resistance test equipment Expired - Fee Related JP2690947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63163066A JP2690947B2 (en) 1988-06-30 1988-06-30 Dissimilar metal contact corrosion monitoring method and corrosion resistance test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63163066A JP2690947B2 (en) 1988-06-30 1988-06-30 Dissimilar metal contact corrosion monitoring method and corrosion resistance test equipment

Publications (2)

Publication Number Publication Date
JPH0211783A true JPH0211783A (en) 1990-01-16
JP2690947B2 JP2690947B2 (en) 1997-12-17

Family

ID=15766533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63163066A Expired - Fee Related JP2690947B2 (en) 1988-06-30 1988-06-30 Dissimilar metal contact corrosion monitoring method and corrosion resistance test equipment

Country Status (1)

Country Link
JP (1) JP2690947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353011A (en) * 2015-11-17 2016-02-24 武汉钢铁(集团)公司 Analyzer for metal oxide film
WO2022259784A1 (en) * 2021-06-10 2022-12-15 株式会社日本製鋼所 Testing device and testing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353011A (en) * 2015-11-17 2016-02-24 武汉钢铁(集团)公司 Analyzer for metal oxide film
WO2022259784A1 (en) * 2021-06-10 2022-12-15 株式会社日本製鋼所 Testing device and testing method

Also Published As

Publication number Publication date
JP2690947B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US6280603B1 (en) Electrochemical noise technique for corrosion
US6683463B2 (en) Sensor array for electrochemical corrosion monitoring
EP2698623B1 (en) Method for evaluating corrosion resistance of metal can with inner coating against content
US6919729B2 (en) Corrosivity measuring device with temperature compensation
JPS62229056A (en) Quantitative diagnosis of deterioration degree of coating of painted metal and device therefor
US11892391B2 (en) Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment
US5188715A (en) Condensate corrosion sensor
JPH0650927A (en) Detecting method for crack or fracture caused by stress corrosion cracking
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
JP5505166B2 (en) A method for quickly evaluating the corrosion resistance of the contents of cans
Kern et al. Electrochemical impedance spectroscopy as a tool for investigating the quality and performance of coated food cans
EP0593168B1 (en) Method and apparatus for measuring underdeposit localized corrosion rate or metal corrosion rate under tubercles in cooling water systems
JPH0211783A (en) Method of monitoring contact corrosion of different metals and corrosion resistance tester
US4332646A (en) Method for assaying iron-exposed portion of coated steel plate or processed product thereof
EP2762855B1 (en) A tester and a method for testing for corrosion inhibitor level
JP2002286623A (en) Corrosion measuring device
Tang et al. Local electrochemical characteristics of pure iron under a saline droplet II: Local corrosion kinetics
US2870067A (en) Process for fluoride detection
JPH1019826A (en) Apparatus for measuring corrosion of metallic material
Bastos et al. Concerning the efficiency of corrosion inhibitors as given by SVET
JP2002286678A (en) Corrosion control-supporting apparatus for metal material
JPH09297118A (en) Corrosion measuring device for metallic material
RU2777000C1 (en) Method for determining the corrosion activity of glycols in heat exchange equipment
RU2085906C1 (en) Sensor of corrosion rate
Ali Studies of the use of electrochemical impedance spectroscopy to characterize and assess the performance of lacquers used to protect aluminum sheet and can ends

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees