JPH02117606A - Aquatic living body growth-inhibiting agent and aquatic living body attachment preventing composotion - Google Patents

Aquatic living body growth-inhibiting agent and aquatic living body attachment preventing composotion

Info

Publication number
JPH02117606A
JPH02117606A JP27053688A JP27053688A JPH02117606A JP H02117606 A JPH02117606 A JP H02117606A JP 27053688 A JP27053688 A JP 27053688A JP 27053688 A JP27053688 A JP 27053688A JP H02117606 A JPH02117606 A JP H02117606A
Authority
JP
Japan
Prior art keywords
copper
noble metal
activated
particle surface
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27053688A
Other languages
Japanese (ja)
Other versions
JPH0579042B2 (en
Inventor
Kiyoshige Hayashi
林 喜世茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAI MAX KK
Original Assignee
HAI MAX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAI MAX KK filed Critical HAI MAX KK
Priority to JP27053688A priority Critical patent/JPH02117606A/en
Publication of JPH02117606A publication Critical patent/JPH02117606A/en
Publication of JPH0579042B2 publication Critical patent/JPH0579042B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To provide the subject agent comprising noble metal-activated copper prepared by integrally attaching a noble metal on the particle surface of copper powder in such a state as the particle surface of the copper powder is partially exposed or comprising a modified product thereof prepared by further attaching a basic organic dibasic acid copper salt or basic copper carbonate salt to the surface of the noble metal-activated copper. CONSTITUTION:The subject inhibiting agent contains as an active ingredient a noble metal-activated copper prepared by integrally attaching a noble metal (e.g., silver, gold or platinum) to the particle surface of metal copper powder in an amount of <=0.4 pt.wt. (preferably 0.35-0.3X10<-3> pt.wt.) per 100 pts.wt. of the metal copper in such a state as the particle surface is partially exposed or a noble metal-activated copper modified product prepared by integrally attaching a basic organic dibasic acid copper salt (e.g., adipic acid copper salt) or basic copper carbonate salt to the surface of the noble metal-activated copper. The subject composition comprises the noble metal-activated copper or the modified product thereof and a binder (e.g., a coating vehicle or polymer cement covering agent) for keeping the agent in a dispersion state. The agent contains readily ionized copper, is stable for a long period without changing the properties thereof and does not pollute environments.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水棲生物成育阻止剤及び水棲生物付着防止性
組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an aquatic organism growth inhibitor and an aquatic organism adhesion prevention composition.

さらに詳しくは、活性化銅およびその変性体を有効成分
とする水棲生物成育阻止剤及び水棲生物付着防止性組成
物に関する。
More specifically, the present invention relates to an aquatic organism growth inhibitor and an aquatic organism adhesion prevention composition containing activated copper and its modified product as active ingredients.

[発明の背景] 海水に接触した状態にて使用される鉄鋼またはコンクリ
ート製物体の表面に、フジッボ、カキ、カイガラ虫、海
藻等の種々の水棲動植物が付着、成長することを防止す
ることを目的として、船底塗料などの防汚剤が使用され
ている。このような防汚剤の有効成分としては、従来、
トリブチル錫オキシド(TBTO)などの有機錫化合物
、亜酸化銅、少量の水銀酸化物を配合した亜酸化銅など
が知られている。上記有効成分の錫、水銀などの金属は
、水棲動植物に対して強力な毒性を有しており水棲動植
物の付着を防止するとともにその成育を阻止することが
できるが、さらに上記動植物にたいして催奇性を有する
など環境を汚染する危険がある。また、亜酸化銅(Cu
20)は水中の溶存酸素によって酸化され溶解度の小さ
い酸化銅(Cub)となるため、有効に作用する亜酸化
銅は使用量全体の一部分に過ぎず、水棲動植物の付着を
防止する効果の得られる期間が短いという問題がある。
[Background of the invention] The purpose of this invention is to prevent various aquatic plants and animals, such as barnacles, oysters, scale insects, and seaweed, from adhering to and growing on the surfaces of steel or concrete objects that are used in contact with seawater. Antifouling agents such as ship bottom paints are used as antifouling agents. Conventionally, the active ingredients of such antifouling agents include;
Organic tin compounds such as tributyltin oxide (TBTO), cuprous oxide, and cuprous oxide containing a small amount of mercury oxide are known. Metals such as tin and mercury, which are the active ingredients mentioned above, have strong toxicity to aquatic animals and plants, and can prevent aquatic animals and plants from adhering to them and inhibit their growth. There is a risk of contaminating the environment. In addition, cuprous oxide (Cu
20) is oxidized by dissolved oxygen in water and becomes copper oxide (Cub) with low solubility, so cuprous oxide, which is effective, only makes up a portion of the total amount used, and is effective in preventing aquatic animals and plants from adhering. The problem is that the period is short.

本発明者は、上記の問題を解決する防汚方法について鋭
意研究し、すでに、鉄鋼またはコンクリート製物体の海
水と接触する面に、ポルトランドセメントまたは高炉セ
メント単独あるいは該セメントと細骨材との混合物に水
性ポリマーエマルジョンを配合してなるポリマーセメン
ト塗覆剤を塗布、硬化させたのち、その塗布面に硫化銅
または金属銅粉末と前記ポリマーセメント塗覆剤との混
合物を塗布することを特徴とする海水と接触する鉄鋼ま
たはコンクリート製物体の防汚方法を開発している。上
述の防汚方法は、本出願人により特許出願され、すでに
特許されている(特許第1386697号、特公昭61
−45513号公報、特許第1401183号、特公昭
62−6863号公報参照)。
The present inventor has conducted extensive research on antifouling methods to solve the above problems, and has already applied portland cement or blast furnace cement alone or a mixture of such cement and fine aggregate to the surfaces of steel or concrete objects that come into contact with seawater. After applying and curing a polymer cement coating agent made by blending an aqueous polymer emulsion with a water-based polymer emulsion, a mixture of copper sulfide or metallic copper powder and the polymer cement coating agent is applied to the coated surface. Developing antifouling methods for steel or concrete objects that come into contact with seawater. The above-mentioned antifouling method has been patented by the present applicant and has already been patented (Japanese Patent No. 1386697, Japanese Patent Publication No. 61
-45513, Japanese Patent No. 1401183, and Japanese Patent Publication No. 62-6863).

ト記硫化銅または金属銅が、水棲動植物の付着を防止す
るために有効であることは既知であるが、鉄鋼表面に銅
が付着すると局部電池を形成し鉄鋼を激しく腐食するた
め、船底塗料としての使用は事実上不可能とされていた
。上述の防汚方法は、ポリマーセメント塗覆剤の塗布に
より硫化銅または金属銅が鉄鋼表面に接触することを物
理的に遮断するとともに、硫化銅が酸化されて生じる硫
酸銅または金属鋼から生じる銅イオンをアルカリ性カル
シウムによって捕獲してCu5O,・xCu (OH)
 2・yCa (OH) 2・2H20のような安定な
複塩を形成するという効果を有するので、上記硫化銅ま
たは金属銅を水棲動植物付着防止性組成物として鉄鋼表
面を腐食することなく有利に使用することができる。
It is known that copper sulfide or metallic copper is effective in preventing the adhesion of aquatic animals and plants, but when copper adheres to the steel surface, it forms local batteries and severely corrodes the steel, so it is not recommended as a ship bottom paint. was considered virtually impossible to use. The antifouling method described above physically blocks copper sulfide or metallic copper from coming into contact with the steel surface by applying a polymer cement coating agent, and also prevents copper sulfide produced by oxidation of copper sulfide or copper produced from metallic steel. Ions are captured by alkaline calcium to form Cu5O, xCu (OH)
Since it has the effect of forming a stable double salt such as 2.yCa (OH) 2.2H20, the above-mentioned copper sulfide or metallic copper can be advantageously used as an anti-adhesion composition for aquatic animals and plants without corroding the steel surface. can do.

上述の方法は、水棲動植物成育阻止剤の有効成分として
亜酸化銅に代えて、硫化銅または金属銅粉末を使用する
ものであり、亜酸化銅に比較してより長い期間にわたっ
て防汚効果が得られる。
The above-mentioned method uses copper sulfide or metallic copper powder instead of cuprous oxide as the active ingredient of the aquatic animal and plant growth inhibitor, and provides antifouling effects for a longer period of time compared to cuprous oxide. It will be done.

前述の被防汚物体の海水と接触する面にポリマーセメン
ト塗覆剤を塗布、硬化させたのち、その塗布面に硫化銅
または金属銅粉末と上記ポリマーセメント塗覆剤との混
合物を塗布する防汚方法は、かなりの期間有効な防汚作
用が得られる。
The above-mentioned antifouling method involves applying a polymer cement coating agent to the surface that comes into contact with seawater and curing it, and then applying a mixture of copper sulfide or metallic copper powder and the polymer cement coating agent to the coated surface. The soiling method provides effective soil protection for a considerable period of time.

しかしながら、上述の方法では、水棲動植物成育阻止剤
の有効成分がポリマーセメントのマトリックス中に封じ
こめられているために、その水棲動植物の成育を阻止す
る機能はTBTOなどの有機錫化合物を含有する従来の
防汚剤を塗布する方法に劣る傾向がある。
However, in the above-mentioned method, since the active ingredient of the aquatic animal and plant growth inhibitor is encapsulated in the polymer cement matrix, the ability to inhibit the growth of aquatic animals and plants is not as strong as that of conventional aquatic animal and plant growth inhibitors containing organotin compounds such as TBTO. This method tends to be inferior to other methods of applying antifouling agents.

そこで、環境に対する毒性が低く、長期間にわたり安定
で有効な水棲動植物付着防止作用を有するとともに、よ
り強い水棲動植物成育用+h剤の開発が望まれる。
Therefore, it is desired to develop a +h agent for the growth of aquatic animals and plants that is less toxic to the environment, has a stable and effective long-term anti-adhesion effect on aquatic animals and plants, and is stronger.

また、近年生ゴミ、魚腸骨などを、そのまま排水ととも
に流すことが行なわれている。上記生ゴミ、魚腸骨なと
は、水棲細菌類が付着成育しやすく、腐敗による悪臭お
よび病原体の発生などの問題がある。
In addition, in recent years, garbage, fish iliac bones, etc. have been flushed away with wastewater. The above-mentioned food waste, fish iliac bones, etc., are prone to adhesion and growth of aquatic bacteria, and there are problems such as bad odors due to decomposition and generation of pathogens.

[発明の目的] 本発明は、水棲動植物及び水棲細菌類などの水棲生物の
成育阻止剤、および、長期間にわたり上記生物の付着を
防止することのできる安定で変質しにくい水棲生物付着
防止性組成物を提供することを目的とする。
[Object of the invention] The present invention provides a growth inhibitor for aquatic organisms such as aquatic animals and plants and aquatic bacteria, and a stable and resistant aquatic organism adhesion prevention composition that can prevent the above-mentioned organisms from adhering over a long period of time. The purpose is to provide something.

[発明の要旨] 本発明は、金属銅粉末の粒子表面に、該金属銅100重
量部に対して0.4重量部以下の貴金属が、該粒子表面
の少なくとも一部を露出した状態で一体的に付着してな
る貴金属活性化銅を有効成分とすることを特徴とする水
棲生物成育阻止剤、および、上記貴金属活性化銅の表面
に塩基性有機二塩基酸銅もしくは塩基性炭酸銅が一体的
に付着している貴金属活性化銅変性体を有効成分とする
ことを特徴とする水棲生物成育阻止剤にある。
[Summary of the Invention] The present invention provides that 0.4 parts by weight or less of a noble metal is integrally formed on the particle surface of a metallic copper powder with at least a part of the particle surface exposed, based on 100 parts by weight of the metallic copper. An aquatic organism growth inhibitor characterized by having as an active ingredient noble metal activated copper adhered to a metal, and a basic organic dibasic acid copper or basic copper carbonate integrally formed on the surface of the noble metal activated copper. The present invention provides an aquatic organism growth inhibitor characterized by containing as an active ingredient a noble metal-activated denatured copper adhering to aquatic organisms.

また、本発明は、上記貴金属活性化銅またはその変性体
と、それを分散状態に保持してなる結合剤とからなる水
棲生物成育阻止剤組成物にもある。
The present invention also resides in an aquatic organism growth inhibitor composition comprising the above-mentioned noble metal-activated copper or its modified product and a binder that holds the copper in a dispersed state.

本発明の好ましい態様はつぎの通りである。Preferred embodiments of the present invention are as follows.

(1)上記貴金属活性化銅が、その粒子表面に該金属銅
粉末100重量部に対して0.35〜o、3xto−’
重量部の貴金属が付着してなる貴金属活性化銅であるこ
と。
(1) The above noble metal activated copper is present on the particle surface at 0.35 to 3xto-' based on 100 parts by weight of the metallic copper powder.
Must be noble metal activated copper with a weight part of noble metal attached.

(2)上記貴金属が、Au、Pt、およびAgからなる
群から選ばれた少なくとも一種の貴金属であること。
(2) The above-mentioned noble metal is at least one noble metal selected from the group consisting of Au, Pt, and Ag.

(3)上記有機二塩基酸が、アジピン酸であること。(3) The organic dibasic acid is adipic acid.

(4)上記結合剤が、塗料ベヒクルであること。(4) The binder is a paint vehicle.

(5)上記結合剤が、ポリマーセメント塗覆剤であるこ
と。
(5) The binder is a polymer cement coating agent.

[発明の詳細な記述] 本発明の水棲生物成育阻止剤は、金属銅粉末の粒子表面
に、該金属銅100重量部に対して0.4重量部以下の
貴金属が、該粒子表面の少なくとも一部を露出した状態
で一体的に付着してなる貴金属活性化銅を有効成分とす
ることを特徴とする。
[Detailed Description of the Invention] The aquatic organism growth inhibitor of the present invention is characterized in that at least part of the particle surface of the metallic copper powder contains 0.4 parts by weight or less of a noble metal based on 100 parts by weight of the metallic copper. It is characterized by containing noble metal activated copper as an active ingredient, which is integrally adhered with exposed parts.

本発明の貴金属活性化銅が水棲生物成育阻止剤として極
めて有効である理由としては、下記の理由が考えられる
The following reasons can be considered as reasons why the noble metal-activated copper of the present invention is extremely effective as an aquatic organism growth inhibitor.

一般に、金属銅を水中に置いたときには、金属銅のイオ
ン化と銅化合物の生成反応とが競争的に起きているもの
と考えられる。銅イオン濃度の高いところでは水棲生物
の成育が阻止されるので、金属銅か水棲生物の成育阻止
剤として慟〈ためには、上記の化合物生成反応よりもイ
オン化反応の方が盛んであることが好ましい。
Generally, when metallic copper is placed in water, it is thought that the ionization of metallic copper and the production reaction of copper compounds occur competitively. Since the growth of aquatic organisms is inhibited in areas with high copper ion concentrations, metallic copper must be used as a growth inhibitor for aquatic organisms. preferable.

本発明の貴金属活性化銅は、金属鋼の表面に銅よりもイ
オン化傾向の小さな貴金属が接触している状態にあるの
で、水中または海水中において、局部電池を形成する。
The noble metal-activated copper of the present invention forms a local battery in water or seawater because the noble metal, which has a smaller ionization tendency than copper, is in contact with the surface of the metal steel.

このため、上記貴金属活性化銅は、イオンを発生しやす
くなり、該貴金属活性化銅の近傍の水中または海水中で
は、銅イオンの濃度が高い状態となるので、水棲生物の
成育が妨げられる。
For this reason, the noble metal-activated copper tends to generate ions, and the concentration of copper ions becomes high in water or seawater near the noble metal-activated copper, thereby hindering the growth of aquatic organisms.

上記貴金属活性化銅は、金属銅粉末に、貴金属塩の水溶
液を作用させることにより製造することができる。
The above-mentioned noble metal activated copper can be produced by treating metallic copper powder with an aqueous solution of a noble metal salt.

上記貴金属は、銀、金、および白金からなる群から選ば
れた少なくとも一種の貴金属であることが好ましく、上
記貴金属の水溶性塩として、たとえば、硝酸銀、塩化金
酸、および塩化白金酸などを挙げることができる。
The above-mentioned noble metal is preferably at least one kind of noble metal selected from the group consisting of silver, gold, and platinum, and examples of water-soluble salts of the above-mentioned noble metal include silver nitrate, chloroauric acid, and chloroplatinic acid. be able to.

上記水溶性貴金属塩の使用量は、金属′j!4100重
量部に対して、貴金属として0.4重量部以下であるこ
とが必要であり、0,35〜0.3×1o−31,54
部の範囲であることが好ましい。上記水溶性貴金属塩を
水溶液とする際の水の量は、該貴金属塩を溶解し、金属
銅粉末を湿潤状態に保持できるであればよく、過剰に用
いなくともよい。
The amount of the above water-soluble noble metal salt used is metal'j! 4100 parts by weight, it is necessary that the amount of precious metal is 0.4 parts by weight or less, and 0.35 to 0.3 x 1o-31,54
It is preferable that it is in the range of The amount of water used when making the water-soluble noble metal salt into an aqueous solution is sufficient as long as it can dissolve the noble metal salt and keep the metallic copper powder in a wet state, and there is no need to use an excessive amount of water.

上記水の量は、金属銅100重量部に対して、通常20
〜80重量部、好ましくは25〜75重量部である。
The amount of water is usually 20 parts by weight per 100 parts by weight of metallic copper.
-80 parts by weight, preferably 25-75 parts by weight.

前記貴金属活性化銅は、上述の貴金属塩の水溶液に金属
銅粉末を投入し、一定時間ごとに攪拌する操作を数回繰
返したのちに放置する操作により、黒灰色の粉末として
得られる。上述の操作は、たとえば、金属銅粉末を貴金
属塩水溶液に投入した直後に充分攪拌したのち、1〜2
時間毎に2〜lO分間程度攪拌する操作を5〜7回繰返
したのち、10〜20時間放置するというように行なう
ことが好ましい。
The noble metal activated copper is obtained as a black-gray powder by adding metallic copper powder to the aqueous solution of the noble metal salt described above, stirring the mixture several times at regular intervals, and then leaving it to stand. The above operation can be carried out, for example, by adding metal copper powder to a noble metal salt aqueous solution, stirring it thoroughly, and then stirring it for 1 to 2 minutes.
It is preferable to repeat the operation of stirring for about 2 to 10 minutes every hour 5 to 7 times, and then leave it for 10 to 20 hours.

本発明のもうひとつの水棲生物成育阻止剤は、金属銅粉
末の粒子表面に、該金属銅100重量部に対して0.4
重量部以下の貴金属が、該粒子表面の少なくとも一部を
露出した状態で付着してなる貴金属活性化銅であフて、
かつ、その表面に塩基性有機二塩基酸銅もしくは塩基性
炭酸銅が一体的に付着している貴金属活性化銅変性体を
有効成分とすることを特徴とする。
Another aquatic organism growth inhibitor of the present invention is applied to the particle surface of metallic copper powder in an amount of 0.4% per 100 parts by weight of metallic copper.
Parts by weight or less of a noble metal is made of noble metal-activated copper attached with at least a part of the surface of the particle exposed,
In addition, it is characterized in that the active ingredient is a noble metal-activated copper modified product to which basic organic dibasic acid copper or basic copper carbonate is integrally adhered.

上記変性体は、その表面に塩基性有機二塩基酸銅もしく
は塩基性炭酸銅が一体的に付着している緑青様物質であ
るが、前記貴金属活性化銅と同様に貴金属の作用により
、銅イオンを発生しやすい性質を有している。また、上
記変性体は、水棲動植物に対する毒性が酸化銅または亜
酸化銅に比較して極めて低く、環境に対する安全性に優
れているつ 上記緑青様物質の製造方法は、金属銅を原料とする方法
が本出願人により既に特許出願されている(特開昭62
−124154号公報参照)。本発明の貴金属活性化銅
変性体は、上記公報に記載の製造方法を応用し、貴金属
活性化銅に、常温で固体状の有機二塩基酸および、揮発
性有機酸の存在下に湿潤状態にて二酸化炭素含有気体と
接触させることにより有利に製造することができる。
The above-mentioned modified product is a patina-like substance in which basic organic dibasic copper dibasic acid or basic copper carbonate is integrally attached to its surface, but like the above-mentioned noble metal activated copper, due to the action of the noble metal, copper ions It has the property of being prone to occur. Furthermore, the above-mentioned modified substance has extremely low toxicity to aquatic animals and plants compared to copper oxide or cuprous oxide, and is superior in environmental safety. The present applicant has already filed a patent application for
(Refer to Publication No.-124154). The noble metal-activated copper modified product of the present invention is produced by applying the production method described in the above-mentioned publication, and adding noble metal-activated copper to a wet state in the presence of an organic dibasic acid that is solid at room temperature and a volatile organic acid. It can be advantageously produced by contacting with a carbon dioxide-containing gas.

上記有機二塩基酸として、例えば、マレイン酸、フマル
酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フ
タル酸、およびそれらの無水物を挙げることができるが
、アジピン酸が特に好ましい。上記有機二塩基酸の使用
量は、貴金属活性化銅100重量部に対して、10〜2
00部の範囲の量であることが好ましい。
Examples of the organic dibasic acids include maleic acid, fumaric acid, malonic acid, succinic acid, glutaric acid, adipic acid, phthalic acid, and anhydrides thereof, with adipic acid being particularly preferred. The amount of the organic dibasic acid used is 10 to 2 parts by weight per 100 parts by weight of noble metal activated copper.
Preferably, the amount is in the range of 0.00 parts.

上記揮発性有機酸は、反応開始剤として作用するととも
に、原料の貴金属活性化銅および固体状有機二塩基酸を
湿潤状態に保持する働きをする。
The volatile organic acid acts as a reaction initiator and also serves to keep the raw materials, noble metal activated copper and solid organic dibasic acid, in a wet state.

上記揮発性有機酸としては、通常低級脂肪族モノカルボ
ン酸、特に酢酸が好ましく使用でき、貴金属活性化銅1
00重量部に対しで4〜20重量部を、貴金属活性化銅
100重量部に対して20〜300重量部の水溶液とし
て使用することが好ましい。上記揮発性有機酸は、反応
中の発熱により揮散する。
As the above-mentioned volatile organic acid, lower aliphatic monocarboxylic acids, especially acetic acid, can be preferably used, and noble metal activated copper 1
It is preferable to use an aqueous solution of 4 to 20 parts by weight per 00 parts by weight, and 20 to 300 parts by weight per 100 parts by weight of noble metal activated copper. The volatile organic acid is volatilized due to heat generated during the reaction.

前記貴金属活性化銅変性体は、貴金属活性化銅と上述の
固体状有機二塩基酸の混合物に、上述の揮発性有機酸水
溶液を加え、一定時間ごとに攪拌して大気中の二酸化炭
素と接触させる操作を数回繰返したのちに放置する操作
により、緑青色の粉末として得られる。上述の操作は、
たとえば、貴金属活性化銅と上述の固体状有機二塩基酸
の混合物に、上述の揮発性有機酸水溶液を加えた直後に
充分攪拌したのち、1〜2時間毎に5〜20分間程度攪
拌する操作を5〜7回繰返したのち、20〜50時間放
置するというように行なうことが好ましい。
The noble metal-activated copper modified product is produced by adding the above-mentioned volatile organic acid aqueous solution to a mixture of noble metal-activated copper and the above-mentioned solid organic dibasic acid, and stirring the mixture at regular intervals to bring the mixture into contact with carbon dioxide in the atmosphere. By repeating this procedure several times and then allowing it to stand, a greenish-blue powder is obtained. The above operation is
For example, immediately after adding the above-mentioned volatile organic acid aqueous solution to a mixture of noble metal activated copper and the above-mentioned solid organic dibasic acid, the above-mentioned volatile organic acid aqueous solution is sufficiently stirred, and then stirring is performed for about 5-20 minutes every 1-2 hours. It is preferable to repeat this 5 to 7 times and then leave it for 20 to 50 hours.

本発明の水棲生物付着防止性組成物は、上述の貴金属活
性化銅またはその変性体と、それを分散状態に保持して
なる結合剤とからなることを特徴とする。
The composition for preventing the adhesion of aquatic organisms of the present invention is characterized by comprising the above-mentioned noble metal-activated copper or its modified product, and a binder that holds the copper in a dispersed state.

上述の貴金属活性化銅またはその変性体は、金属銅ある
いは金属鋼を原料とする緑青様物質に比較してイオン化
傾向が大きいので、結合剤のマトリックス中に封じこめ
られた組成物として使用しても水棲生物の付着を有効に
防止することができる。上記結合剤としては、塗料ベヒ
クルまたはポリマーセメントを好ましく使用することが
できる。
The above-mentioned noble metal-activated copper or modified form thereof has a greater tendency to ionize than patina-like substances made from metallic copper or metallic steel, so it can be used as a composition encapsulated in a binder matrix. It is also possible to effectively prevent the adhesion of aquatic organisms. A paint vehicle or a polymer cement can preferably be used as the binder.

特に上記貴金属活性化銅またはその変性体は、前述の特
許第1386697号、または特許第1401183号
の防汚方法、および、水棲生物成育阻止剤とポリマーセ
メント塗覆剤との混合物を塗布してなる防汚塗覆層中に
、導電性線材を埋包しこれに弱電流を通電することによ
り、水棲生物の付着防止効果を向上する技術において、
ポリマーセメント塗覆剤に分散して配合してなる組成物
として有利に使用することができる。
In particular, the above-mentioned noble metal activated copper or its modified product is obtained by applying the antifouling method of the above-mentioned Patent No. 1386697 or Patent No. 1401183 and a mixture of an aquatic organism growth inhibitor and a polymer cement coating agent. A technology that improves the effect of preventing aquatic organisms from attaching by embedding a conductive wire in the antifouling coating layer and passing a weak current through it.
It can be advantageously used as a composition formed by dispersing and blending it into a polymer cement coating agent.

上述の後者の技術は、水棲生物成育阻止剤に前記特開昭
62−124154号公報記載の金属銅から得られた緑
青様物質を使用する方法が、本出願人により特許出願さ
れている(特願昭63−138289号明細書参照)。
Regarding the latter technique mentioned above, a patent application has been filed by the present applicant for a method of using a patina-like substance obtained from metallic copper as described in JP-A-62-124154 as an aquatic organism growth inhibitor. (Refer to the specification of Application No. 138289/1989).

上述の防汚塗覆層中に埋包した導電性線材に弱電流を通
電する技術においては、前記貴金属活性化銅変性体は、
さらにその表面に、Fe、Ni、Co、Mn%AIL%
Zn、およびCaからなる群から選ばれた少なくとも一
種の卑金属が一体的に付着していることが好ましい。上
記の卑金属が共に付着している貴金属活性化銅変性体は
、前述の貴金属活性化銅変性体の製造方法において、常
温で固体状の有機二塩基酸、および、揮発性有機酸に上
記卑金属の酢酸塩もしくは水酸化物を共存させることに
より得られる。
In the above-mentioned technique of passing a weak current through the conductive wire embedded in the antifouling coating layer, the noble metal-activated modified copper is
Furthermore, on the surface, Fe, Ni, Co, Mn%AIL%
It is preferable that at least one base metal selected from the group consisting of Zn and Ca is integrally attached. The noble metal-activated copper modified product to which the above-mentioned base metal is attached is prepared by adding the above-mentioned base metal to an organic dibasic acid that is solid at room temperature and a volatile organic acid in the above-mentioned manufacturing method of the noble metal-activated copper modified product. It can be obtained by coexisting acetate or hydroxide.

[発明の効果] 本発明により得られる水棲生物成育阻止剤は、貴金属が
銅粒子の表面に付着した貴金属活性化銅を有効成分とし
ているので、水中または海水中で上記貴金属が銅との間
に局部電池を形成して銅がイオン化しやすくなっており
、しかも酸素および二酸化炭素などとは反応しにくいの
で、水棲生物の成育を有効に阻止することができる。
[Effects of the Invention] The aquatic organism growth inhibitor obtained by the present invention contains as an active ingredient precious metal-activated copper in which the precious metal is attached to the surface of copper particles. Since copper is easily ionized by forming a local battery and does not easily react with oxygen and carbon dioxide, it can effectively inhibit the growth of aquatic organisms.

また、上記貴金属活性化銅を有機二塩基酸で処理して得
られる変性体は、上記貴金属活性化銅と同様に銅イオン
を発生しやすい性質を有し、さらに、長期にわたり安定
で変質しにくい。また、上記変性体は、水棲生物に対す
る毒性が、酸化銅および朋酸化銅に比較して低いので、
環境を汚染する危険がない。
In addition, the modified product obtained by treating the above noble metal activated copper with an organic dibasic acid has the property of easily generating copper ions like the above noble metal activated copper, and is also stable over a long period of time and is resistant to deterioration. . In addition, the above-mentioned modified product has lower toxicity to aquatic organisms than copper oxide and copper oxide, so
There is no risk of polluting the environment.

そこで上述の貴金属活性化銅またはその変性体は、水棲
生物付着防止性組成物の成分として有利に使用すること
ができる。
Therefore, the above-mentioned noble metal-activated copper or its modified product can be advantageously used as a component of an aquatic organism antifouling composition.

さらに、防汚塗覆層中に埋包した導電性線材に弱電流を
通電する技術において、該防汚塗覆層に、表面に特定の
卑金属を付着させた上記貴金属活性化銅変性体と、それ
を分散状態に保持してなる結合剤とからなる組成物を使
用することにより、生ゴミ、魚腸骨などの殺菌を有利に
行なうことができる。
Furthermore, in the technology of passing a weak current through a conductive wire embedded in an antifouling coating layer, the above-mentioned noble metal-activated modified copper having a specific base metal attached to the surface of the antifouling coating layer; By using a composition comprising a binder and a binder in which it is maintained in a dispersed state, garbage, fish iliac bones, etc. can be sterilized advantageously.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

[実施例1] 硝酸9Jl 100 m gをプラスチック容器に取り
、水道水25ccを加えてよく攪拌し、溶解した。
[Example 1] 100 mg of 9 Jl of nitric acid was placed in a plastic container, 25 cc of tap water was added thereto, and the mixture was thoroughly stirred and dissolved.

次いで、上記容器に電解銅粉(三井金属鉱業■製、MD
−1)100gを没入して、ステンレス製のスプーンを
用いて充分混合し、上記銅粉が均一な湿潤状態になるよ
うにした。銅粉は、30分程度で銅の赤味が次第に黒灰
色に変化した。さらに、上記混合物を1時間ごとに約2
分間攪拌する操作を6回繰返したのち、10時間放置し
、黒灰色粉末で風乾された状態の銀活性化銅(銅100
gに銀63mgが銅の一部が露出した状態で付着してい
る)を得た。
Next, electrolytic copper powder (manufactured by Mitsui Mining & Co., Ltd., MD) was placed in the container.
-1) 100 g of the copper powder was poured into the solution and thoroughly mixed using a stainless steel spoon so that the copper powder was evenly moistened. The reddish color of the copper powder gradually changed to blackish gray in about 30 minutes. Furthermore, about 20% of the above mixture is added every hour.
After repeating the stirring operation for 6 minutes, it was left to stand for 10 hours, and silver-activated copper (copper 100
(in which 63 mg of silver was attached with part of the copper exposed) was obtained.

上記で製造した、銅100gを銀63mgで活性化した
銀活性化銅200mgを、アルキド塗料ベヒクル(日立
化成■製アルキッド365−70)200mgと混練し
て、水棲生物成育防止性組成物を得た。
200 mg of silver-activated copper produced above, in which 100 g of copper was activated with 63 mg of silver, was kneaded with 200 mg of alkyd paint vehicle (Alkyd 365-70 manufactured by Hitachi Chemical) to obtain an aquatic organism growth-preventing composition. .

上記組成物を用いて、後述の試験方法により、銅イオン
溶出試験を行なった。結果を第1表に示す。
A copper ion elution test was conducted using the above composition according to the test method described below. The results are shown in Table 1.

[実施例2] 硝酸銀を500mg用いた以外は実施例1と同様にして
、黒灰色粉末の銀活性化銅(100gに銀315mgが
銅の一部が露出した状態で付着している)を得た。上記
銀活性化銅の色は、実施例1で得られた銀活性化銅に比
較してやや黒味か強かった。
[Example 2] A black-gray powder of silver-activated copper (315 mg of silver attached to 100 g with a part of the copper exposed) was obtained in the same manner as in Example 1 except that 500 mg of silver nitrate was used. Ta. The color of the silver-activated copper was slightly darker or stronger than that of the silver-activated copper obtained in Example 1.

[実施例3] 塩化金酸(HA u CI14・4 H20;用島化学
薬品■製、試薬特級)Igに純水を加えて300ccと
し塩化金酸水溶液を調製した。これを水溶液Aとする。
[Example 3] A chloroauric acid aqueous solution was prepared by adding pure water to chloroauric acid (HA u CI14.4 H20; manufactured by Yojima Chemical Co., Ltd., reagent special grade) Ig to make 300 cc. This will be referred to as aqueous solution A.

実施例1の硝酸銀の代りに、上記水溶液A30cc(塩
化金酸100mgを含む)を用いた外は、実施例1と同
様にして粉末の全活性化銅(銅100gに金47mgが
銅の一部が露出した状態で付着している)を得た。
In the same manner as in Example 1, except that 30 cc of the above aqueous solution A (containing 100 mg of chloroauric acid) was used instead of silver nitrate in Example 1, powdered fully activated copper (47 mg of gold was added to 100 g of copper as part of the copper) was used. was attached in an exposed state).

上記で製造した、銅100gを金47mgで活性化した
全活性化銅200mgを、実施例1で使用したものと同
じアルキド塗料ベヒクル200mgと混練して、水棲生
物成育防止性組成物を得た。
200 mg of total activated copper prepared above, in which 100 g of copper was activated with 47 mg of gold, was kneaded with 200 mg of the same alkyd paint vehicle used in Example 1 to obtain an aquatic growth inhibiting composition.

上記組成物を用いて、後述の試験方法により、銅イオン
溶出試験を行なフだ。結果を第1表に示す。
A copper ion elution test was conducted using the above composition according to the test method described below. The results are shown in Table 1.

[実施例4] 実施例3で使用した水溶液Aの一部を純水で10倍に希
釈し、水溶液Bを調製した。
[Example 4] A portion of the aqueous solution A used in Example 3 was diluted 10 times with pure water to prepare an aqueous solution B.

実施例3の水溶液A30ccの代りに、上記氷水溶液8
6cc (塩化金酸2mgを含む)を用いた外は、実施
例3と同様にしての粉末の全活性化銅(銅100gに金
0.94mgが銅の一部が露出した状態で付着している
)を得た。
Instead of 30 cc of aqueous solution A in Example 3, the above ice-water solution 8
A fully activated copper powder was prepared in the same manner as in Example 3, except that 6 cc (containing 2 mg of chloroauric acid) was used (0.94 mg of gold was attached to 100 g of copper with part of the copper exposed). ) was obtained.

[実施例5] 実施例3の水溶液A30ccの代りに、上記氷水溶液8
3cc (塩化金酸1mgを含む)を用いた外は、実施
例3と同様にしての粉末の全活性化銅(銅100gに金
0.47mgが銅の一部が露出した状態で付着している
)を得た。
[Example 5] Instead of 30 cc of aqueous solution A in Example 3, the above ice aqueous solution 8
A fully activated copper powder was prepared in the same manner as in Example 3, except that 3 cc (containing 1 mg of chloroauric acid) was used (0.47 mg of gold was attached to 100 g of copper with part of the copper exposed). ) was obtained.

実施例3〜5で得られた全活性化銅の色は、いずれも、
銀活性化銅よりも薄い赤みがかった黒灰色で、塩化金酸
の使用量の多いものほど黒味が強かった。
The colors of all activated copper obtained in Examples 3 to 5 are as follows:
It had a reddish black-gray color that was thinner than that of silver-activated copper, and the higher the amount of chloroauric acid used, the stronger the blackness was.

[実施例6] 塩化白金酸(H2ptcI1g−6H20;和光純薬工
業■製、試薬特級)Igに純水を加えて300ccとし
、塩化白金酸水溶液を調製した。
[Example 6] Pure water was added to chloroplatinic acid (H2ptcI1g-6H20; manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) Ig to make 300 cc to prepare a chloroplatinic acid aqueous solution.

これを水溶液Cとする。This will be referred to as aqueous solution C.

実施例1の硝酸銀の代りに、上記水溶液C30cc(塩
化白金酸100mgを含む)を用いた外は、実施例1と
同様にして粉末の白金活性化銅(銅100gに白金37
mgが銅の一部が露出した状態で付着している)を得た
Powdered platinum-activated copper (100 g of copper to 37 g of platinum was used in the same manner as in Example 1, except that 30 cc of the above aqueous solution C (containing 100 mg of chloroplatinic acid) was used instead of silver nitrate in Example 1.
(mg was attached with part of the copper exposed) was obtained.

上記で製造した、銅i 00gを白金37mgで活性化
した白金活性化銅200mgを、実施例1で使用したも
のと同じアルキド塗料ベヒクル200mgと混練して、
水棲生物成育防止性組成物を得た。
200 mg of platinum-activated copper prepared above, in which 00 g of copper i was activated with 37 mg of platinum, were kneaded with 200 mg of the same alkyd paint vehicle used in Example 1.
An aquatic organism growth-preventing composition was obtained.

上記組成物を用いて、後述の試験方法により、銅イオン
溶出試験を行なった。結果を第1表に示す。
A copper ion elution test was conducted using the above composition according to the test method described below. The results are shown in Table 1.

[実施例7] 実施例6で使用した水溶液Cの一部を純水で10倍に希
釈し、水溶液りを調製した。
[Example 7] A portion of the aqueous solution C used in Example 6 was diluted 10 times with pure water to prepare an aqueous solution.

実施例6の水溶液C30ccの代りに、上記氷水溶液D
6cc (塩化白金酸2mgを含む)を用いた外は、実
施例6と同様にしての粉末の白金活性化銅(銅i 00
gに白金0.74rngが銅の一部が露出した状態で付
着している)を得た。
Instead of 30 cc of the aqueous solution C in Example 6, the above ice-water solution D
Powdered platinum-activated copper (copper i 00
0.74 rng of platinum was attached to the copper plate with part of the copper exposed).

[実施例8] 実施例6の水溶液C30ccの代りに、上記氷水溶液D
3cc (塩化白金酸1mgを含む)を用いた外は、実
施例3と同様にしての粉末の白金活性化′iA(銅10
0gに白金0.37mgが銅の一部が露出した状態で付
着している)を得た。
[Example 8] Instead of 30 cc of the aqueous solution C in Example 6, the above ice aqueous solution D
Powdered platinum activated 'iA (copper 10
(0.37 mg of platinum was attached to 0.0 g of copper with part of the copper exposed) was obtained.

実施例6〜8で得られた白金活性化銅の色は、いずれも
、銀活性化銅よりも溝かに黒味が強い黒灰色で、塩化白
金酸の使用量の多いものほど黒味が強かった。
The color of the platinum-activated copper obtained in Examples 6 to 8 is a black-gray color with a stronger blackness than that of silver-activated copper, and the blackness increases as the amount of chloroplatinic acid used increases. It was strong.

[比較例1] 金属銅粉末200mgを実施例1で使用したものと同じ
塗料ベヒクルと混合し、該組成物を用いて、後述の試験
方法により銅イオン溶出試験を行なった。結果を第1表
に示す。
[Comparative Example 1] 200 mg of metallic copper powder was mixed with the same paint vehicle used in Example 1, and a copper ion elution test was conducted using the composition according to the test method described below. The results are shown in Table 1.

且り土2叢徂ス1 上述の実施例または比較例で得られた組成物を、ガラス
ファイバー格子織布く旭硝子■製、2.5mm幅の中に
23目あり1本の糸幅0.5mm)3cmx3cmの正
方形中に塗布し、2日間乾燥したのち、人工海水50c
c中に浸漬し、6時間ごとに人工海水を新しいものに交
換する。
The composition obtained in the above-mentioned Examples or Comparative Examples was made into a glass fiber lattice woven fabric manufactured by Asahi Glass Co., Ltd., with 23 stitches in a 2.5 mm width and 1 thread width of 0.5 mm. 5mm) Apply in a 3cm x 3cm square, dry for 2 days, then add 50c of artificial seawater.
C, and replace the artificial seawater with fresh water every 6 hours.

上記操作を30日間継続し、7日目、200日目および
300日目人工海水中の銅イオン濃度を測定する。
The above operation is continued for 30 days, and the copper ion concentration in the artificial seawater is measured on the 7th, 200th, and 300th days.

以下余白 第1表 銅イオン濃度(ppIII) 7日目  200日目 300日 目施例1 実施例3 実施例6 比較例1  1    1   1 [実施例9〜15] 実施例1および実施例3〜8で製造した貴金属活性化銅
3gをそれぞれ、アルキド塗料ベヒクルの代りに同量の
ポリマーセメントと混練して、7種の水棲生物成育防止
性組成物を製造した。ポリマーセメントの配合を下記に
示す。
Margin below Table 1 Copper ion concentration (ppIII) 7th day 200th day 300th day Example 1 Example 3 Example 6 Comparative example 1 1 1 1 [Examples 9 to 15] Example 1 and Examples 3 to Seven aquatic growth inhibiting compositions were prepared by mixing 3 g of the precious metal activated copper prepared in Example 8 with the same amount of polymer cement in place of the alkyd paint vehicle. The composition of the polymer cement is shown below.

ポリマーセメントの 9 白色ポルトランドセメント   3g SBRラテックス        1.6g7号珪砂 
          3.5g水          
     0.2〜0. 5cc上記配合において、S
BRラテックスは日本合成ゴム■製トマックスーパーを
使用した。また水は、粘度調整のために添加した。
Polymer cement 9 White Portland cement 3g SBR latex 1.6g No. 7 silica sand
3.5g water
0.2~0. 5cc In the above formulation, S
The BR latex used was Tomac Super made by Japan Synthetic Rubber. Water was also added to adjust the viscosity.

上記組成物を用いて、後述の試験方法により、銅イオン
溶出試験を行なった。結果を第2表に示す。
A copper ion elution test was conducted using the above composition according to the test method described below. The results are shown in Table 2.

[比較例2] 金属銅粉末3gを実施例9で使用したものと同じポリマ
ーセメントに配合し、該混合物を用いて後述の試験方法
により銅イオン溶出試験を行なった。結果を第2表に示
す。
[Comparative Example 2] 3 g of metallic copper powder was mixed with the same polymer cement as used in Example 9, and a copper ion elution test was conducted using the mixture according to the test method described below. The results are shown in Table 2.

札工土λ遣旦ス1 上述の実施例または比較例で得られた組成物を、6cm
x5cmxO,5cmのスレート板の片面に塗布し、1
昼夜放置したのち、人工海水100cc中に浸清し、1
昼夜ごとに人工海水を新しいものに交換する。上記操作
を30日間継続し、6日目、200日目および300日
目人工海水中の銅イオン濃度を測定する。
The composition obtained in the above-mentioned example or comparative example was applied to a 6 cm
Apply to one side of a slate board of 5cm x 5cm x O, 1
After leaving it for day and night, immerse it in 100 cc of artificial seawater.
Replace the artificial seawater with fresh water every day and night. The above operation is continued for 30 days, and the copper ion concentration in the artificial seawater is measured on the 6th, 200th, and 300th days.

第2表 銅イオン濃度 (ppm) 6日目 200日目300日 目施例 実施例1 実施例1 実施例1 実施例1 実施例1 実施例1 比較例 2 [使用例1] 実施例1と同様の方法で金属銅1007fr、 rit
部を硝酸銀0.1重量部で活性化して得られた未活性化
銅(銅100gに銀63mgが銅の一部が露出した状態
で付着している)140g、または、実施例3と同様の
方法で金属鋼100重量部を塩化金酸0.1重量部で活
性化して得られた全活性化銅(銅100gに金47mg
が銅の一部が露出した状態で付着している)140gを
、ポリマーセメントと混練して、水棲生物成育防止性組
成物を製造した。ポリマーセメントの配合を下記に示す
Table 2 Copper ion concentration (ppm) 6th day 200th day 300th day Examples Example 1 Example 1 Example 1 Example 1 Example 1 Example 1 Comparative example 2 [Usage example 1] Example 1 and Metallic copper 1007fr, rit in the same way
140 g of unactivated copper (63 mg of silver is attached to 100 g of copper with a part of the copper exposed) obtained by activating the copper with 0.1 part by weight of silver nitrate, or the same as in Example 3. Totally activated copper obtained by activating 100 parts by weight of metal steel with 0.1 parts by weight of chloroauric acid (47 mg of gold per 100 g of copper)
140 g of the copper (with some of the copper attached in an exposed state) were kneaded with polymer cement to produce an aquatic organism growth-preventing composition. The composition of the polymer cement is shown below.

ポリマーセメントの配合 白色ポルトランドセメント   140gSBRラテッ
クス        74g7号珪砂        
   170g水                 
       20cc上記配合において、SBRラテ
ックスは日本合成ゴム@製トマックスーパーを使用した
Polymer cement combination White Portland cement 140g SBR latex 74g No. 7 silica sand
170g water
20cc In the above formulation, the SBR latex used was Tomac Super manufactured by Japan Synthetic Rubber@.

上記の組成物を、30.5cmX45.5cmXo、5
cmのスレート板の片面に塗布し2日間大気中に放置し
たのち、愛媛県松山海岸の港の海水中に吊り下げて、水
棲生物の付着成長状態を観察した。結果を第3表に示す
The above composition was divided into 30.5cm×45.5cmXo, 5
After applying the solution to one side of a cm slate board and leaving it in the air for 2 days, the solution was suspended in seawater at a port on the Matsuyama coast in Ehime Prefecture to observe the state of adhesion and growth of aquatic organisms. The results are shown in Table 3.

[使用例2] 銀活性化銅の代りに、実施例3と同様の方法で金属銅1
00重量部を塩化金酸0.1重量部で活性化して得られ
た全店性化銅(銅100gに金47mgが銅の一部が露
出した状態で付着している)140gを用いた以外は使
用例1と同様にして、水棲生物の付着成長状態を観察し
た。結果を第3表に示す。
[Usage Example 2] Instead of silver-activated copper, metallic copper 1 was used in the same manner as in Example 3.
00 parts by weight with 0.1 parts by weight of chloroauric acid (47 mg of gold is attached to 100 g of copper with a part of the copper exposed) 140 g was used. In the same manner as in Use Example 1, the state of adhesion and growth of aquatic organisms was observed. The results are shown in Table 3.

[比較使用例1] 金属銅粉末140gを使用例1と同じ配合のポリマーセ
メントに混合し、該組成物を30.5cmX45.5c
mX0.5cmのスレート板の片面に塗布し2日間大気
中に放置したのち、使用例1と同様にして、水棲生物の
付着成長状態を観察した。結果を第3表に示す。
[Comparative Use Example 1] 140 g of metallic copper powder was mixed with polymer cement having the same composition as in Use Example 1, and the composition was mixed into a 30.5 cm x 45.5 c.
After applying it to one side of a slate board of m x 0.5 cm and leaving it in the air for 2 days, the state of adhesion and growth of aquatic organisms was observed in the same manner as in Use Example 1. The results are shown in Table 3.

第3表 水棲生物の状態 1力月  2力月  3力月 使用例I      AA    AA    AA使
用例2      AA    AA    BB比較
使用例I    AA    AA    CC水棲生
物の状態 AA:動植物が全く付着していない BB:貝類は付着していないが、海藻がわずかに付着し
ている CC:貝類、海藻が付着している [実施例16コ 実施例1で使用したものと同じ電解銅粉を使用して、実
施例1と同様にして、該電解銅粉100g、硝酸SFi
loomg、および水25ccを混合した。上記混合物
を1時間ごとに10分間攪拌する操作を6回繰返し、銀
活性化銅(銅100gに3163 m gが銅の一部が
露出した状態で付着している)を製造した。
Table 3 Status of Aquatic Organisms 1 Rikitsuki 2 Rikitsuki 3 Rikitsuki Usage Example I AA AA AA Usage Example 2 AA AA BB Comparison Usage Example I AA AA CC Condition of Aquatic Organisms AA: BB with no animals or plants attached: No shellfish attached, but a slight amount of seaweed attached CC: Shellfish and seaweed attached [Example 16] Using the same electrolytic copper powder as that used in Example 1, In the same manner as in 1, 100 g of the electrolytic copper powder, SFi nitric acid
loomg, and 25 cc of water were mixed. The operation of stirring the above mixture for 10 minutes every hour was repeated six times to produce silver-activated copper (3163 mg of copper adhered to 100 g of copper with a portion of the copper exposed).

次に、上記銀活性化銅に、アジピン酸50g、酢酸水溶
液25cc (氷酢酸5cc、水20cc)を加えて充
分に混合したのち、さらに、1時間ごとに10分間攪拌
する操作を6回繰返し放置した。上記混合物は、48時
間で風乾された状態の粉末になった。該粉末をボールミ
ルで24時間粉砕し、150メツシュ篩通過分として、
銀活性化銅変性体を得た。収率は84%であった。
Next, 50 g of adipic acid and 25 cc of acetic acid aqueous solution (5 cc of glacial acetic acid, 20 cc of water) were added to the silver-activated copper and mixed thoroughly, and then the operation of stirring for 10 minutes every hour was repeated 6 times and allowed to stand. did. The mixture became an air-dried powder in 48 hours. The powder was ground in a ball mill for 24 hours and passed through a 150 mesh sieve.
A silver-activated copper modified product was obtained. The yield was 84%.

上記銀活性化銅変性体は、その表面に銀とともに、塩基
性炭酸銅および塩基性アジピン酸銅が付着しており、緑
青色を呈していた。
The silver-activated copper modified product had basic copper carbonate and basic copper adipate attached to its surface along with silver, and had a green-blue color.

[実施例17] 実施例16の硝酸銀の代りに、実施例3で用いた水溶液
Blccを用いた外は、実施例16と同様にして全店性
化銅変性体を得た。収率は85%であった。
[Example 17] A whole copper chloride modified product was obtained in the same manner as in Example 16, except that the aqueous solution Blcc used in Example 3 was used instead of the silver nitrate in Example 16. The yield was 85%.

上記全店性化銅変性体は、その表面に金とともに、塩基
性炭酸鋼および塩基性アジピン酸銅が付着しており、緑
青色を呈していた。
The above-mentioned whole copper modified product had basic carbonate steel and basic copper adipate attached to its surface along with gold, and had a greenish-blue color.

[実施例18] 実施例16の硝酸銀の代りに、実施例6で用いた水溶液
Dlccを用いた外は、実施例16と同様にして白金活
性化銅変性体を得た。収率は85%であった。
[Example 18] A platinum-activated copper modified product was obtained in the same manner as in Example 16, except that the aqueous solution Dlcc used in Example 6 was used instead of the silver nitrate in Example 16. The yield was 85%.

上記白金活性化銅変性体は、その表面に白金とともに、
塩基性炭酸銅および塩基性アジピン酸銅が付着しており
、緑青色を呈していた。
The above-mentioned platinum-activated copper modified product has platinum on its surface.
Basic copper carbonate and basic copper adipate were attached, giving it a greenish-blue color.

[実施例19] 実施例1で使用したものと同じ電解銅粉を使用して、実
施例1と同様にして、該電解銅粉100g、硝酸S15
00 m g、および水25ccを混合した。上記混合
物を1時間攪拌し、銀活性化銅(銅100gに銀315
mgが銅の一部が露出した状態で付着している)を製造
した。
[Example 19] Using the same electrolytic copper powder as that used in Example 1, 100 g of the electrolytic copper powder and S15 nitric acid were prepared in the same manner as in Example 1.
00 mg, and 25 cc of water were mixed. The above mixture was stirred for 1 hour and silver-activated copper (100 g of copper had 315 g of silver).
(mg was attached with a part of the copper exposed) was manufactured.

次に、上記銀活性化銅に、アジピン酸50g、酢酸水溶
液25cc (氷酢酸5cc、水20CC)、および酢
酸ニッケル20gを加えて、24時間攪拌を継続し、緑
青色で風乾された状態の粉末が得られた。該粉末をボー
ルミルで24時間粉砕し、150メツシュ篩通過分とし
て、その表面にニッケルが一体的に付着した銀活性化銅
変性体を得た。収率は83%であった。
Next, 50 g of adipic acid, 25 cc of acetic acid aqueous solution (5 cc of glacial acetic acid, 20 cc of water), and 20 g of nickel acetate were added to the above silver-activated copper, and stirring was continued for 24 hours. was gotten. The powder was pulverized in a ball mill for 24 hours and passed through a 150-mesh sieve to obtain a modified silver-activated copper product with nickel integrally attached to its surface. The yield was 83%.

上記の表面にニッケルが一体的に付着した銀活性化銅変
性体22gをフッ素樹脂塗料(旭化成■製ルミフロン2
00、主剤Bog、硬化剤12g)に混合し、水棲生物
成育防止性組成物を製造した。
22g of the silver-activated modified copper with nickel integrally attached to the above surface was coated with fluororesin paint (Lumiflon 2 manufactured by Asahi Kasei).
00, main agent Bog, and 12 g of curing agent) to produce an aquatic organism growth-preventing composition.

[使用例3] 長さ28m1外径0.7mmモネルメタル合金線の外周
に、レーヨン糸を炭化して製造した炭素繊維撚り糸(日
本カーボン社製GF−8Y、ストランド数3本)を巻き
上げて導電性線材を製造した。上記の処理に要した炭素
繊維撚り糸の長さは、94mであった。中心のモネルメ
タル合金線と外周の炭素繊維との間の抵抗は5Ωであっ
た。
[Usage example 3] Carbon fiber twisted yarn (GF-8Y manufactured by Nippon Carbon Co., Ltd., 3 strands) made by carbonizing rayon yarn is wound around the outer circumference of a Monel metal alloy wire with a length of 28 m and an outer diameter of 0.7 mm to make it conductive. Manufactured wire rods. The length of the carbon fiber strands required for the above treatment was 94 m. The resistance between the Monel metal alloy wire at the center and the carbon fiber at the outer periphery was 5Ω.

上記導電性線材に、実施例19で製造した水棲生物成育
防止性組成物を塗布した。上記塗布は、4回行なった。
The aquatic organism growth-preventing composition produced in Example 19 was applied to the conductive wire. The above coating was performed four times.

ついで、40cmX31 cmX 10cmの木枠に、
上述の水棲生物成育防止性組成物を塗布した導電性線材
をコイル状に巻き付け、両端を固定して交流電流を通電
できるようにした構造体を製造した。上記構造体を、内
容積50j!の水槽中に、浮上しないようにレンガで固
定した。
Next, in a wooden frame of 40 cm x 31 cm x 10 cm,
A structure was manufactured in which a conductive wire coated with the above-mentioned composition for inhibiting the growth of aquatic organisms was wound into a coil shape, and both ends were fixed so that an alternating current could be passed therethrough. The above structure has an internal volume of 50j! It was fixed with bricks in the water tank to prevent it from surfacing.

上記水槽に注水し、水槽中の2か所から空気を送入し、
上記構造体に10ボルトの交流電流を通電している状態
で、該水槽にディスポーザーにて粗粉砕したイワシの魚
腸骨500gを投入した。
Pour water into the aquarium above, introduce air from two places in the aquarium,
While an alternating current of 10 volts was being applied to the above-mentioned structure, 500 g of sardine fish iliac bone coarsely crushed using a disposer was put into the water tank.

水槽の水は、上記魚腸骨没人直後には血液のために微赤
色に濁るが、該赤色は直ちに消失し、投入後1時間で白
濁状態になり、3時間後には微黒色となった。通電を止
め、ラン藻の発生している水(以下、ラン諜水と略す)
を投入し、空気の送入を続けると、水槽の水は、48時
間で微緑色となり腐敗臭の発生は全く無かった。
Immediately after the fish iliac bone died, the water in the aquarium turned slightly red and cloudy due to the blood, but the red color immediately disappeared and became cloudy 1 hour after the fish was added, and turned slightly black after 3 hours. . Turn off the electricity and drain the water where blue-green algae are growing (hereinafter referred to as blue-green algae water)
When the water in the aquarium was added and air was continued to be supplied, the water in the aquarium turned slightly green in 48 hours and there was no smell of putrefaction.

[比較使用例2] 搗砕銅粉(描出金属箔製、CC−3)100、天然珪酸
アルミニウム(上屋カオリン■、ASp−i’yo)1
00g、酪酸ブチル酢酸繊維素(イーストマンコダック
製、CAB531)100g、およびアジピン酸100
gを加え、充分に攪拌混合したのち、氷酢酸12ccを
含む水130ccを加え、一部に団塊が生成すればこれ
を取り出して破砕しながら攪拌を継続し、48時間で緑
青色で風乾燥状態の粉体が得られた。該粉体をボールミ
ルで24時間粉砕し、150メツシュ篩通過分を緑青様
物質として得た。該緑青様物質は、貴金属により活性化
されていない。
[Comparative use example 2] Crushed copper powder (manufactured by Kashi Metal Foil, CC-3) 100, natural aluminum silicate (Kueya Kaolin ■, ASp-i'yo) 1
00g, butylacetate cellulose butyrate (manufactured by Eastman Kodak, CAB531) 100g, and adipic acid 100g
After stirring and mixing thoroughly, add 130 cc of water containing 12 cc of glacial acetic acid, and if some lumps form, take them out and continue stirring while crushing them. After 48 hours, the mixture turns greenish-blue and air-dried. of powder was obtained. The powder was pulverized in a ball mill for 24 hours, and the material that passed through a 150-mesh sieve was obtained as a verdigris-like material. The patina-like material is not activated by noble metals.

実施例9で製造した水棲生物成育防止性組成物の表面に
ニッケルが一体的に付着した銀活性化銅変性体の代りに
、上述の貴金属で活性化されていない緑青様物質を使用
して、水棲生物成育防止性組成物を製造した。該組成物
を使用した以外は、使用例2と同様にして、イワシの魚
腸骨の処理試験を行なった。
Instead of the silver-activated modified copper on which nickel was integrally adhered to the surface of the aquatic organism growth-preventing composition prepared in Example 9, the above-mentioned patina-like material not activated with noble metals was used. An aquatic organism growth-preventing composition was produced. A treatment test on sardine fish iliac bones was conducted in the same manner as in Use Example 2, except that the composition was used.

水槽の水は、血液による微赤色が消失し、白濁を経て微
黒色になるまでに10時間を要した。また、ラン湿水を
投入しても、微緑色にはなうなかった。
It took 10 hours for the water in the aquarium to lose its slightly red color due to blood, become cloudy, and then turn slightly black. Also, even when orchid wet water was added, the color did not turn slightly green.

特許出願人 有限会社 ハイ・マックス化 理 人 弁
理士 柳 川 泰 男
Patent applicant Hi-Max Ka Co., Ltd. Patent attorney Yasuo Yanagawa

Claims (1)

【特許請求の範囲】 1、金属銅粉末の粒子表面に、該金属銅100重量部に
対して0.4重量部以下の貴金属が、該粒子表面の少な
くとも一部を露出した状態で一体的に付着してなる貴金
属活性化銅を有効成分とすることを特徴とする水棲生物
成育阻止剤。 2、金属銅粉末の粒子表面に、該金属銅100重量部に
対して0.4重量部以下の貴金属が、該粒子表面の少な
くとも一部を露出した状態で付着してなる貴金属活性化
銅であって、かつ、その表面に塩基性有機二塩基酸銅も
しくは塩基性炭酸銅が一体的に付着している貴金属活性
化銅変性体を有効成分とすることを特徴とする水棲生物
成育阻止剤。 3、金属銅粉末の粒子表面に、該金属銅100重量部に
対して0.4重量部以下の貴金属が、該粒子表面の少な
くとも一部を露出した状態で一体的に付着してなる貴金
属活性化銅と、それを分散状態に保持してなる結合剤と
からなる水棲生物付着防止性組成物。 4、金属銅粉末の粒子表面に、該金属銅100重量部に
対して0.4重量部以下の貴金属が、該粒子表面の少な
くとも一部を露出した状態で付着してなる貴金属活性化
銅であって、かつ、その表面に塩基性有機二塩基酸銅も
しくは塩基性炭酸銅が一体的に付着している貴金属活性
化銅変性体と、それを分散状態に保持してなる結合剤と
からなる水棲生物付着防止性組成物。
[Scope of Claims] 1. 0.4 parts by weight or less of noble metal per 100 parts by weight of the metallic copper is integrally formed on the particle surface of the metallic copper powder with at least a part of the particle surface exposed. An aquatic organism growth inhibitor characterized by containing as an active ingredient precious metal-activated copper formed by adhesion. 2. Noble metal activated copper, in which 0.4 parts by weight or less of a noble metal is attached to the particle surface of a metallic copper powder with at least a part of the particle surface exposed, based on 100 parts by weight of the metallic copper. What is claimed is: 1. An aquatic organism growth inhibitor characterized by containing as an active ingredient a noble metal-activated copper modified product having a basic organic dibasic acid copper or a basic copper carbonate integrally attached to its surface. 3. Noble metal activity, in which 0.4 parts by weight or less of noble metal is integrally attached to the particle surface of metallic copper powder, with at least a part of the particle surface exposed, based on 100 parts by weight of the metallic copper. An aquatic organism adhesion prevention composition comprising copper chloride and a binder that holds it in a dispersed state. 4. Noble metal activated copper in which 0.4 parts by weight or less of a noble metal is attached to the particle surface of metallic copper powder with at least a part of the particle surface exposed, based on 100 parts by weight of the metallic copper. consisting of a precious metal-activated copper modified product, on which basic organic dibasic acid copper or basic copper carbonate is integrally adhered, and a binder that holds it in a dispersed state. Aquatic organism adhesion prevention composition.
JP27053688A 1988-10-26 1988-10-26 Aquatic living body growth-inhibiting agent and aquatic living body attachment preventing composotion Granted JPH02117606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27053688A JPH02117606A (en) 1988-10-26 1988-10-26 Aquatic living body growth-inhibiting agent and aquatic living body attachment preventing composotion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27053688A JPH02117606A (en) 1988-10-26 1988-10-26 Aquatic living body growth-inhibiting agent and aquatic living body attachment preventing composotion

Publications (2)

Publication Number Publication Date
JPH02117606A true JPH02117606A (en) 1990-05-02
JPH0579042B2 JPH0579042B2 (en) 1993-11-01

Family

ID=17487572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27053688A Granted JPH02117606A (en) 1988-10-26 1988-10-26 Aquatic living body growth-inhibiting agent and aquatic living body attachment preventing composotion

Country Status (1)

Country Link
JP (1) JPH02117606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082201A1 (en) * 2015-11-09 2017-05-18 大阪ガスケミカル株式会社 Microorganism-controlling agent and miticidal composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082201A1 (en) * 2015-11-09 2017-05-18 大阪ガスケミカル株式会社 Microorganism-controlling agent and miticidal composition
JPWO2017082201A1 (en) * 2015-11-09 2018-01-11 大阪ガスケミカル株式会社 Microbicide control agent and acaricide composition
JP2018087201A (en) * 2015-11-09 2018-06-07 大阪ガスケミカル株式会社 Microorganism-controlling agent

Also Published As

Publication number Publication date
JPH0579042B2 (en) 1993-11-01

Similar Documents

Publication Publication Date Title
WO1993011670A1 (en) Bactericide and method of retaining freshness of food
JP6571335B2 (en) Supply method of aquaculture materials
You et al. Surface properties and environmental transformations controlling the bioaccumulation and toxicity of cerium oxide nanoparticles: a critical review
JP2023517784A (en) PORTLAND CEMENT CONCRETE, LIGHTWEIGHT CONCRETE OYSTER-ATTACHED BASE AND MANUFACTURING METHOD THEREOF
JPH02117606A (en) Aquatic living body growth-inhibiting agent and aquatic living body attachment preventing composotion
JPH05111684A (en) Artificial sea water preparing agent
JP2003071459A (en) Magnetic ceramics water treatment material, method for manufacturing the same and water treatment method
CN100521928C (en) Dedicated artificial sea crystal for prawn cultivation
TWI785099B (en) Red Tide Repellant and Its Useful Red Tide Removal Method
JPH0694415B2 (en) Antibacterial / deodorant
KR101882486B1 (en) A method for manufacturing artificial fish sauce that increases the recyclability of wastewater sludge
JP2001233720A (en) Agent for imparting bactericidal activity, method for imparting bactericidal property and bactericidal bag
JP2963133B2 (en) Antibacterial apatite
KR20050024481A (en) Depurator prepared using natural mineral powder containing germanium and method for preparing the same by preparing natural mineral powder, preparing quicklime, mixing natural mineral powder and quicklime and aging mixture
JPS5811564A (en) Electrically conductive coating material and stainproof and corrosionproof apparatus
JPH07127029A (en) Beach parching preventing method for revetment installation
JPH01310038A (en) Weak-current excitation type soil-resistant, fungus-resistant and germ-resistant composite structure
JP4387664B2 (en) Repellent composition, repellent paint, and repellent method using the same
RU2288179C1 (en) Method of disinfecting water with hydrogen peroxide in presence of heterogeneous catalyst
JPH0986986A (en) Antibacterial, antifungal and seaweed proofing agent for mixing in cement and hydraulic cement composition using the agent
JP3686320B2 (en) Method for modifying the surface of concrete structures
JPH08218004A (en) Coating for prventing adhesion of alga and shellfish on ship bottom
JP2001031461A (en) Antimicrobial cement modifier
JPH11323213A (en) Seaweedproofing/seashellproofing composition and machine component for submarine use coated therewith
KR20060099617A (en) An inorganic antimicrobial chemical removing white power disease using silver nano composite