JPS5811564A - Electrically conductive coating material and stainproof and corrosionproof apparatus - Google Patents

Electrically conductive coating material and stainproof and corrosionproof apparatus

Info

Publication number
JPS5811564A
JPS5811564A JP10922981A JP10922981A JPS5811564A JP S5811564 A JPS5811564 A JP S5811564A JP 10922981 A JP10922981 A JP 10922981A JP 10922981 A JP10922981 A JP 10922981A JP S5811564 A JPS5811564 A JP S5811564A
Authority
JP
Japan
Prior art keywords
electrically conductive
conductive coating
paint
mixing
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10922981A
Other languages
Japanese (ja)
Inventor
Kiyoshige Hayashi
林 喜世茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURI KK
Original Assignee
CHIYOURI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURI KK filed Critical CHIYOURI KK
Priority to JP10922981A priority Critical patent/JPS5811564A/en
Publication of JPS5811564A publication Critical patent/JPS5811564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide an electrially conductive coating material capable of keeping the stainproofing effect for a long period, harmless to life, and suitable for the coating of marine construction, etc., by mixing an organic or inorganic polymer, electrically conductive fibers, and fine powder of metal flakes to make a paste (or paint) wherein the metal flakes are connected with each other in the form of chain. CONSTITUTION:The objetive coating material is obtained in the form of paste or paint, e.g. by (1) mixing (A) 100pts.wt. of flaky fine powder of copper or a copper alloy having particle size of 80-10,000 mesh with (B) 2-30pts.wt. of electrically conductive fibers, (2) spraying (C) an electrically conductive bonding agent such as an aqueous solution of lithium orthophosphate (preferably containing a slight amount of a surface active agent) to the mixture, and (3) mixing and kneading the product with (D) 400-800pts.wt. of a paint composed of (i) 10-30% coating vehicle and (ii) 90-70% solvent. EFFECT:Bactericidal activity. USE:Toilet stool, floor and wall of lavatory, operating room, sickroom, and passage of hospital, etc.

Description

【発明の詳細な説明】 本発明は導電性被覆体及び防汚防食方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive coating and a method for antifouling and anticorrosion.

−・・ −一層−II#1−1−^4シ 嘉↓首響姓f
蓄目し、面としての導電柱材就中各種の構成材の被覆が
可能であシその被覆によシカビ類、キノコ類、藻類、貝
類の付着の防止及び防食効果の大なる導電性被覆体を得
ることを目的とし又該導電性被覆体による防汚防食方法
を得ることを目的とするものであ゛る。
-・・ -One layer-II#1-1-^4shi Ka↓Shukyo surname f
A conductive coating that can be used as a conductive pillar material as a surface and can be coated with various constituent materials, and has a great anti-corrosion effect and prevents the adhesion of molds, mushrooms, algae, and shellfish. The object of the present invention is to obtain an antifouling and anticorrosion method using the conductive coating.

箔状金属微粉末は、金属固有の特性として、導電性の優
れたものであるが、これをセメントや、塗料中に混合し
、固体面に塗布しても決して導電性がよくない。これは
箔状金属微粉末粒子の相互の境間(境界間隙)に絶縁性
の無機物や有機物(無機ポリマーや有機ポリマー)が介
ある。
Foil-shaped metal fine powder has excellent electrical conductivity as a metal-specific property, but even if it is mixed into cement or paint and applied to a solid surface, the electrical conductivity is never good. This is because an insulating inorganic substance or organic substance (inorganic polymer or organic polymer) is present between the boundaries (boundary gaps) between the foil-like fine metal powder particles.

金属鋼表面が殺菌性のあることは最近注目されるように
なったが、Cu或いはCu合金を含む塗料による被覆体
は決して金属銅のように殺菌マー、セメント、被覆体の
水中防汚剤の開発時1通電することによシ、水中防汚性
能の著しい向上が見られ、この防汚性向上は被覆体の導
電性に大きく関係することを艶出した。
Recently, attention has been drawn to the fact that metal steel surfaces have bactericidal properties, but coatings with paints containing Cu or Cu alloys have never been treated with sterilizers, cement, or underwater antifouling agents like metal copper. At the time of development, a significant improvement in the underwater antifouling performance was observed after one electrification, and it was revealed that this improvement in antifouling performance was largely related to the conductivity of the coating.

そこで本発明に於ては重性金属微粉末に炭素繊維や黒鉛
繊維、金属繊維の如き導電性繊維を少量混合し繊維表面
に箔状金属微粉末が付着した連鎖状の集合体となり無機
ポリマーや有機ポリマー中に混入しても通電性の極めて
よく保持できる被覆体を提案せんとするものである。
Therefore, in the present invention, a small amount of conductive fibers such as carbon fibers, graphite fibers, and metal fibers are mixed with heavy metal fine powder to form a chain-like aggregate with foil-like metal fine powder attached to the fiber surface. The purpose of the present invention is to propose a coating that can maintain extremely good electrical conductivity even when mixed into an organic polymer.

本発明の導電性被覆体は通電によって金属鋼のように殺
菌作用を示しベヒクルの種類、cu。
The conductive coating of the present invention exhibits a sterilizing effect like metal steel when energized, and the type of vehicle, cu.

量、通電量によって殺菌作用を任意にコントロールする
ことができる。そして通電性は、箔状金属微粉末の金属
の種類、粒度分布、導電性繊維の種類、配合比、混合法
、ポリマー中への混入量によって任意にコントロールす
ることができる。さらに箔状金属微粉末の粒子の相互間
、および導電性繊維とのあいだの接着性接合性は、リン
酸リジウム水溶液など導電性材料を少量添加することで
容易に達せられる。
The sterilization effect can be controlled arbitrarily by changing the amount of electricity and the amount of electricity applied. The electrical conductivity can be arbitrarily controlled by the type of metal, particle size distribution, type of conductive fiber, blending ratio, mixing method, and amount mixed into the polymer of the foil-like fine metal powder. Furthermore, adhesive bonding between the particles of the foil-like fine metal powder and between the conductive fibers can be easily achieved by adding a small amount of a conductive material such as an aqueous lysium phosphate solution.

本発明に於て使用される金属箔状微粉末は古来よ)使用
されているA u * Ag + Cuの池A1.Zn
に及ぶ。本発明者はこれまで泥状粉末で箔状粉末に製造
出来ないとされていたZnをZn熔融体を急冷した上で
ゲールミルで粉砕することにより箔状鱗状粉末にする製
造技術に関係した。さらに延展性のAu、八g、Cu+
AtK Ni 、Zn+Snなどの金属を混合し合金と
なしその熔融体を急冷したものを圧延粉砕することによ
り得られた箔状の金属微粉末を使用できる。導電性繊維
として炭素繊維や黒鉛繊維、炭化珪素繊維などはしなや
かで任意の表面に薄膜の導電性被覆体を容易に造成しや
すい。すなわち柔構造の導電性被覆体を造成することが
できる。これに対し金属繊維は硬質であるためコンクリ
ートなど剛構造の表面に剛構造の導電性被覆体を造成す
るのに適合している。被覆体造成の作業は柔構造の導電
性被覆体の場合のほうが迅速でやさしく、コンクリート
表面にも容易に実施できる。
The metal foil-like fine powder used in the present invention is A u * Ag + Cu pond A1. which has been used since ancient times. Zn
It extends to. The present inventors are concerned with a technology for producing Zn, which has hitherto been thought to be a mud-like powder and cannot be produced into a foil-like powder, into a foil-like, scaly powder by rapidly cooling a Zn melt and pulverizing it in a Gale mill. Furthermore, ductile Au, 8g, Cu+
It is possible to use a foil-like fine metal powder obtained by mixing metals such as AtK Ni, Zn+Sn, etc. to form an alloy, rapidly cooling the melt, and then rolling and crushing the resulting mixture. Carbon fibers, graphite fibers, silicon carbide fibers, and the like are flexible conductive fibers, and a thin conductive coating can be easily formed on any surface. In other words, it is possible to create a conductive covering with a flexible structure. On the other hand, since metal fibers are hard, they are suitable for creating a rigid conductive covering on the surface of a rigid structure such as concrete. The work of constructing the sheathing is faster and easier with flexible conductive sheathing and can be easily carried out on concrete surfaces.

本発明の具体例について説明すればCuあるいはCu含
有合金の箔状微株祁0〜10000メツシュ、経済的に
好ましくは200〜500メツシユのものに導電性繊維
を少量混合しその混合比は箔状金属微粉100部に対し
2〜30部、好ましくは8〜15部混合し、正燐酸リジ
ウム水溶液などのような導電性接合剤をスプレー状で撒
布し、(この場合界面活性剤を微量導電性接合剤中に配
合しておくことによって導電性接合剤の箔状金属表面と
導電性繊維表面のぬれ状態したがって接着性、接合性を
良好にすることに効果あり)しかる後、塗料用ベヒクル
を10〜30%、溶剤90〜70%から成る塗料400
〜800部を混合、混練することによってペースト状、
ちるいは塗料状の導電性被覆体を得られる。これを使用
に当り金属板表面、コンクリート表面、網状、カゴ状、
ローブ状など任意の形状の物体の表面に塗布し、乾燥す
る。この乾燥は加熱200部程度或は風乾何れでもよい
。そして得られる導電性被覆体に交流もしくは直流ある
いは直流混入の交流の電気、電圧として10〜220 
Volt好ましくは10〜40 Volt、電流として
表面積1 m2当り20〜300 Ampの電気を通電
する。発電所など工場用海水導入水路の鉄管、コンクリ
ート、橋ゲタ、棧橋の支柱、浮棧橋、浮標、洋上備ちく
タンク、波力発電所など各種船上プラント、洋上石油く
っさく機”リグなど海洋構築物の海水にコンタクトする
部分は厳重に防錆効果を施工しても、藻類、カイ類が付
着し、繁殖するとこれが荒海で剥離するため重防食剤も
はぎとられ防食効果をあげることができない。本発明に
かかる導電性被覆体は抜群な防汚効果をあげ、かつ長期
にわたシ防汚効果をあげることができるため海洋構築物
に対し、重防食材と併用して必須の重防汚材である。さ
らに重要なことは有機スズや有機水銀、有機塩素、有機
臭素などの生物の生存と生命に有害な物質を全く含まな
いことである。金属銅は古来安全で人類が食器、じよう
そう、食品、工芸、建築用の材料として長く使用してき
た最も安全な金属の代表である。本発明品は安全な材料
であるばかりでなく、補修などに容易に使用することが
できる。
To explain a specific example of the present invention, a small amount of conductive fiber is mixed with a foil-like microfiber of Cu or a Cu-containing alloy of 0 to 10,000 meshes, economically preferably 200 to 500 meshes, and the mixing ratio is foil-like. 2 to 30 parts, preferably 8 to 15 parts, are mixed with 100 parts of fine metal powder, and a conductive bonding agent such as lysium orthophosphate aqueous solution is sprayed (in this case, a small amount of surfactant is added to the conductive bonding agent). (It is effective to improve the wettability of the conductive adhesive between the foil-like metal surface and the conductive fiber surface by blending it into the agent.) Thereafter, the paint vehicle is mixed with the paint vehicle for 10~ Paint 400 consisting of 30% and 90-70% solvent
By mixing and kneading ~800 parts, paste form,
A conductive coating in the form of a paint can be obtained. When using this, metal plate surfaces, concrete surfaces, net shapes, cage shapes, etc.
Apply to the surface of an object of any shape, such as a lobe, and dry. This drying may be done by heating for about 200 parts or by air drying. Then, the resulting conductive coating is supplied with alternating current, direct current, or alternating current mixed with direct current, with a voltage of 10 to 220.
The voltage is preferably 10 to 40 Volt, and the current is 20 to 300 Amps per m2 of surface area. Seawater from iron pipes in seawater introduction channels for factories such as power plants, concrete, bridge gutter, bridge supports, floating bridges, buoys, offshore tanks, various shipboard plants such as wave power plants, offshore structures such as offshore oil extractor rigs, etc. Even if the parts that come into contact with the seams are made with strict anti-corrosion effects, algae and insects will adhere to them, and if they breed, they will peel off in rough seas, and the heavy anti-corrosion agent will be stripped off, making it impossible to achieve the anti-corrosion effect.According to the present invention The conductive coating has an outstanding antifouling effect and can provide long-term antifouling effects, so it is an essential heavy duty antifouling material for marine structures when used in combination with heavy duty antifouling materials. The thing is that it does not contain any substances that are harmful to the survival and life of living things, such as organic tin, organic mercury, organic chlorine, and organic bromine.Metallic copper has been safe since ancient times and has been used as a material for tableware, toiletries, food, and crafts. , is a representative of the safest metal that has been used for a long time as a building material.The product of the present invention is not only a safe material, but also can be easily used for repairs.

さらに本発明の導電性被覆体は便所の便器、床、壁に使
用し、通電して使用するとき大気中の湿度などにより箔
状のCuあるいはCu合金のイオン化によってバクテリ
ヤに対する殺菌作用を示し、かつ通電によって暖くて快
適な使用感を与える。さらに本発明の導電性被覆体は病
院の手術室や病室、そして通路の床や壁に同様に用いて
殺菌作用と暖く快適な条件を保持することができる。
Furthermore, the conductive coating of the present invention is used for toilet bowls, floors, and walls, and when used with electricity, exhibits a bactericidal effect against bacteria by ionizing the foil-like Cu or Cu alloy due to atmospheric humidity, etc. Provides a warm and comfortable feeling when energized. Furthermore, the conductive coatings of the present invention can be similarly used on the floors and walls of hospital operating rooms, patient rooms, and hallways to maintain germicidal action and warm, comfortable conditions.

実施例1゜ 箔状金属銅100部に黒鉛繊維のチョップ(平均繊維長
31Im、平均単糸径12−5 #FI) 10部を混
合し、エチレンビニルアセテート樹脂85部、ロノ78
部、溶剤477部からなる樹脂溶液を混和混練して得ら
れる塗料状混和物を厚み3%、30crnX50cWI
角の鉄板の両面にノ・ケ塗りで2回塗布する。その厚み
は0.1%である。
Example 1 100 parts of foil-like metallic copper were mixed with 10 parts of chopped graphite fiber (average fiber length 31 Im, average single fiber diameter 12-5 #FI), 85 parts of ethylene vinyl acetate resin, and LONO 78.
A paint-like mixture obtained by kneading a resin solution consisting of 477 parts of solvent and a thickness of 3%, 30 crn x 50 c WI
Apply two coats of no-ke coating to both sides of the corner iron plate. Its thickness is 0.1%.

鉄板は予め防錆剤塗料を塗布して鉄板の防錆と絶縁をお
こなっておく。導電性被覆体は通電性を示しIOVでI
 Ampを示し、これを東京湾千葉県の海岸の海中に浸
漬し防汚テストをおこなった。
Apply anti-corrosion paint to the iron plate in advance to prevent rust and insulate the iron plate. The conductive coating exhibits current conductivity and IOV
Amp was immersed in the sea off the coast of Tokyo Bay, Chiba Prefecture, and an antifouling test was conducted.

本発明品を  本発明品を  従来の防汚塗布し通電 
 塗布しただ  塗料 したもの   けのもの 6ケ月目  変化ないが  変化ない   変化ない外
  観  若干緑色が かっている 12ケ月目  6ケ月目と  表面に藻類  剥離した
所に外  観 大体同じ−  とカイがわ  藻類とカ
イがずか成育し  生育する でいる 24ケ月目  6ケ月目と  12ケ月目  剥離個所
が増外 観  殆んど同じ  に近いが成  加し、藻
類と緑色化けず  育は進行し  カイは盛んにすむ 
    でいる    生育している藻類カイの 成育は見ら れない 実施例2゜ 5デニールナイロン短繊維中に炭素繊維チョップ8%を
混紡したスパン糸16番手の三手糸をもって魚網を編立
てる(これを魚網Aとする。)。
The product of the present invention The product of the present invention is applied with conventional antifouling coating and energized.
The painted animal is 6 months old, no change, no change, no change appearance, slightly greenish, 12 month old, and algae on the surface. At the 24th month, the algae and the algae are growing and growing, and at the 6th and 12th month, the number of flaking areas has increased.The appearance is almost the same, but the algae and algae have not turned green. live in
No growth of algae is observed.Example 2: A fishing net is knitted using three-handed thread of 16th count spun yarn, which is a mixture of 8% chopped carbon fiber and 5-denier nylon short fibers. A).

また20デニ一ルナイロン長繊維3本と黒鉛繊維スライ
バーヤーン、ノストランr糸1本とを混撚して得た紡績
糸をもって魚網を編立てる(これを魚網Bとする)、帆
立貝養殖のテストをおこなう。゛以上に塗布する導電性
被覆体は実施例1と同じもの。IOVの電圧で網1部巾
にI Amp通電する。
In addition, a fish net was knitted using a spun yarn obtained by mixing and twisting three 20-denier nylon long fibers, graphite fiber sliver yarn, and one Nostran R yarn (this will be referred to as fish net B), and a scallop culture test was conducted.゛The conductive coating applied above is the same as in Example 1. I Amp is energized across one section of the network at a voltage of IOV.

魚網人  魚網B 魚網B (通電する)   (通電する)  (通電できない)
(本発明にかか  (本発明にかか る網状体)    る網状体) 6ケ月経過して  12ケ月経過し 3ケ月目で藻類も
藻類、カイ類  でも藻類、カイ が−面に繁殖し、が
付着していない 類の付着が見ら カイ類も付着す8ケ
月藻類が付  れない     る着はじめ10ケ  
帆立貝が元気に 海水の流入が悪月カイ類もつきは 成
育している  くなシ酸欠をお′じめる       
       こし、引上げて帆立貝は元気に    
      清掃を盛装とす成育している      
     る実施例3゜ 大便1501i’に対し水54?加え、十分混合し、1
20メツシユの金網で濾過しp液を1日放置し、沈降物
をおとした透明な水を試料水とする。これはpH7,4
、化学的酸素要求量(COD)216 mP/J s生
物化学的酸素要求量240 wv/−6、懸濁物質(8
8) 10.81n9/Jで、大腸菌群は1 at中9
X10’である。実施例1の導電性被覆体をタイル9ケ
計30 c/rn X 30 c/mの表面に塗布し1
゜V、lAmpの電気をとおす。このタイル表面に上記
フン水試料水を10分おきに30回撒布し、撒布後2H
rB通電したのち表面を清水で洗滌し、100CCの水
を採取しこの中に残存する大腸菌群を測定すると、この
Cu箔状金属微粉末を使用する導電性被覆体を塗布し、
通電した場合は陰る殺菌効果は明瞭である。
Fish net person Fish net B Fish net B (Electricity is applied) (Electrification is applied) (Electricity cannot be applied)
(Reticular body according to the present invention (Reticular body according to the present invention)) 6 months have passed, 12 months have passed, and in the 3rd month, algae, algae, and mosquitoes have grown on the − surface, and they have adhered to the surface. There are no algae attached.Algae are not attached.Algae are not attached.
The scallops are doing well, and the influx of seawater is causing the growth of the scallops, which relieves the lack of oxygen.
Strain and pull out to keep the scallops healthy.
Growing up with cleaning in mind
Example 3: 1501 i' of stool to 54 i' of water? Add, mix thoroughly,
Filter the p solution through a 20-mesh wire mesh, leave it for one day, and use the clear water from which the sediment has been removed as sample water. This has a pH of 7.4
, chemical oxygen demand (COD) 216 mP/J s biochemical oxygen demand 240 wv/-6, suspended solids (8
8) 10.81n9/J, coliform bacteria is 9 in 1at
X10'. The conductive coating of Example 1 was applied to the surface of 9 tiles totaling 30 c/rn x 30 c/m.
Pass electricity of °V, lAmp. Spray the above fecal water sample water on the surface of this tile 30 times every 10 minutes, and after spraying for 2 hours.
After applying rB current, the surface was washed with clean water, 100 cc of water was collected, and the residual coliform bacteria in it was measured.A conductive coating using this Cu foil metal fine powder was applied.
The sterilizing effect is clear when electricity is applied.

実施例4゜ 吸水性ナイロン繊維に黒鉛繊維を8%(重量比)混紡し
た糸で織った目2〜3X角の導電性カーテンに箔状の金
属銅と金属ニッケルの混合体(重量比5:1)100部
に・・・以下実施例1に準ず・・・の導電性被覆体をス
プレー状に撒布し100重量当り3重量を塗布、乾燥す
る。かくして得られる導電性カーテン(広義には導電性
金属銅導電性被覆網状体)の巾1rn長さ2□に10V
の交流電圧をかけておく。電流は0.5 Ampである
。これに実施例3のフン水を撒布し1時間後の大腸菌群
を測定すると全く陰性であるに対し   ” 何も塗布しないものは1.0X10’〜3×105の数
値を示す。
Example 4゜A conductive curtain with 2 to 3 x square mesh woven from a yarn made by blending water-absorbing nylon fibers with 8% graphite fiber (weight ratio) was coated with a foil-like mixture of metallic copper and metallic nickel (weight ratio: 5: 1) Spray 100 parts of the conductive coating according to Example 1 in an amount of 3 weight per 100 weight, and dry. 10V per width 1rn and length 2□ of the conductive curtain (conductive metal copper conductive coated network in a broad sense) thus obtained.
Apply an AC voltage of . The current is 0.5 Amp. When the fecal water of Example 3 was sprinkled on this and the coliform bacteria was measured one hour later, it was completely negative, whereas those to which nothing was applied showed values of 1.0 x 10' to 3 x 105.

実施例5 ポリエステル二子糸の魚網の編立てに当りその各−系に
黒鉛繊維(直径5.5μ、 TensileStren
gth 300kl/was” # Young ’s
 Mgdulus 20,000ky/ma” )のが
ピンまき巾2%の偏平ターフ1本をあわせて、よシあわ
せたロープ(直径4%)(1m当りポリエステル二子糸
6.6ff、黒鉛繊維0.4P)によって魚網を編立て
る。黒鉛繊維の合わせ撚シしたロープに実施例1の導電
性被覆体を塗布し、乾燥させる1mmクシ塗布量は1.
0?で、これを海水中にて通電す冬とき交流10Vで0
. I Ampである。黒鉛繊維の合わせ撚シしたロー
プで編立てたロープで魚網をつくシ、これに導電性被覆
体を塗布し四国西部の海中に浸漬し試験的にハマチの養
殖をおこない、従来法と比較する。7月に投入し、冬を
越え春をすぎ7月までの1ケ年にわたり魚網に海藻′、
カイ類の付着状況とノ・マチの成育状況を観測する。
Example 5 When knitting a fishing net made of polyester twin threads, graphite fibers (diameter 5.5μ, TensileStren
gth 300kl/was” #Young's
Mgdulus 20,000ky/ma") is a twisted rope (diameter 4%) with one flat turf with pin winding width 2% (6.6ff polyester twin yarn, 0.4P graphite fiber per 1m) A fishing net is knitted by applying the conductive coating of Example 1 to a twisted rope of graphite fibers and drying it with a 1 mm comb.The coating amount is 1.
0? So, when this is energized in seawater in winter, it is 0 at 10V AC.
.. I Amp. Fishing nets were made using ropes woven from twisted graphite fibers, coated with a conductive coating, and immersed in the sea in western Shikoku for experimental cultivation of yellowtail and compared with conventional methods. It was introduced in July, and seaweed',
Observe the adhesion status of mosquito species and the growth status of nomachini.

A      B      C 本発明にかかる 従来の魚網に導 従来の魚網単独網状
体     電性被覆体を塗 (通電する)  布したもの を引きあげ藻と カイおとじを必 要とする。
A B C Introduced to the conventional fishing net according to the present invention Conventional fishing net alone Reticulated body Coated with an electrically conductive coating (energized) The clothed net is pulled up and requires cleaning with algae and chimney.

Claims (1)

【特許請求の範囲】 1、 有機物又は無機物ポリマーに導電性繊維を箔状金
属微粉末が耐着し且連鎖状になる如く混入させペースト
状若しくは塗料状に構成したことを特徴とする導電性被
覆体。 2、銅、ニッケル、亜鉛、錫、アルミニウムの単独又は
適宜合金を箔状金属微粉末として選択することを特徴と
する特許請求範囲1の導電性被覆体。 3、箔状金属微粉末に導電性繊維を混合し、有機物又は
無機物のポリマーに分散した導電性被覆体を所望構成体
に塗着固化させ通電装置に連結したことを特徴とする防
汚防食装置。
[Scope of Claims] 1. A conductive coating characterized in that conductive fibers are mixed into an organic or inorganic polymer so that foil-like fine metal powder is resistant to adhesion and form a chain, forming a paste-like or paint-like structure. body. 2. The conductive coating according to claim 1, characterized in that copper, nickel, zinc, tin, aluminum alone or an appropriate alloy is selected as the foil-like metal fine powder. 3. An antifouling and anticorrosion device characterized in that a conductive coating is prepared by mixing conductive fibers with foil-like metal fine powder and dispersing it in an organic or inorganic polymer, which is coated and solidified on a desired structure and connected to an energizing device. .
JP10922981A 1981-07-15 1981-07-15 Electrically conductive coating material and stainproof and corrosionproof apparatus Pending JPS5811564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10922981A JPS5811564A (en) 1981-07-15 1981-07-15 Electrically conductive coating material and stainproof and corrosionproof apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10922981A JPS5811564A (en) 1981-07-15 1981-07-15 Electrically conductive coating material and stainproof and corrosionproof apparatus

Publications (1)

Publication Number Publication Date
JPS5811564A true JPS5811564A (en) 1983-01-22

Family

ID=14504880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10922981A Pending JPS5811564A (en) 1981-07-15 1981-07-15 Electrically conductive coating material and stainproof and corrosionproof apparatus

Country Status (1)

Country Link
JP (1) JPS5811564A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196270A (en) * 1982-05-13 1983-11-15 Toppan Printing Co Ltd Preparation of electrically conductive paint
JPH024872A (en) * 1988-06-22 1990-01-09 Sanyuu Bussan Kk Sterilizing, stain proofing and deodorizing method by fixing copper fine powder
CN1073608C (en) * 1997-10-25 2001-10-24 中国科学院长春应用化学研究所 Method for preparing conductive antifouling corrosion-resistant poly-aniline paint
WO2009010803A1 (en) * 2007-07-19 2009-01-22 Anthony James Locke Combating cross-infection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196270A (en) * 1982-05-13 1983-11-15 Toppan Printing Co Ltd Preparation of electrically conductive paint
JPH024872A (en) * 1988-06-22 1990-01-09 Sanyuu Bussan Kk Sterilizing, stain proofing and deodorizing method by fixing copper fine powder
CN1073608C (en) * 1997-10-25 2001-10-24 中国科学院长春应用化学研究所 Method for preparing conductive antifouling corrosion-resistant poly-aniline paint
WO2009010803A1 (en) * 2007-07-19 2009-01-22 Anthony James Locke Combating cross-infection
GB2464071A (en) * 2007-07-19 2010-04-07 Anthony James Locke Combating cross-infection
GB2464071B (en) * 2007-07-19 2012-01-18 Anthony James Locke Coating formulation for combating cross-infection

Similar Documents

Publication Publication Date Title
Almeida et al. Marine paints: the particular case of antifouling paints
JP2014132885A (en) Preventing fungus of bacteria, microorganism, acorn barnacle, pearl oyster, wakame seaweed, etc. from adhering in fishing net, fishing gear, ship's bottom, buoy, bathroom or bathhouse, and method for preventing adhesion thereof
JPS5811564A (en) Electrically conductive coating material and stainproof and corrosionproof apparatus
JP5865364B2 (en) Anti-fouling benzoate combination
JPS5813773A (en) Conductive net like body
JP6295862B2 (en) Antifouling plated steel wire for underwater net and underwater net manufactured from the plated steel wire
JPH01310038A (en) Weak-current excitation type soil-resistant, fungus-resistant and germ-resistant composite structure
JP3160681B2 (en) Repellent molded products of aquatic organisms and microorganisms
CA3141443A1 (en) Biocidal composite material comprising chitin and a biocidal metal
JP3156277U (en) Aquaculture nets
JP4601739B2 (en) Antifouling agent composition, antifouling paint containing the same, antifouling coating film, antifouling treatment using them, and antifouling method
JPH0368652B2 (en)
JP2015198627A (en) Filament yarn for conductive fishing net, filament yarn for conductive fishing line, filament yarn for net knitting for defense from wild boar and deer or the like and enabling high voltage application, and processing method for the same
JPH07252110A (en) Antifouling composition for ship and underwater structure
JPS636682B2 (en)
JPS6357503A (en) Antifouling agent for aquatic life
JP2014079233A (en) Preventing adhesion of fungus of bacteria, microorganism, acorn barnacle, pearl oyster, wakame, etc. in fishing net, fishing gear, bottom of ship, buoy, bathroom or bathhouse, and method for preventing adhesion thereof
JPH0320209B2 (en)
JP3155771U (en) Nets for seafood aquaculture facilities
KR101819195B1 (en) Aquatic organisms intercepting apparatus for nursery
JPH02153105A (en) Shellfish-attachment preventing mechanism for seawater intake screen
DE19702919A1 (en) Corrosion protective layer for ferrous metal
JP2014097048A (en) Preventing adhesion of fungus of bacteria, microorganism, acorn barnacle, pearl oyster, wakame, etc. in fishing net, fishing gear, bottom of ship, buoy, bathroom or bathhouse, and method for preventing adhesion thereof
JP2022127526A (en) Spray system of microbe exterminating agent and microbe extermination method
WO2023216005A1 (en) Metal core coated with plastic lining having copper oxide nanoparticles